# PURDUE UNIVERSITY GIRADUATE SCHOOL

C No101520 P345 DIA

Thesis Acceptance

| By <u>Mateuqu@iack</u>               | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                       |                                       |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                       |
| intitled                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
| Residue Decompos                     | ition of Cotto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on, <b>Peanut</b> an                  | d Sorahum                             | ž.                                    |
| 1                                    | t <sub>sk</sub> je                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                     | 5                                     |                                       |
|                                      | 200 <b>8</b><br>2017 - 2017<br>2017 - 2017 - 2017<br>2017 - 2017 - 2017<br>2017 - 2017 - 2017<br>2017 - 2017 - 2017<br>2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2 |                                       |                                       |                                       |
|                                      | 100 B.<br>- 100 B.<br>- 100 B.<br>- 100 B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | •                                     |                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       | ۰<br>۲                                |
| C:omplies with University            | regulations and me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ets the standard                      | Is of the Graduat                     | e School for origi                    |
| and quality                          | ogolotione and me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                       |                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
| For the degree of <u>Mas</u>         | ster of Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                     |                                       |                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       | · · · · · · · · · ·                   |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
| Signed by the final examin           | ning committee:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
| Dian                                 | e E Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t l                                   |                                       | chair                                 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
| romb                                 | I knin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | <u></u>                               | · · · · · · · · · · · · · · · · · · · |
| Cilon ).                             | Klowto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                       |                                       |
| 0.                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                       |                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       | 3                                     |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
|                                      | 12,120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n - 1                                 |                                       |                                       |
| Appraved <u>by</u> : ½ 🗍             | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (par-                                 | -                                     | - GDac                                |
|                                      | Depart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iment Head                            |                                       | Date                                  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
| is                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>(</i> ,                            | $) \cdot c$                           | · 2                                   |
| This thesis $\overline{X}$ is not to | be regarded as co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onfidential                           |                                       | titt                                  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | Major F                               | Professor                             |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
| Format Approved by:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                       |                                       |
|                                      | - · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                       |                                       |
| Viane E.                             | statt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or                                    |                                       |                                       |
| Chair, Final Examining               | Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Thesis Format A                       | dviser                                |

# RESIDUE DECOMPOSITION OF CO-I-I-ON, PEANUT

## AND SORGHUM

A Thesis

Submitted to the Faculty

of

Purdue University

by

Mateugue Diack

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 1994

To my family

#### ACKNOWLEDGMENTS

express my gratitude and appreciation to Dr. D. E. Stott, my major professor, for her guidance, ieadership, and research funds through the Department of Agronomy throughout the course of my research. | also wish to extend my gratitude to the members of my advisory committee: Dr. Ron F. Turco, and Dr. Eileen J. Kladivko for valuable discussion and information provided.

Thankfulness to the ARS-National **Soil** Erosion Lab, USDA, for the excellent research facilities. Thanks to Glenn A. Wessies and all SCS agents for their help in the collection of plant materials. Thanks to Barbara S. Condra for her assistance in the lab.

Special thanks are extended to my officemates Mark Risse, Thomas Cochrane, Bayuo Liu, and Eusebio Ventura for their camaraderie.

## 'TABLE OF CONTENTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pa                          | age                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------|
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de e e e e e e              | vi                                                                             |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d • • • • • •               | viii                                                                           |
| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •••••                       | xi                                                                             |
| CHAPTER 1 LITERATURE REVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 1                                                                              |
| <ul> <li>1.1. Factors influencing Crop Residue Decomposition</li> <li>1.1.1. Residue Characteristics</li> <li>1.1.1.1. Residue Type, Positioning and Placement</li> <li>1.1.2. Residue Particle Size.</li> <li>1.1.3. Chemical Composition of Plant Residues</li> <li>1.1.5. Biodegradation and Stabilization of Plant Residues in Soil H1</li> <li>1.1.2. Soil Physical, Chemioal and Biological Properties.</li> <li>1.1.2.1. Soil Type.</li> <li>1.1.2.2. Soil Acidity.</li> <li>1.1.2.3. Soit Fertility</li> <li>1.1.2.4. Soil Microbial Population, Tillage and Management Practices</li> <li>1.1.3. Climatic Conditions</li> <li>1.1.3.1. Soil Temperature</li> <li>1.1.3.2. Soil Moisture and Aeration.</li> <li>1.1.3.3. Effects of Wetting and Drying, Freezing and Thawing.</li> <li>1.3. References</li> </ul> | urnus<br>*                  | 2<br>2<br>4<br>5<br>9<br>9<br>10<br>11<br>12<br>13<br>13<br>13<br>14<br>5<br>8 |
| CHAPTER 2 SURFACE RESIDUE AND ROOT DECOMPOSITION<br>OF COTTON, PEANUT AND SORGHUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14 -688688                  | 31                                                                             |
| <ul> <li>2.1. Abstra ct</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • • • • • • • • • • • • • | 31<br>32<br>34<br>34<br>35<br>36                                               |

| 2.3.4. Plant Residue Mass loss Experiment                         |
|-------------------------------------------------------------------|
| 2.35. CO <sub>2</sub> Evolution                                   |
| 2.3.6. Measurement of Specific Surface Area-to-Mass Ratio         |
| 2.3.7. Statistical Analysis                                       |
| 2.4. Results                                                      |
| 2.4.1. Initial Chemical Composition                               |
| 2.4.2. Initial Specific Surface Area                              |
| 2.4.3. Initial Residue Mass.                                      |
| 2.4.4. C lost as CO2                                              |
| 2.4.5. Change in Mass loss.                                       |
| 2.5. Discussion                                                   |
| 2.51. Change in the Specific Surface Area-to-Mass Relationship    |
| 2.5.2. Relationship between Mass loss and Carbon loss             |
| 2.5.3. Prediction of Residue Decay                                |
| 2.6. Conclusions.                                                 |
| 2.7. References.                                                  |
| CHAPTER 3 CROP RESIDUE DECOMPOSITION WITH CHANGE IN<br>SOIL DEPTH |
| 3.1. Abstract                                                     |
| 3.2. Introduction                                                 |
| 3.3. Materials and Methods ······                                 |
| 3.3.1. Soil and Site Description                                  |
| 3.3.2. Plant Materials                                            |
| 3.3.3. Decomposition Experiment                                   |
| 3.3.4. Incubation System                                          |
| 3.3.5. Measurement of CO <sub>2</sub> Evolution-                  |
| 3.3.6. Statistical Design                                         |
| 3.4. Results <b>and Discussion</b>                                |
| 3. 5. Conclusion                                                  |
| 3.6. References ······                                            |

## LIST OF TABLES

| Table                                                                                                 | Page  |
|-------------------------------------------------------------------------------------------------------|-------|
| 2.1. Dates and locations of the crop sample collection                                                | 35    |
| 2.2. Plant residue components and loading rates.,                                                     | 39    |
| 2.3. Initial chemical composition of the aboveground residues                                         | 43    |
| 2.4. Initial chemical composition of the plant roots                                                  | 44    |
| 2.5. Relative initial mass and <b>specific</b> surface <b>area</b> of the residue <b>compo</b> ner    | ts.46 |
| 2.61. Predictive ratio and rate constants of CO, loss and mass loss                                   | 108   |
| 3.1. Initial chemical composition of the peanut residues                                              | 117   |
| 3.2. Physical and chemical characteristics of the soil samples                                        | 121   |
| Appendices<br>Table                                                                                   | 129   |
| A. CO <sub>2</sub> evolution from no-till and moldboard plowed soils amended<br>with peanut residuea* | 130   |
| B. CO <sub>2</sub> evolution from soil amended with cotton residue.                                   | 136   |
| $C.CO_2$ evolution from <b>soil</b> amended with peanut residue                                       | 139   |
| D. CO <sub>2</sub> evolution from <b>soil</b> amended with sorghum residue                            | 142   |
| E. Mass loss of cotton residue                                                                        | 145   |
| F. Mass loss of peanut residue                                                                        | 149   |
| G. Mass loss of sorghum residue                                                                       | 153   |
| H. Change in <b>specific</b> surface <b>area</b> of cotton residue                                    | 157   |
| I. Change in <b>specific</b> surface <b>area</b> of peanut residue                                    | 160   |

| J. Change in specific surface area of sorghum residue                                            | 163 |
|--------------------------------------------------------------------------------------------------|-----|
| K. Anova for CO <sub>2</sub> evolution from no-till and plowed soils amended with peanut residue | 166 |

## LIST OF FIGURES

| Figure ,                                                                                                                                                                | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>2.1. Decomposition of cotton DL-P-5690 as measured by CO<sub>2</sub> evolution over time.</li> <li>Bars represent standard deviations at given time</li> </ul> | 49   |
| 2.2. Decomposition of cotton DP-5215 as measured by CO <sub>2</sub> evolution over time. Bars represent standard deviations at given time                               | 50   |
| 2.3. Decomposition of cotton HS-46 as measured by $CO_2$ evolution over time                                                                                            | 51   |
| 2.4. Decomposition of cotton above-ground biomasss as measured by CO <sub>2</sub> evolution over time                                                                   | 52   |
| 2.5. Decomposition of cotton roots as measured by CO <sub>2</sub> evolution over time                                                                                   | 53   |
| 2.6. Decomposition of peanul: Florunner as measured by CO <sub>2</sub> evolution <b>over</b> time                                                                       | 54   |
| 2.7. Decomposition of peanut NC-7 as measured by CO <sub>2</sub> evolution over time                                                                                    | 55   |
| 2.8. Decomposition of <b>peanut</b> NC-1 1 as measured by CO <sub>2</sub> evolution over time.                                                                          | 56   |
| 2.9. Decomposition of peanut above-ground biomass as measured by CO <sub>2</sub> evolution over time                                                                    | 57   |
| 2.10. Decomposition of peanut roots as measured by CO <sub>2</sub> evolution over time.                                                                                 | 58   |
| 2.11. Decomposition of sorghum Triumph-266 as measured by CO <sub>2</sub> evolution                                                                                     | 59   |
| 2.12. Decomposition of sorghum GW-744BR as measured by CO <sub>2</sub> evolution over time                                                                              | 60   |
| 2.13. Decomposition of sorghum Nking-300 as measured by CO <sub>2</sub> evolution over time                                                                             | 61   |
| 2.14. Decomposition of sorghum above-ground biomass as measured by CO <sub>2</sub> evolution over time                                                                  | . 62 |

| 2.15. | Decomposition of sorghum roots as measured by $\text{CO}_2$ evolution over time                                                    | 63  |
|-------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.16. | Mean decomposition rate of the above-ground biomass for each of the three crops as measured by CO <sub>2</sub> evolution over time | 6 4 |
| 2.17. | Mean decomposition rate of the roots for each of the three crops as measured by $CO_2$ evolution over time                         | 65  |
| 2.18. | Decomposition of cotton OLP-5690 as measured by mass loss over time.                                                               | 68  |
| 2.19. | Decomposition of cotton DP-5215 as measured by mass loss over time                                                                 | 69  |
| 2.20. | Decomposition of cotton HS-46 as measured by mass loss over time                                                                   | 70  |
| 2.21. | Decomposition of cotton above-ground biomass as measured by mass loss <b>Over</b> time                                             | 71  |
| 2.22. | Decomposition of cotton roots as measured by mass loss over time                                                                   | 72  |
| 2.23. | Decomposition of peanut Florunner as measured by mass loss over time                                                               | 73  |
| 2.24. | Decomposition of peanut NC-7 as measured by mass loss over time                                                                    | 74  |
| 2.25. | Decomposition of peanut NC-1 1 as measured by mass loss <b>over</b> tirne                                                          | 75  |
| 2.26. | Decomposition of peanut above-ground biomass as measured by mass loss over                                                         | 76  |
| 2.27. | Decomposition of peanut roots as measured by mass loss over time                                                                   | 77  |
| 2.28. | Decomposition of sorghum Triumph-266 as measured by mass loss over time                                                            | 78  |
|       | Decomposition of sorghum GW744BR as measured by mass loss over time                                                                | 79  |
| 2.30. | Decomposition of sorghum Nking-300 as measured by mass loss<br>over time****                                                       | 80  |
| 2.31. | Decomposition of sorghum above-ground biomass as measured by mass loss over time                                                   | 8 1 |
| 2.32. | Decomposition of sorghum roots as measured by mass bss over time                                                                   | 82  |
| 2.33. | Mean decomposition rate of the above-ground biomass for each of the three crops as measured by mass loss over time                 | 83  |

| 2.34. Mean decomposition.rate of the roots for each of the three crops<br>as measured by mass loss overtime                                                                               |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2.35. Change in specific surface area-to-mass for cotton DLP-5690 over time. 92                                                                                                           |   |
| 2.36. Change in specific surface area-to-mass for cotton DP-5215 over time 93                                                                                                             |   |
| 2.37. Change in specific surface area-tc-mass for cotton HS-46 over time 94                                                                                                               |   |
| 2.38. Change in specific sut-face area-to-mass for peanut Florunner over time. 95                                                                                                         |   |
| 2.39. Change in specific surface area-to-mass for peanut NC-7 over time 96                                                                                                                |   |
| 2.40. Change in specific <b>surface</b> area-to-mass for peanut NC-1 1 over time 97                                                                                                       |   |
| 2.41. Change in specific surface area-to-mass for sorghum Triumph-266<br>over time                                                                                                        |   |
| 2.42. Change in specific surface area-to-mass for sorghum GW744BR<br>over time                                                                                                            |   |
| 2.43. Change in specific surface area-tc-mass for sorghum Nking300<br>over time                                                                                                           | J |
| 2.44. C:hange in specific surface area-tc-mass for the three crops <b>over</b> time 101                                                                                                   |   |
| 2.45. Reiationship between mass loss and CO <sub>2</sub> evolution for aboveground biomass and roots of three cultivars of cotton, peanut and sorghum in the early stage of decomposition | 5 |
| 2.46. Relationship between mass loss and predictive decay rate using aboveground biomass and roots of three cultivars of cotton, peanut aind sorghum                                      | 5 |
| 2.47. Relationship between CO <sub>2</sub> evolution and predictive decay rate using aboveground biomass and roots of three cultivars of cotton, peanut aind sorghum                      | , |
|                                                                                                                                                                                           |   |

#### ABSTRACT

Diack, Mateugue. MS., **Purdue** University, December 1994. Residue decomposition of cotton, peanut and sorghum. Major Professor: D.E. Stott.

Developing effective management strategies that protect **soil** against erosion requires an understanding of residue decomposition. While the impact of environmental factors **such** as temperature and water content has been studied, little has been **done** to understand how the characteristics of the residue itself impact the decomposition rate. Traditionally, the C:N ratio has been used as a predictor of decomposition rates for **agronomic** crops, but has recently been shown to be poorly correlated. This study relates the chemical composition rates for three cultivars each of three crops: cotton (*Gossypium hirsutum*), sorghum (*Sorghum bicolor*) and peanut (*Arachis hypogaea*). The rates were determined by mass loss and CO<sub>2</sub> evolution. Change in the specific surface **area** of the residue as related to mass loss was also measured. The three crops were from **slowest** to the most rapid loss: sorghum > cotton > peanut. From the initial chemical and **physical** residue characteristics, the following equation was developed to predict decay in the first stage:

 $P_D = (N*Sugars*Hemicellulose*K_{in.}) / Lignin, where <math>P_D$  is the predictive decay rate,  $K_{in.}$  is the initial specific surface **area-to-mass** ratio. For mass **loss**,  $r^2 =$ 0.96, and for  $CO_2$  evolution,  $r^2 = 0.95$ . Since varietal differences within crops have led to **significant** variation in decomposition rates, **cultivars** with slower decaying residues might be recommended for highly erodible lands.

#### CHAPTER 1

#### LITERATURE REVIEW

Soil erosion is a major problem facing land managers, conservation planners, environmental scientists and those concerned with construction sites. At the farming level, erosion destroys the inherent fertility of the soil, and that means higher farm and food costs. Maintaining crop residue on the soil surface is an effective and cost-effective practical method for controlling wind and water erosion. Douglas et al. (1992) noted that if residues are burned, removed, buried or decomposed before a critical erosion period, there may be in sufficient cover to protect the soil.

Critical time periods for wind erosion, when the potential for erosic in is the greatest, occur from the time of the last tillage before seeding until the crop has grown enough to provide adequate ground cover (Siddoway and Fenster, 1983). This is when soil clods have dispersed due to freezing and thawing or wetting and drying, and when residue is usually positioned flat on the soit surface.

Residue protects the soil surface from water erosion by absorbing the impact energy of raindrops, thus reducing soil particle detachment. Residue, also reduces surface crusting and sealing thereby enhancing infiltration and crop seediing emergence. Surface residue slows the velocity of runoff water by creating small obstructions along the flow path. This action reduces both the amount of soil transported and the amount of additional soil particles detached by flowing water. Managing **Crop** residues on **soil** surface is a primary method for controlling soil erosion. One of the main goals of conservation tiliage is to keep enough crop residues on the soil surface to control or minimize erosion. Generally, a conservation tillage system that leaves 30% of surface covered by residue, can reduce soil loss by 60-70%. On steep slopes, greater cover is required to achieve 60-70% soil loss reduction. Quantities of residue biomass left after harvest depend on climatic conditions and soil nutrient availability **during** the growing season. Surface residues in the standing position are twice as effective in controlling wind erosion as the **same** quantity of residues lying flat on the soil surface (Tanaka, 1986). However, flat residues are the most effective for controlling erosion by water.

Understanding how rapidly surface managed **crop** residues are decomposed and lost from a field site, is a prerequisite to the design of erosion prediction and control that will ensure sustainable and profitable agriculture. The major factors controlling **crop** residue decomposition are residue physical and chemical characteristics, soil physical, chemical, and **biological** composition, and finally climatic conditions (Stott et al., 1989).

### 1. 1. Factors Influencing Crop Residue Decomposition

#### 1.1.1. Residue C haraderistics

#### 1.1.1.1. <u>Residue Type</u>, Positioning and Placement

Crop residue types are generally separated into two main entities which are the above-ground biomass of the plant (sheath, stem and leaves), and the **roots**.

The residue position within a **field** is important in determining the type of **soil** erosion that **can** be best controlled. For protection from water erosion, flat residues **contribute** more **cover** than standing, residues and this **protects** the soil

surface from raindrop impact. However, standing residues persist longer because of slower decomposition rates. For wind erosion, standing residues reduce the wind velocity near the soil surface (Steiner et al., 1993). Fla1:residue cover increases surface roughness, acts as non-erodible material, and prevents soil particle detachment. Tanaka (1986) studied the effect of chemical and stubble-mulch fallow on residue orientation and decomposition, and to compare residue biomass of standing vvinter wheat residue on chemical fallow plots to that of spring wheat. From the chemical fallow plot, standing residue with an angle <  $45^{\circ}$  from vertical, and flat residue with an angle >  $45^{\circ}$  from vertical were collected separately. He found that quantities of chemical fallow standing residue decreased, while flat residue increased at constant rates during the summer fallow period. Tanaka hypothesized that the loss and gain of residue were due to repositioning of the standing residue.

Surface placement of crop residues can be an effective practical method for erosion control. Microorganisms involved in the decomposition of crop residues are sensitive to residue placement. Puig-Gimenez and Chase (1984) showed that under identical incubation conditions in the laboratory, straw kepf near the surface of the soil and resiclue mixed uniformily through the 7 cm deep isoil sample were not significantly different in decomposition rate. In contrast to these results, field studies have shown significantly greater decomposition of buried residues than of surface-applied residues (Greb et al., 1974). The decrease in decomposition parallels, but likely not due to the drop in the soil organic carbon level. Parr and Papendick (1978) stated that buried residues are likely to decompose faster than surface residues because buried residues are exposed to more uniform temperature and moisture conditions within the soil Furthermore, in a study of wheat straw residue loss under simulated profile. field conditions, Brown and Dickey (1970) observed that buried wheat residue had a greater mass loss than residue on the soil surface.

#### 1.1.1.2. <u>Residue Particle Size</u>

Few data are available on the effects of particle size on residue decomposition. In some faboratory decomposition studies, **Crop** residues were **chopped** into 4 to 5 cm sections, in others, ground residues were used. Large particles generally decompose slower than small particulate materials (Allison, 1973). Jensen (1994) related decomposition rate with residue particle size and C:N ratio, noting that the decomposition of plant residues was slower with small, than with **coarse** residues in the early decomposition stage of materials of low C:N ratio. He concluded that it was probably due to a better protection of the smaller residues and biomass by **clay** minerals. For residues with high C:N ratio, the decomposition of **larger** sized residues **may** be N-limited, resulting in a slower rate of decomposition **compared** to smaller residues.

Residue type, particle size, position and placement in the **field** are **all** important factors contributing to the regulation of the decomposition process.

#### 1.1.1.3. Chemical Composition of Plant Residues

Chemical quality of the **crop** residues is **one** of the most important factors **controlling** the rate of breakdown of the residues by microbes. Although microbes do not have **absolute** control on **nutrient** availability, they are strong competitors for available **nutrients**. The overall rate of decomposition is influenced by the types of organic **molecules** and the **nutrient** content of the plant residues (as well as by other factors being discussed). **Nitrogen** is a key **nutrient** for microbial growth and hence for organic material breakdown. Residue with high **nitrogen** contents favor rapid initial decomposition. **Also**, the comportent most frequently limiting microbial adivity is **the** availability of utilizable C substrate (Alexander, 1977). In plants, about 75% of the dry weight is polysaccharide, with cellulose, the most abundant of all naturally occurring organic compounds, constituting at least **10%** of all vegetable matter (Cheshire, 1979). The cellulose has a structural role; in the plant cell wall, linear chains of cellulose molecules occur in cross-link bundles embedded in a highly branched polysaccharide matrix consisting of hemicellulose. Hemicelluloses have been defined as the alkali-soluble polysaccharides in plant and are a mixture of homo- and heteropolysaccharides with xylans predominating. Plants also contain small amounts of wate r-soluble polysaccharides.

Lignin is the second most abundant polymer synthesized by plants (Stott et al., 1989). According to Lewis et al. (1990), lignins are plant polymers derived from the hydroxycinnamyl alcohols or monolignols *p*-coumaryl, conifery I, and sinapyl. They also noted that the aromatic portions of these phenylpropanoids are described as *p*-hydroxyphenyl (h), guaiacyl (g), and syringyl (s) moleties, respectively, and that lignins are classified according to this distinction.!

Polysaccharide and lignin contents are important factors in the **plant** residue decomposition. Their initial concentrations play **a** major role in predicting the kinetics of residue decomposition.

#### 1.1.1.5. Biodegradation and Stabilization of Plant Residues in Soil Humus

Young succulent tissues are metabolized more readily than residues of mature plants. As the plant ages, its chemical composition changes; the content of nitrogen, proteins, and water-soluble substances fall, and the proportion of cellulose, hernicallulose and lignin rises. Soluble C compounds degrade first, followed by structural polysaccharides (hemicellulose and cellulose), with lignin decomposing later at much slower rate (Wessen and Berg, 1985; Summerell and Burgess, 1986; Reber and Schara, 1971). Residues having relatively high lignin contents, low N content or high C:N ratio degrade at

a slower rate (Ladd et ai., 1981; Parr and Papendick, 1978). However, more recent work has shown that C:N ratio was closely related to the nature of the plant residue (grain vs iegume), residue placement (Smith et al., 1986), and residue particle size (Jensen, 1994). Lignin is a very complex, slowly degrading compound, and high lignin content retards decomposition.

Lignin is thought to be the major source of polyphenols. The role of lignin as a regulator in the decomposition process has been elucidated in several studies (Meentemeyer, 1978; Berendse et al., 1985). Increasing lignin concentration reduces the decomposition rate of plant residues. High lignin content of plant residues could also enhance nutrient immobilization, especially of nitrogen (Melillo et al., 1982). Simple phenolic substances and other aromatic compounds may *be* present in plant and microbial residues, and are released during biodegradation of aromatic polymers such as lignins (Flaig et al., 1975; Kassim et al., 1982; Linhares and Martin, 1979).

Labeling of plant and model lignins has greatly facilitated our knowledge of the biodegradation and transformations of lignin during humification in soil (Kirk et al., 1977). Within the soil humus, lignin biodegradation studies indicate that lignin is an important substrate for humus formation (Stott et al., 1989).

The use of <sup>14</sup>C-labeled substrates has made it possible to more precisely follow the degradation and stabilization in humus of specific carbons (Stott et al., 1989). After one year, (Martin et al., 1980), in a 2-year biodegradation and stabilization of specific crop, lignin, and polysaccharide carbons in soils study, about 10 to 20% of the residual C will be present in the soil biomass, and 80 to 90% of the residual C will be in new humus (Stott et al., 1983a, b). With time, the proportion of residual substrate carbon in biomass will decline and that in humus will increase (Kassim et al., 1982; Stott et al., 1989). In most soils, the biomass constitutes about 2 to 4% of the organic carbon (Anderson and Domsch, 1978; Jenkinson and Powlson, 1976). About 20% of the residual C from readily biodegradable substrates will be associated with the humic acid

fraction of soil humus, with some of it being present in aromatic molecules. Martin et al. (1974a) found <sup>14</sup>C activity in over 16 phenolic compounds upon Naamalgam degradation of soil humic following incubation of soil amended with <sup>14</sup>C-labeled glucose or wheat straw. Still, the greater part of the residual C is present in peptides and polysaccharides and is released as sugar or amino acid units upon acids hydrolysis (Jenkinson, 1971; Martin et al., 1980; Oades and Wagner, 1971; Stott et al., 1983a; Wagner and Mutatkar, 1968). As Stott et al. (1983a) reported, this would be expected as the majority of metabolized C not released as CO2 would be transformed into microbial protoplasm, cell wall material, and polysaccharides. Sixty percent or more of most organic residues consist of cellulose and other polysaccharides. Some residues, such as legumes and microbial tissues, contain from 6 to as much as 65% protein (Stott et al., 4989). Most of these materials are very biodegradable, but they will decompose at slower rates than simple sugars and amino acids, especially during the early stages of decomposition. Still, after 6-12 months, Sauerbeck and Gonzalez (1977) reported that about 70 to 85% of the C will evolve as CO<sub>2</sub> in a field decomposition of <sup>14</sup>C-labeled plant residues in the various solls study. About 6 to 16% of the residual C will be present in soil biomass (Stott et al., 1983a).

A vast number of residue decomposition studies have found that plant residue disappearance rates generally follow an exponential decay curve. The absolute mass loss is relatively rapid in early stages, but slows with time. This has been expressed by Stott et al., (1994) by the equation:

where  $M_t$  is the residue mass per unit area remaining on the surface today and  $M_y$  is the mass per unit area remaining on the ground the previous day,  $R_{opt}$  is a

decomposition constant specific to a residue type and EF, measured as the lower limit of moisture and temperature factors, is the environmental **factor** determining the fraction of a decomposition day that has occurred **during** day **t**. This curve will fit the decomposition pattern of most types of plant residues within the **same** environment. The key variable is the R<sub>opt</sub> value. In general, the pattern of decomposition is explained by the chemistry of the organic molecules present in the **crop** residues. Molecules that are readily degraded, such as sugars, disappear quickly, whereas, recalcitrant lignin and phenolic molecules are degraded very slowly. Usually, a ranking order of decomposition of the organics present in plant litter is as follows: **sugars** > hemicellulose > cellulose > lignin > waxes > phenols. Varietal differences have been shown to have an impact on decomposition rates of cereal and legume residues (Smith and Peckenpaugh, 1986; Stott, 1992). These **differences** are likely to be due to the proportions of these compounds.

Residue decomposition rate **depends** on the amount of residue as **well** as the chemical and physical quality of the residue. Three pools of compounds are generally identified as one readily **decomposable** pool including simple **sugars**, starches, and other proteins, an intermediate pool with non structural carbohydrates, and a more recalcitrant pool including lignin and other structural compounds. These pools **along** with the environmental factors determine the kinetics of residue decomposition.

Ghidey et al. (1985) established a residue decay equation based on change in residue surface area with time. However, they made an assumption that **crop** residue consists of solid stems of uniform length and diameter, and that decomposition starts from the outside surface of the material and proceeds linearly inward. Based on what we know, microorganisms attack preferably the most readily degradable part of a plant material first which is the inside part of the stem in this case. In general, stems have more pronounced lignification on the outside surface than in the internal part. Stott et al. (1992) have found that corn and soybean stem surface areas changed insignificantly over time, while leaf area changes were very significant. Steiner et al.(1993) mentioned that decomposition may occur in the stem's interior, leaving the stem exterior (and cover) relatively intact.

# 1.12. Soil Physical, Chemical and Biological Properties 1.1.2.1, <u>Soil Type</u>

It has been shown that the presence of clay will increase microbial numbers and activity in soil and pure cultures, especially during the early stages of degradation of readily available organic substrates (Filip, 1975). Gregorich et al. (1991) also reported that the rate of decomposition of substrate C w as greater in soils with more clay, in a study of the influence of soil texture on the turnover of C through the microbial biomass, For organisms, associatien with clay may offer a favorable ecological niche because the clay surface may have concentrated substrate for the organisms. Bacteria adhere to both charged and noncharged surfaces, and it has been suggested that surface charges are not important (Oades et al., 1989). However, the interaction of clay particles and cells is dependent on the size and the charge of exchangeable cations and on electrolyte concentration, just as for other negatively charged colloidal particles. The interaction of microorganisms with clays is an area of expanding interest, as clays may prevent the potential spread of a disease-causing organir m-e.g., Fusarium-or may protect bacteria and viruses against extremes in the environment and against sferilants (Strozky, 1980). Clays may also increase O<sub>2</sub> uptake by microbial cultures (Filip et al., 1972; Haider et al., 1970; Strozky, The presence of clay, however, may reduce total C loss as  $CQ_2$  through 1967). increasing the efficiency of C conversion to biomass and through forming complexes with decomposition products and new humus colloids (Greaves and Wilson, 1973; Greenland, '1971; Martin et al., 1976). In a 10-year study by

Jenkinson (1977), soils with higher **clay** contents retained greater amounts of the C of added <sup>14</sup>C-labeled residues. Guekert et al. (1977) observed that intimate association of glucose, microbial polysaccharide, and bacterial **cells** with **clay** reduced the evolution of C as  $CO_2$  during incubation in soil.

Soil texture and soil organic matter have a great effect on residue decomposition. Microbial population and activity are expected to be high with a soil high in organic matter and clay content.

#### 1.1.2.2. Soil Acidity

Hydrogen ion concentration is another factor influencing carbon turnover rates. Each microbial species has an optimum pH for growth and a range outside of which no cell proliferation takes place. Loss of C from organic substrates may be slower in acid soils especially during the early stages of decomposition (Jenkinson, 1971). Consequently, the treatment of acid soils with lime accelerates the decay of plant tissues, simple carbonaceous compounds, or native soil organic matter (Afexander, 1977).

Measurements of pH are important criteria for predicting the capability of soils to support microbiat activity.

#### 1.1.2.3. Soil Fertility

Crop residues play an important role in maintaining soil fertility and productivity by providing a source of nutrients and inputs to organic matter. Soil organic matter is the major source of N, S, P, and many micronutrients in soils. Organic matter is critical to efficient crop production because of its cation exchange and water holding capacities. Crop residues , including roots, are the primary source of organic material added to soil in many cropping systems. They represent a major contribution to nutrient cycling. C and N availability within crop residues along with lignin content greatly influence decomposition rates and N availability to plants. Decomposition of residues with low N contents such as wheat and grain sorghum may result in microbial immobilization of soil and fertilizer N, and effectively reducing N availability to plants (Reinertsen et al., 1984; Vigil et al., 1991).

#### 1.1.2.4. Soil Microbial Population, Tillage and Manaoement Practices

Soil microbial population in relation with management practices influences crop residue decomposition in the field.

In a 2-year decomposition study conducted on corn, wheat, and soybean residue, Brader (1988) found that bacterial and actinomycete populations were consistently higher on soybean residue in comparison with corn and wheat residue. However, fungal populations were consistently highest on corn residue and lowest on wheat residue. Stott et al. (1989) reported that in arid zone soils, which are predominantly alkaline, the bacteria and streptomycetes would be more active in organic resiclue decomposition. The fungi however, have a much greater biomass (Anderson and Domsch 1973); they are able to grow at lower moisture contents, and are no doubt important contribution to residue biodegradation in desert soils. Soil microbial populations have been found to differ between conventional tillage and no-till systems. Plowing and cultivation accelerate the microbial processes involved in oxidizing organic matter Doran (1980) reported that **no-till** had more total biomass than did convention il tillage soils in the surface O-7.5 cm, which was related to an increase in soil w ater content, percent organic carbon, and nitrogen levels. Doran (1980) al to found that these results were reversed at the 7.5-1 5 cm depth. He conclude 1 that this was probably due to the placement of crop residue at depth with plowir g, which raised the soil water and organic carbon content.

Changes in soil organic t-natter reactions, as determined by organic car-bon content, have strong implications on the microbial activity. The distribution of organic carbon (OC) in the soil profile is a direct reflection of the management practices in a given soil. The percent of OC tends to be greater in the no-till surface O-7.5 cm than under conventional tillage, although the two systems show similar organic carbon content through the remainder of the soil profile (Dick, 1984; Doran, 1980). The buildup of OC at the surface from no-till management reflects the localized distribution of plants residues on the surface.

#### 1.1.2.5. Soil Fauna

Soil meso and macro animals are also involved in organic debris degradation in many ecosystems, and interest in their activities is increasing. Soil fauna are known to play a critical role in the biological turnover and nutrient release of plant residues by fragmenting the plant residues, resulting in enhanced microbial activities and grazing of microflora by fauna . Edwards and Heath (1963) reported that when soil animals are excluded from decomposing litter, via small mesh litterbag, fragmentation is insufficient and this leads to reduce consumption by microorganisms. Schaller (1968), pointed out that earthworms and soil insects are ver-y active in the disintegration of organic litter accumulated on soil surfaces. Earthworm activity, greater in no-till systems, has been implicated in increased rates of corn residue breakdown (Zachman et al., 1989). Termite feeding activities were observed in litter decomposition and they accounted for much of the mass loss in a litter decomposition study (Cepada et al., 1990).

Soil macrofaunal activity can have an important effect on residue decomposition in an ecosystem appropriate for their living conditions. Not only do they break down the relatively large particles of residue and trigger the decomposition process, but also feed themselves on the residues, reducing considerably the amount of residues present.

#### 1.1.3. Climatic Conditions

#### 1.1.3.1. Soil Temoerature

Temperature is a major environmental factor for controlling residue decomposition rates in soil. Qrganic residue decomposition rates increase as temperature increases (Stott et al., 1989). Although each species of the soil population has a temperature optimum, the overall optimum range in soils is generally about 20 to  $27^{\circ}$ C in temperate climatic zones. Below this range, the decomposition rate will decrease and will essentially be stopped when surrounding environs freeze (Stott et al., 1989). In a study on wheat decomposition, Stott et al. (1986) established equations for the relationship between the amount of residue decomposition and temperature. They observed that there was still significant amount of residue decomposition at  $0^{\circ}$ C, with 12 to  $17\% [^{14}C]CO_2$  evolved as  $CO_2$  in 30 days. The decomposition decreased with the temperature.

#### 1.1.3.2. Soi! Moisture and Aeration

Soil moisture status is another important environmental factor regulating residue decomposition (Kowalenko et al., 1978). Favorable moisture /conditions for organic residue decomposition in soils range from about 50 to 90% of the moisture-holding capacity (-50 to -15 kPa) as reported by (Stott et al. 1989). As the moisture content decreases below 50% of capacity, the activity of the soil organisms decreases, but some biodegradation occurs even at about 2% moisture (-1.5 MPa), which is the permanent wilting point for most pl ants (Focht

and Martin, 1979). In a laboratory study on wheat residue decomposition, Stott et al. (1986) found that significant decomposition still occurred at -5 MPa, with 10% of the residue C evolving as  $CO_2$  over one month. Brown (1976), and Griffin (1972) reported that many soil organisms will live and even thrive at water potentials much lower than -1.5 MPa. Wilson and Griffin (1983) estimated that 6 out of 11 basidiomycetes tested grew at water potentials below -10 MPa.

A decreased rate of decomposition of <sup>14</sup>C-labeled plant residues in planted soil compared with fallow soil has been attributed to lower microbial activity resulting from restricted aeration (Füer and Sauerbeck, 1968). Linn and Doran (1984) found that aerobic microbial respiration increased with soil water content and reached a maximum at 60% water filled pore space. Above 60% water filled pore space, air became limiting. In well-drained soils, acids and alcohols are formed, but they rarely accumulate in appreciable amounts because they are readily metabolized by aerobic bacteria, actinomycetes, and fungi. The main products of aerobic carbon mineralization are CO<sub>2</sub>, water, microbial cells, and soil humus components. In the absence of O<sub>2</sub>, organic carbon is incompletely metabolized, intermediary substances accumulate, abundant quantities of CH4 and smaller amounts of H<sub>2</sub> are evoived.

#### 1.1.3.3. Effects of Wettina and Drying, Freezing and Thawing

Under the low humidity and high temperatures frequently encountered in arid zones, soils are subject to rapid drying following rains and irrigation (Stott et al., 1989). They also reported that in areas where the winter temperatures drop below freezing, soils are subject to freezing and thawing cycles. Shields et al. (1974) noted that the drying and rewetting or the freezing and thawing of soils cause *a* marked flush in  $CO_2$  evolution. A decrease in bacterial numbers upon drying and an increase in soluble amino acids and bacterial numbers following rewetting have been observed by Stevenson (1956). Shields et al. (1974) found

that freezing and thawing were more effective than wetting and drying cycles in causing the release of previously stabilized  ${}^{14}C$  as  $CO_2$  from the soils. The wetting and drying increased the evolution of previously stabilized  ${}^{14}C$  from 16 to 121% compared to controls kept continuously moist (Stott et al., 1989). Salonius (1983) pointed out that a major factor in the increase  $CO_2$  evolution was related to death of vegetative microbial cells during the freezing or drying process. After conditions become favorable for growth, the surviving or ganisms quickly decompose the killed cells (Shields et al., 1974).

#### 1.2. Living Roots and Root Decomposition

The value of roots as a source of organic **matter** is ably demonstrated by the high organic matter content of grassland soils (Cook, 1962). Among the extremely diverse soil microsites, which govern the activity and survival of microorganisms, the soil-root interface plays an important role, particularly in modifying the density, activity and structure of the microbial communities. Plant roots continuously provide the soil with small amounts of a wide variety of easily decomposable materials, thereby creating a rhizosphere effect (Curl and Truelove, 1986). The rhizosphere is a microhabitat for microorganisms, most of thern dependent on soluble exudates from the root (Dormaar, 1990). The microbial and chemical composition of the rhizosphere differs considerably from that in the soil not influenced lby roots (Curl and Truelove, 1986). Billes and Bottner (1981) and Bottner (1982) observed that wheat root litter seemed to disappear faster when living roots were present. The release of all organic material, both soluble and insoluble from roots, occurs during plant growth (Newman, 1985). Cheng and Coleman (1990) reported that living roots had a stimulatory effect on soil organic matter decomposition due to higher microbial activity induced by the roots.

There have been few studies of decomposition of roots in any ecosystem (Berget ai., 1984), and there are numerous difficulties in following the decomposition of roots in the soil under natural conditions (Jenkinson, 1965). However, as Berg et al. (1984) pointed out, not only is quantification of root decomposition necessary, but also it is important to understanding the factors regulating the decomposition process. In a study of in *situ* decomposition of root-derived carbon from wheat, Martin (1989) observed that the decomposition of root-derived organic material, present in the wheat rhizosphere, was more complete in undisturbed soil than when air-dried roots were mixed with moist or air-dry soil. His explanation was based on the assumption that the airdrying and mechanical disturbance killed a large part of the rhizosphere biota present around roots in undisturbed soils. Berg et al. (1987) found that organic matter mass loss, from red clover root decomposition, was fast during the first 13 days (44%) and almost ceased after 30 days when about 29% of the organic material remained. They also noticed that there was no notable difference in mass or nitrogen loss from roots of different diameters. The C:N ratio of the root remains decreased from initially 2527 to 11:13 at the end of the incubation. Root decomposition occurs continuously and peaks in early summer, then declines to low levels during winter, and is in phase with soil temperature (Santantonio et al., 1987). Joslin et al. (1987) also reported that root decomposition rate (% weight loss) was highest during the August-September inter-val, showing a positive correlation with soil temperature when studying the association of organic matter and nutrients with fine root turnover in a white oak Rates of mass losses of roots in a desert soil were equal to or higher stand. than those reported from mesic ecosystems by Whitford et al. (1988).

The hypotheses to test were that there is difference in decomposition rate between cultivars of a given plant species based on their initial chemical and physical composition, and that these characteristics can be used to predict decomposition rate. The objectives of this study were to: (i) determine decomposition rades for cotton, peanut and sorghum aboveground residues and roots by carbon loss and mass loss; (iii) determine the impact of initial chemical and physical characteristics of the residues on decomposition; (iii) determine if plant species affects decomposition rate observed; (iv) determine changes in the mass-to-specific surface area during decomposition, and (v) develop predictive decay equations for plant residues based on mass loss or CO<sub>2</sub> loss and the chemical and physical characteristics off the residues.

#### 1.4. References

- Alexander, M. 1977. Introduction to Soil Microbiology. Second ed. Wiley & Sons Inc., New York City, NY.
- Allison, F.E. 1973. Soil organic matter and its role in crop production. Elsevier, Amsterdam, The Netherlands.
- Anderson, J.P.E., and K.H. Domsch. 1973. Quantification of bacterial and fungal contributions to soil respiration. Archives Microbiol. 93:113-127.
- Anderson, J.P.E., and K.H. Domsch. 1978. Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biol. Biochem. 10:207-213.
- Berendse, F., B. Berg, and E. Bosatta. 1985. The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystem: A theoretical approach. Canadian J. Bot. 65: 1116-I 120.
- Berg, B., and 0. Theander 1984. Dynamics of some nitrogen fractions in decomposing scot pine needle litter. Pedolobiol. 27:261-267.
- Berg, B., M. Muller, and B. Wessen. 1987. Decomposition of red clover (*Trifolium Pratense*) Roots. Soil Biol. Biochem. 19:589-593.
- Billes, G., and P. Bottner. 1981. Effect des racines vivantes sur la décomposition d' une litière racinaire marquée au <sup>14</sup>C. Plant Soil 62:193-208.
- Bottner, P. 1982. Biodégradation du matériel végétal en milieu herbacé. Acta Oecol/Oecol Generalis 3: 155-I 82.
- Broadbent, F.E., and A.G. Norman. 1946. Some factors affecting the availability of organic nitrogen in soil. A preliminary report. Soil Sci. Soc. Am. Proc. 11:264-267.

Broder, M.W., and G.H. Wagner. 1988. Microbial colonization and decomposition of corn, wheat, and soybean residues. Soil Sci. Soc. Am. J. 52:112-117.

Brown, A.D., 1976. Microbial water stress. Bacteriol. Reviews 40:803-846.

- Brown, P.L., and D.D. Dickey. 1970. Losses of wheat straw residue under simulated field conditions. Soil Sci. Soc. Am. Proc. 34:118-121.
- Cepeda,, G.J., and W.G. Whitford. 7990. Decomposition patterns of surface leaf litter of six plant species along with a Chihuahuan desert watershed. The Amer. Midland Naturalist 123:319-330.
- Chen, M., and M. Alexander. '1973. Survival of soit bacteria during prolonged desiccation. Soil Biol. Biochem. 5:213-221.
- Cheng, W., and D.C. Coleman. 1990. Effect of living roots on soil organic matter decomposition. Soil Bicl. Biochem. 22:781-787.
- Cheshire, M.V. 1979. Nature, and origin of carbohydrates in soils. United States Edition. Academic Press Inc., New York City, NY.
- Cook, R.L. 1962. Soil management for conservation and production. Wiley and Sons Inc. New York City, NY.
- Crawford, R.L. 1981. Lignin biiodegradation and transformation. Wiley Interscience Press. New York City, NY.
- Curl, E.A., and B. Truelove. 1'986. The rhizosphere. Springer, New York City, NY.
- Dagley, S. 1971. Catabolism of aromatic compounds by microorganisms. Adv. Microb. Physiol. 6: I-46.

- Dick, W.A. 1984. influence of long-term tillage and crop rotation combinations on soil enzyme activities. Soil Sci. Soc. Am. J. 48:569-584.
- Doran, J.W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 44:765-771.
- Dormaar, J.F. 1990. Effect of active roots on the decomposition of soil organic materials. Biol. Fertil. Soils. 10:121-126.
- Douglas Jr., C.L., P.E. Rasmussen, and R.R. Allmaras. 1992. Nutrient distribution following wheat-residue dispersa1 by combines. Soil Sci. Soc. Am. J. 56: 1171-1177.
  - Edwards, C.A., and G.W. Heath. 1963. The role of soil animals in breakdown of leaf material. In J. Doeksen & J. van der Drift [ed.], Soil organisms, North-Holland Publ. Co., Amsterdam, The Netherlands.
- Edwards, C.A., and J.R. Lofty. 1972. Biology of earthworms. Chapman and Hall, London, England..
- Elliott, L.F., H.F. Stroo. R.I. Papendick, C.L. Douglas, G.S. Campbell, and D.E. Stott. 1986. Decomposition of surface managed crop residues. pp. 81-91.
   In: L. F. Elliott [ed.] STEEP Conservation concepts and accomplishments. Washington State University Press. Pullman, WA.
- Filip, Z., K. Haider, and J.P. Martin 1972. Influence of **clay** minerals on formation of humic substances by *Epicom nigram* and *Stachybotrys chartarum*. Soil Biol. Biochem. 4:147-154.
- Filip, Z. 1975. Wechselbezichungen zwischen mikroorganismen and tonmineralen und ihre auswirkung auf die bodendynamik. In: D. E. Stott. 1989. Organic matter decomposition and retention in arid soils. Arid Soil Research and Rehabilitation. 3:115-148.

- Flaig, W., H. Bentelspacher, and E. Rietz. 1975. Chemical composition and physical properties of humic substances. pp. 1-211, In: J.E.Giescking, [ed.], Soil components, vol. 1. Organic Components. Springer-Verlag, New York, NY.
- Focht, D.D., and J.P. Martin 1979. Microbiological and biochemical aspects of semi-arid and agricultural soils, pp. 119-147. In: A. E. Hall, G.H. Cannell, and H.W. Lawton, [ed.], Agriculture in Semi-arid Environment. Spriinger-Verlag, New York, NY.
- Führ, W., and D. Sauerbeck. 1968. Decomposition of wheat straw in the field as influenced by cropping and rotation. pp. 241-250. In: Isotopes and radiation in soil organic matter studies. International Atomic Agency, Vienna, Austria.
- Ghidey, F., J.M. Gregory, T.R. McCarty, and E.E. Alberts 1985. Residue decay evaluation and prediction. Trans. of the ASAE. :OOOI -2351 :102-105.
- Goering, H.K., and P.J. Van Soest. 1970. Forage fiber analysis. Agriculture Handbook No. 379. Agricultural Research Service. USDA. Jacket No. 378-598.
- Greaves, M. P., and M.J. Wilson. 1973. Effect of soil microorganisms on montmorillonite- adenine complexes. Soil Biol. Biochem. 5:275-276.
- Greb, B.W., A.L. Black, and D.E. Smika. 1974. Straw buildup in soil with stubble mulch fallow in the semi-arid Great Plains. Soil Sci. Am. Proc. 38: 135-I 36.
- Greenland, 0. J. 1971. Interactions between humic and fulvic acids and i clays. Soil Sci. 111:34-41.
- Gregorich, E.G., R.P. Voroney, and R.G. Kachanaski. 1991. Turnover of carbon through the microbial biornass in soils with different textures. Soil <sup>|3</sup>iol. Biochem. 23:799-805.

- Gregory, J.M., T.R. McCarty, F. Ghidey, and E.E. Alberts. 1982. Derivation and evaluation of a residue decay equation. Trans. of the ASAE. 0001-2351:98, 99, 101, 105.
- Griffin, D. M. 1972. Ecology of soil fungi. Syracuse University Press, Syracuse, New York.
- Griffith, D.R, E.J. Klavdivko, J.V. Mannering, T.D. West, and S.D. Parsons. 1988. Long-term tillage and rotation effects on corn growth and yield on high and low organic, poorly drained soils. Agron. J. 80599605.
- Guekert, A., H.H. Tok, and F. Jacquin. 3977. Biodégradation de polysaccharides bactérieux adsorbés sur une montmorillonite. pp. 403-411, In: Proc. of the inter. symp. on soil organic matter studies. Vol. 1. international Atomic Energy Agency, Vienna, Austria.
- Hackett, W.F., W.J. Conners, T.K. Kirk, and J.G. Zeikus. 1977. Microbial decomposition of synthetic <sup>14</sup>C-labeled ligninsin nature: lignin biodegradation in a variety of natural materials. Environ. Microbiol. 33:43-51.
- Haider, K., Z. Filip, and J.P. Martin. 1970. Einfluss von montmorillonite auf die bildung von biomasse und stoffwechsel- zwischenproducten durch einige mikroorganismen. Archives Mikrobiologie. 73:201-215.
- Haider, K., and J.P. Martin. 1975. Decomposition of specifically carbon-14labeled benzoic and cinnanic acid derivatives in soil. Soil Sci. Am. Proc. 39:651-662.
- Haider, K., J.P. Martin, and Z. Filip. 1975. Humus biochemistry, pp. 195-244, in:E. A. Paul and A.D. Mclaren fed.] Soil Biochemistry. Vol. 4. Marcel Dekker, New York City, NY.
- Haider, K., J.P. Martin, and E. Rietz. 1977. Decomposition in soil of <sup>14</sup>C-labeled coumaryl alcohols, free and linked into dehydropolymer and plant lignins and model humic acids. Soil Sci. Soc. Am. J. 41:556-562.

- Haider, K., and J.P. Martin. 1979. Abbau and umwand lung von pflanzen ruckstanden und ihren Inhaltsstoffen durch die mikroflora des bodens. Zeitschrift fur Pflanzenernahrung under Bodenkunder 142:456-475.
- Hargrove, W.L., P.B. Ford, and Z.C. Somda. 1992. Crop residue decomposition under controlled and field conditions. Station Bulletin. Dept. of Agronomy, Univ. of Georgia, Georgia Station, GA 30223-I 797.
- Herman, W.A., W.B. McGill, and J.F. Dormaar. 1977. Effects of initial chemical composition on decomposition of roots of three grass species. Can. J. Soil Sci. 57:205-215.
- Jenkinson, D.S. 1965. Studies on the decomposition of plant material in soil. 1. Losses of carbon from <sup>14</sup>C labeled ryegrass incubated with soil in the field. J. Soil Sci. 16:104-115.
- Jenkinson, D.S. 1971. Studies on the decomposition of <sup>14</sup>C-labeled organic matter in soil. Soil Sci. 111:64-70.
- Jenkinson, D.S. and D.S. Powlson. 1976. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8:209-213.
- Jenkinson, D.S. 1977. Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from <sup>14</sup>Clabeled ryegrass decomposing under field conditions. J. of Soil Sci. 28: 417423.
- Jenkinson, D.S., and A. Ayanaba. 1977. Decomposition of carbon-14-labeled plant material under tropical conditions. Soil Sci. Soc Am. J. 41:912-915.
- Jensen, E.S. 1994. Mineralization-immobilization of nitrogen in soil amended with low C:N ratio plant residues with different particle sizes. Soil Biol. Biochem. 26:519-521.

- Joslin, J.D., and G.S. Henderson. 1987. Organic *matter* and nutrients associated with fine root turnover, in a white oak stand. Forest. Sci. 33:330-346.
- Kassim, G., J.P. Martin, and K. Haider. 1981. Incorporation of a wide variety of organic substrate carbons into soil biomass as estimated by the fumigation procedure. Soil Sci. Soc. Am. J. 45:1106-1112.
  - Kassim, G., D.E. Stott, J.P. Martin, and K. Haider. 1982. Stabilization and incorporation into biomass of phenolic and benzenoid carbons during biodegradation in soil. Soil Sci. Soc. Amer. J. 46:305-309.
  - Kirk, T.K., W.J. Connors, and J.G. Zeikus. 1977. Advances in understanding the microbiological degradation of lignin. Adv. in Phytopathol. 11:369-394.
- Knapp, E.B., L.F. Elliott, and G.S. Campbell. 1983. Microbial respiration and growth during the decomposition of wheat straw. Soil Biol. Biochem. 15:319-323.
- Kowalenko, C.G., K.C. Ivarson, and D.R. **Cameron**. 1978. Effect of moisture content, temperature, and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol. Biochem. 10:417-423.
- Ladd, J. N., J. M. Oades, and M. Amato. 1981. Microbial biomass formed from <sup>14</sup>C, <sup>15</sup>N-labeled plant material decomposing in soils in the field. Soil Biol. Biochem. 13: 119-I 26.
- Leisola, M.S.A., and A. Fiechter. 1985. New trends in lignin biodegradation. Adv. Biotechnol. Process. 5:59-89.
- Lewis, N.G., L. Davin, T. Umezawa, E. Yamamoto. 1990. On the biosynthesis of (+) pinoresinol in *Forsythia suspensa*. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:455-496.

- Linn, D.M., and J.W. Dot-an. 1984. Aerobic and anaeobic microbial populations in no-till and plowed soils. Soil Sci. Soc. Am. J. 48:794-799.
- Linhares, L.F., and J.P. Martin. 1978. Decomposition in soil of humic acid-type polymers (melanins) of *Eurotium echinulatum*, *Aspergillus glaucus sp.* and other fungi. Soil Sci. Soc. Am. J. 42:738-743.
- Linhares, L.F., and J.P. Martin. 1979. Decomposition in soil of emodin, chrysophanic acid, and a mixture of anthraquinones synthesized by an *Aspergillus glaucus* isolate. Soil Sci. Soc. Am. J. 43:940-945.
- Martin, J. P., K. Haider, and Saiz-Jiminez. 1974a. Sodium amalgam reductive degradation of fungal-and model phenolic polymers, soil humic acids, and simple phenolic compounds. Soil Sci. Soc. Am. Proc. 38:760-765.
- Martin, J.P., K. Haider, W.J. Fat-mer, and E. Fustec-Mathon. 1974b. Decomposition and distribution of residual activities of some <sup>14</sup>C-microbial polysaccharides and cells, glucose, cellulose and wheat straw. Soil Biol. Biochem. 6:221-230.
- Martin, J.P., and K. Haider. 1976. Decomposition of specifically carbon-14labeled ferulic acid; free and linked into model humic acid-type polymers. Soil Sci. Soc. Am. J. 40:377-380.
- Martin, J.P., and D.D. Focht. 1977. Biological properties of soils, pp. 115-172, In: L.F. Elliott and F.J. Stevenson [ed.], Soils far management of organic wastes, and waste waters. Amer. Soc. Agron., Madison, WI.
- Martin, F.C., Saiz-Jimenez, and A. Cet-t. 1977. Pyrolysis-gas chromatography of soil humic fractions. J. The low boiling point compounds. Soil Sci. Soc. Am. J. 44:1114-1118.
- Martin, J.P., A.A. Parsa, and K. Haider. 1978. Influence of intimate association with humic polymers on biodegradation of [<sup>14</sup>C] labeled organic substrates in soil. Soil Biol. Biochem. 10:483-486.

- Martin, J.P., and K. Haider, and G. Kassim. 1980. Biodegradation and Stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Soil Sci. Soc. Am. J. 44:1250-1255.
- Martin, J. K. 1989. In situ decomposition of root-derived carbon. Soil Biol. Biochem. 21:973-974.
- McClaugherty, C.A., J. Pastor, J.D. Aber, and J.M. Melillo. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266-275.
- Meentemeyer, V. 1978. Macroclimate and lignin control of **litter** decomposition rates. Ecology 59:465-472.
- Melillo, J.M., J.D. Aber, and J.F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621-626.
- Myrold, D.D., L.F. Elliott, R.I. Papendick, and G.S. Campbell. 1981. Water potential-water content characteristics of wheat straw. Soil Sci. Soc. Am. J. 45:329-333.
- Newman, E.I. 1985. The rhizosphere: car-bon sources and microbial populations. In: A. H. Fitter [ed.] Ecological interactions in soil pp. 107-127. Spec. publ. series of the British Ecological Society 4, Oxford, England.
- Oades, J.M. 1989. An introduction to organic matter in mineral soils. in: J. B. Dixon and S. B. Weed [ed.] Minerals in soil environments. Second edition. Soil Sci. Soc. Am. pp. 89-159.
- Oades, J.M., and G.H. Wagner. 1971. Biosynthesis of sugars in soils incubated with <sup>14</sup>C glucose and <sup>14</sup>C dextran. Soil Sci. Soc. Am. J. 35:914-922.
- Parr, J.F., and R.I. Papendick. 1978. Factors affecting the decomposition of crop residues by microorganisms. pp. 1 OI -129. In: W.R. Oshwald [ed.]. Crop residue management systems. Amer. Soc. Agron. Madison, WI.

- Paul, E.A., and J.A. Van Veen. 1978. The use of tracers to determine the dynamic nature of organic matter. In: Trans. of the 11 th World Congress of the Intern. Soc. of Soil Sci. 3:62-102.
- Pinck, L.A., and F.E. Allison. 1957. Maintenance of soil organic matter. Soil Sci. 71:67-75.
- Puig-Gimenez, M.H., and Chase F.E. "1984. Laboratory studies of factor's affecting microbial degradation of wheat straw residues in soil. Can J. Soil Sci. 64:9-19.
- Reber, H., and A. Schara. 1971. Degradation sequences in wheat straw extracts inoculated with soil suspensions. Soil Biol. Biochem. 3:381-383.
- Reinertsen, SA, L.F. Elliott, V.L. Cochran and G.S. Campbell. 1984. Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Bicl. Biochem. 16:459-464.
- Salonius, P.O. 1983. Effects of air drying on the respiration of forest soil microbial populations. Soil Biol. Biochem. 15: 199-203.
- Santantonio, D., and J.C. Grace. 1987. Estimating fine-root production and turnover from biomass and decomposition data: A compartment-flow model. Can. J. For. Res. 17:900-908.
- Sauerbeck, ID. 1966. A critical evaluation of incubation experiments on the priming effect of green-manure, pp. 199-207, In: Technical meeting on the use of isotopes in soil organic matter studies. Int. Atomic Energy Agency, V i e n n a . Austria.
- Sauerbeck, D. 1968. Die umsetzung markieter orgaischer substanzen in boden in abhangigkeit von art, Meng, und Rottgrad. Landwirtschaftliche Forschung 21:91-102.

Sauerbeck, D., and M.A. Gonzalez. 1977. Field decomposition of carbon-14labeled plant residues in various soils of the Federal Republic of Germany and Costa Rica. pp. 117-132. In: Proceedings of the international symposium of soil organic matter studies. Vol. 1: Int. Atomic Energy, Agency, Vienna, Austria.

Schaller, F. 1968. Soil animals. University of Michigan Press, Ann Arbor, Ml.

- Shields, J.A., E.A. Paul, and W.E. Lowe. 1974. Factors influencing the stability of labeled microbial materials in soils. Soil Biol. Biochem. 6:31-37.
- Siddoway, F.H., and C.R. Fenster. 1983. Soil conservation: Western Great Plains. in: H E. Dregne and W. D. Willis [ed.]. **Dryland** Agriculture. 23:233-244.
- Smith, J.H., and R.E. Peckenpaugh. 1986. Straw decomposition in irrigated soil: comparison of twenty-three area straws. Soil Sci. Soc. Am. J. 50:928-932.
- Steiner, J.L., H.H. Schomberg, and J.E. Morrison. 1993. Residue decomposition and redistribution. In: Crop residue management technology transfer.
  S. Plains. B. A. Stewart [ed.] USDA-ARS / SCS.
- Stevenson, I.L. 1956. Some observations on the microbial activity in remoistened air-dried soil. Plant Soil 8: 170-I 82.
- Stott, D.E., G. Kassim, W.M. Jarrell, J.P. Martin., and K. Haider. **1983a**. Stabilizat'ion and incorporation into soil biomass of specific plant carbons during biodegradation into soil. Plant Soil 70:15-26.
- Stott, D.E., J.P. Martin, D.D. Focht, and K. Haider. 1983b. Biodegradation, Stabilization in humus, and incorporation into soil biomass of 2,4-D, and chlorocatechol carbons. Soil Sci. Soc. Amer. J. 47:66-70.

- Stott, D.E., L.F. Elliott, R.E. Papendick, and G.S. Campbell. 1986. Low temperature or low water potential effects on the microbial decomposition of wheat residues. Soil Biol. Biochem. 18:577-582.
- Stott, D.E., and J.P. Martin. 1989. Organic **matter** decomposition and retention in arid soils. In: Arid Soil Research and Rehabilitation. 3:115-148.
- Stott, D.E., and J.P. Martin. 1990. Synthesis and degradation of natural end synthetic humic material in soils. pp. 37-63. In:: [ed.] Humic substances in soil and cxop sciences. Selected readings. Anner. Soc. Agron., and Soil Sci. Soc Amer. J.
- Stott, D.E. 1992. Mass and Closs from corn and soybean residues as associated with their chemical composition. Agron. Abst. p. 267.
- Stott, D.E. 1993. Changing relationship between mass and surface area of decomposing residues. Agron. Abst. p. 261.
- Stott, D.E., J.R.. Barrett. 1994. RESMAN: Software for simulating changes in surface crop residue mass and cover. Paper submitted Soil Sci. Soc. Am. J. (Sept. 1994).
- Stotzky, G. 1967. Clay minerals and microbial ecology. New York Acad. of Sci. Trans. (Series II) 30: 11-21.
- Strozky, G. 1980. Surface interactions between **clay** minerals and microbes, **viruses** and soluble **organics**, and the probable importance of these interactions to the ecology of microbes in soils. pp. 231-248. In: **R.C.W**. Berkeley et al. [ed.] Microbial adhesion to surfaces. **Ellis Horwood**, Chichester. UK
- Stroo, H.F., K.L. Bristow, L.F. Elliott, R.I. Papendick, and G.S. Campbell. 1989. Predicting rates of wheat residue decomposition. Soil Sci. Soc. Am. J. 53:91-99.

- Summerell, B.A., and L.W. Burgess. 1986. Decomposition and chemical composition of cereal straw. Soil Biot. Biochem. 21:551-559.
- Tanaka, D.L. 1986. Wheat residue loss for chemical and stubble-mulch fallow. Soil Sci. Soc. Am. J. 50:434-440.
- Tian, G., B.T. Kang, and L. Brussaard. 1992. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions-Decomposition and nutrient release. Soil Biol. Biochem. 24:1051-I 060.
- Vigil, M.F. and Kissel, D.E. 1991. Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci. Soc. Am. J. 55:753-757.
- Wagner, G.H. and U.K. Mutatkar. 1968. Amino components of soil organic formed during humification of <sup>14</sup>C glucose. Soil Sci. Soc. Am. J. Proc. 32: 683-686.
- Waksman, S.A. 1932. **Principles** of Soit Microbiology. Williams and Wilkins, Baltimore, MD.
- Wessen, B., and B. Berg. 1985. Long-term decomposition of barley straw Chemical changes and in growth of fungal mycelium. Soil. Biol. Biochem. 18: 53-59.
- Whitford, W.G., Stinnett, K., and J. Anderson. 1988. Decomposition of **roots** in a Chihuahuan desert ecosystem. Oecologia **75:8-1**1.
- Wilson, J.M., and D.M. Griffin. 1983. The effect of water potential on growth of some soil basidiomycetes. Soil Biol. Biochem. 11:21 I-21 2.
- Zachman, J.E., and D.R. Linden. 1989. Eat-thworm effects on com residue breakdown and infiltration. Soil Sci. Soc, Am. J. 53: 1846-1849.

#### CHAPTER 2

# SURFACE RESIDUE AND ROOT DECOMPOSITION OF COTTON, PEANUT AND SORGHUM FOR USE IN EROSION PREDICTION MODELS

# 2.1. Abstract

Developing effective management **strategies** that protect **soil against** erosion requires an understanding of residue decomposition. While the **impact** of environmental factors **such** as temperature and water content has **been** studied, **little** has been **done** to understand how the characteristics of the **residue** itself impact the decomposition **rate**. Traditionally, the C:N ratio has been **used** as a predictor of decomposition rates for **agronomic** crops, but has **recently** been shown to be poorly correlated. This study relates the chemical **composition** of residue **components** (aboveground biomass and roots) to the decomposition rates for three **cultivars each** of three crops: **cotton** (*Gossypium hirsutum*), sorghum (*Sorghum bicolor*) and peanut (*Arachis hypogaea*). The rat& were determined by mass **loss** and **CO**<sub>2</sub> evolution. Clhange in the specific surface **area** of the residue as related to mass loss was **also** measured. The **three** crops were from **slowest** to the most rapid **loss**: sorghum > cotton > **peanut**. From the initial chemical and physical residue characteristics, the **following** equation was developed to predict decay in the first stage:

 $P_D = (N*Sugars*Hemicellulose*K_{in.}) / Lignin, where <math>P_D$  is the predictive decay rate,  $K_{in.}$  is the initial specific surface area-to-mass ratio. For mass loss,  $r^2 = 0.96$ , and for CO<sub>2</sub> evolution,  $r^2 = 0.95$ . Since varietal differences within crops

have led to **significant** variation in decomposition rates, **cultivars** with slower decaying residues might be recommended for highly erodible lands.

#### 2.2. Introduction

Soil erosion is a problem with many consequences. It can limit soil productivity, denude the landscape, transport sediments, organic matter and pollutants from one place to another. Surface-managing crop residues is a primary method of controlling soil erosion by water or wind. In many areas of the world, insufficient amounts of residue are produced to provide adequate erosion protection. In 'other areas, the accumulation of crop residues is frequently viewed as a nuisance to crop establishment and growth, and a disposal problem (Elliott et ai., 1987).

The root system of a **crop** is as important as surface residue in preventing water erosion by limiting lateral runoff. In some areas there is not enough surface residue due to low productivity, burning for management purposes, or utilization as animal feed or even as fuel. In these areas, roots may be the only type of residues left in the field. Consequently, while residue cover may not be sufficient to protect surface soil, roots systems can play a major role in reducing sediment loss from water erosion.

The rate of residue decomposition **will** determine the amount of soil surface covered **during** critical erosion periods throughout the year, as well as the amount of residues in top portion of the **soil** profile. Therefore, understanding the mechanisms of residue decomposition is necessary for developing a viable **crop** residue management system for erosion control.

Plant residues consist of two parts: the aboveground portion, mainly composed of stems and leaves, and the roots. The aboveground biomass may be standing, flat on the soil surface, or become buried through tillage and other management operations. The physical nature and the initial chemical

composition of the plant residues largely determine the ability of microbrganisms to assimilate them. In the traditional agronomic literature, the C:N ratio has been assumed to be a controlling factor, while in the traditional forestry literature, the lignin-to-N has been considered most important. However, the C:N ratio is apparently not the determining factor, nor is the lignin-to-N ratio solely responsible (Stott, 1992). Decomposition rate for plant residue varies between plant species and between cultivars within a species (Stott, 1993).

Most knowledge about crop residue decomposition is based on aboveground residue, mostly winter wheat (Brown and Dickey, 1989; Knapp et al., 1983; Tanaka, 1985; Stotl et: al., 1988 and 1990; Broder et al., 1988; Stroo et al., 1989; Collins et al., 1990; Douglas et al., 1992; Steiner et al., 1993), whereas there have been few studies of decomposition of roots in any ecosystem (Berg et al., 1987; Bottner et al., 1988; Cheng et al., 1990). There may be some difficulties iin following the decomposition of roots in the soil under natural conditions. An *in situ* study of decomposition of rootderived carbon from wheat revealed that the degradation of rootderived organic material present in the wheat. rhizosphere was more complete in undisturbed soil than when air-dried roots were mixed with moist or air-dry soil (Martin, 1989).

The specific-surface-area-to-mass ratio (k) represents a fraction of an area (ha) of soil covered by one kg of residue and is **specific** for a **crop type**. The k value is a **conversion** constant (ha kg-') used in an equation for **converting** residue **mass to cover** (Gregory, 1982):

$$C = 1 - e^{(-km)}$$
 (2.1)

where:

C = fraction of the surface COVer remaining

m = mass (kg ha-') of residue present on the surface

The Gregory equation is currently used in all the USDA erosion models: WEPP (Water Erosion Prediction Project), WEPS (Wind Erosion Prediction System), RUSLE (Revised Universai Soil Loss Equation), and RWEQ (Revised Wind Erosion Equation).

The residue mass-surface **cover** relationship is closely related to the levels of residues, and considerable decomposition of mass may occur before a large decrease in cover is measured (Steiner et al., 1993). For residues having high proportion of leaf material following harvest, there may be tremendous loss in mass with little loss in cover, because leaf material decomposes rapidly and is light compared to stem material (Stott, 1992). Stern will lose mass, not surface area.

The objectives of this study were to: (i) determine decomposition rates for cotton, peanut and sorghum above-ground residues and roots by two methods:  $CO_2$  evolution and mass loss; (ii) determine how the initial physical and chemical properties of the roots and residues impact the decomposition rates; (iii) determine if differences in decomposition exist between plant varieties within a species; (iv) determine changes in the mass-to-specific surface area during decomposition; and (v) develop predictive decay equations for plant residues based on mass loss or  $CO_2$  loss and the chemical and physical characteristics of the residues.

#### 2.3. Materials and Methods

## 2.3.1. Soil

A Russell silt-loam (fine-silty, mixed, mesic Typic Hapludalf) soil was used in this study. It was obtained from the Ap horizon at the **Purdue** Agronomy Research Center in West Lafayette, IN. The soil was airdried (to minimize microbial action before use), crushed to pass a 2-mm mesh screen, then stored until *use*. The soil had a pH of 5.3, a total C content of 7.8 g kg<sup>-1</sup>, and a total N content of 1.2 g kg<sup>-4</sup>.

Plant materials from three crops: cotton (*Gossypium hirsutum*), peanut (*Arachis hypogaea*) and sor'ghum (*Sorghum bicolor*) were used for this experiment. Each crop was represented by three genetically different cultivars. For each cultivar, the residue was split into two residue types (above-grbund biomass and toots). These components were used to determine the **residue** decomposition rates.

| Crops   | Cultivars        | Sampling Dates   | County       | State        |
|---------|------------------|------------------|--------------|--------------|
| Cotton  | DLP-5690         | <b>9/1</b> oi93  | Sumter Co.   | êorgiaia     |
|         | DP-5215          | <b>8/1</b> oi93  | Duval Co.    | Texas        |
|         | HS-46            | 9/13/93          | Pike Co.     | Alabama      |
| Peanut  | Florunner        | 9/10/93          | Sumter Co.   | Georgia      |
|         | NC-7             | 9/25/93          | Stoney Creek | Virginia     |
|         | NC-11            | 9/25/93          | Stoney Creek | Virginia     |
| Sorghum | Triumph-266      | 7/14/93          | Duval Co.    | 'Texas       |
|         | GW-744BR         | 10/15/93         | Payne Co.    | Oklahoma     |
|         | NorthrupKing-300 | 11 <b>/23/93</b> | Saluda Co.   | Si. Carolina |

Table 2.1. Dates and locations of the crop sample collection.

Plant residue **samples** were **collected** by USDA-SCS personnel **from** fields in several **states** (Table 2.1), within **one** or **two** days of harvest in **order to** be in unweathered condition and maximize their use. Five plant **samples**, representatiive of the whole **field**, were taken as follows: **one** plant **was picked** from the **center** of the field, and the other four were **collected each between one** corner and the **center** of the field, avoiding the end **rows**. When **removing** the **whole** plant from the **ground**, **care** was taken so that the **roots** within **the** top **10**-20 cm of the soil did not break **apart**. The residues were

shipped overnight to the National Soil Erosion Research Laboratory (NSERL) in West Lafayette, IN. The leaves and stems (above-ground biomass) were separated from the roots. The residues were gently washed with water to remove any remaining soil and airdried before chemical analysis.

#### 23.3. Chemical Analysis of Plant Materials

Each plant residue component was chemically analyzed for total C content, total N content, simple sugar content and the structural and non-structural carbohydrate contents. Total C and N content were measured by dry combustion (Model CHN-600; Leco Corp., St Joseph, MI). Hemicellulose, cellulose, and lignin contents were determined by sequential fiber analysis (Goering et al., 1970). This fiber analysis system was designed to provide estimates of forage fiber composition.

For the sequential fiber analysis, four different solutions, neutral detergent fiber (NDF), **acid** detergent fiber (ADF), demineralizing solution, and a potassium permanganate solution were used. The neutral detergent solution was made from sodium lauryl sulfate, ethyl diamine tetra acetic, sodium phosphate dibasic, and water; the **acid** detergent solution was prepared from hexadecyl trimethyl ammonium bromide, sulfuric **acid**, and water; the demineralizing solution was a solution of oxalic **acid**, and the saturated potassium permanganate solution was obtained from potassium permanganate plus silver sulfate mixed with water.

Following is a brief description of the steps involved in the **sequential fiber** analysis. First, a 0.5-g of ground residue was **placed** into a **Berzelius beaker**, and 100 ml of neutral detergent solution was added for digestion on a **hot** plate for 1 hr. A 4.25 cm glass microfiber filter (Whatman GF/A) was **placed** into a standard sintered glass **crucible** (Pyrex 50 ml, C porosity). **Neutral** detergent fiber residues were then filtered under **vacuum onto** the glass filter-crucible combination, dried at **105°C** for 24 **hr**, **cooled** for 20 min in a dessicator, and

weighed. The glass filter plus NDF residue was removed from the crucible and placed into another Berzelius beaker for the ADF digestion. Remaining residue from the NDF analysis adhering to the crucible wall was removed with a rubbertipped glass rod and ADF solution and added to the beaker. The glass filter and NDF residues in the beaker were broken up using the rubber-tip glass rod. Acid detergent solution was then poured into the beaker up to 100 ml for the digestion of the residue. The same procedure described above for NDF was followed for ADF determination in the second step. In the third step, the crucible containing ADF residue was placed into a shallow pyrex pan. About 1/3 to 2/3 cm of water was added to the pan. Enough of the permanganate mixture was added to the crucible to wet the sample. The residue was again broken up with the glass rod in the crucible. Then the crucible was allowed to stand for 1.5 hr, while stirring every 15-20 min, and adding more of the mixture if necessary. After filtration, the crucible is placed in a clean pyrex pan and filled half full with demineralizing solution. After rinsing the residue several times with the dernineralizing solution. the finished fiber should be white. Then, the crucible was washed 3-4 times with ethanol 80%. The white residue was dried at 105°C overnight, cooled for 20 min in a dessicator, and weighed. Afterwards, the crucible was put into a muffle furnace, at 500°C for the ash determination. After 4 hr, the crucible was removed from the muffle furnace, put back in the 1 05°C oven ovemight, cooled in a dessicator and weighed. NDF was calculated as the ratio between the sample weight after digestion with NDF solution and the initial sample weight times the sample dry **matter**; ADF was the ratio between the sample weight after digestion with ADF solution and the initial sample weight times the sample dry matter; hemicellulose was determined as the difference between NDF and ADF; lignin content was assumed to be known as the remaining of the residue sample after digestion; cellulose was determined as the difference between lignin and ash (Chemey et ai., 1985).

Two plant monosaçcharides, or simple **sugars**, **sucrose** and **fructose** were measured colorimetrically. Sucrose analysis (Handel, 1968), was determined by placing into a small test tube, a 100  $\mu$ l aliquot extracted from a 1:1 weightvolume ratio of finely ground residue and 50% ethanol solution. 100  $\mu$ l of 30% KOH was added to destroy the **sugars**. Then **the** test tube was **placed** into a boiling water bath for 10 min, and cooled **to** room temperature. Ptior to mixing on vortex-type mixer, 3.0 ml of anthrone reagent was added. The samples were Yncubated at 40°C for 15 min before reading the **absorbance** on a spectrophotometer set at 620 nm.

Fructose analysis (Davis et al., 1967) was determined using 100 μl aliquot from the same extract that was used to determine sucrose. To each sample, 3 ml of concentrated HCI was added plus 1 ml of 0.05% resorcinol reagent. The sample was well mixed on a vortex-type mixer, and incubated in a water bath set at 77°C for 8 min. Then the samples were allowed to cool to room temperature just prior to measuring absorbance at 420 nm on the spectrophotometer.

## 2.3.4. Plant Residue Mass loss Experiment

The mass loss experiment **consisted** of a randomized **complete block** design with **one** soil, three **crops**, three **cultivars** for **each crop**, and two residue types (above-ground biomass and roots) for **each cultivar**. The treatments were **done** in triplicate.

Each treatment consisted of leaves and stems in the same proportion as was present in the aboveground biomass after harvest. Roots were incubated separately (Table 2.2).

| Crops                                  | Leaves |               | Stems |               | Roots   |              |
|----------------------------------------|--------|---------------|-------|---------------|---------|--------------|
| ······································ | (%)    | (g/100g soil) | (%)   | (g/100g soil) | (%) (g/ | '100 g soil) |
| Cotton                                 | 45.0   | 0.90          | 55.0  | 1.10          | 100     | 2.00         |
| Peanut                                 | 26.5   | 0.57          | 71.5  | 1.43          | 100     | 2.00         |
| Sorghum                                |        | 0.85          | 57.5  | 1.15          | 100     | 2.00         |

Table 2.2. Plant residue corrponents and loading rates.

Residues were chopped into 4 to 5-cm long and the pieces were spread evenly on the soil surface in a 10 by 7.5 cm<sup>2</sup> polystyrene dish. Optimum moisture conditions were assumed to be the water content at -1/3 bar water potential as equalled to 60% water holding capacity, plus 300% of the re\$idue mass (Myrold et al., 1981). Afler the appropriate amount of water was added, the incubation dish was loosely wrapped with a food service film (PYA / Monarch, Inc., Greenville, SC), to allow some aeration. The samples were incubated at  $22^{\circ}C \pm 1^{\circ}C$ .

Samples were withdrawn on day 3, 7, 14, 28, 56, and 84 of the incubation for mass measurement. At each destructive sampling, the incubation mixture were oven-dried at 40°C, for 48 hr. When dry, the residues were carefully separated from the soil, gently washed to remove the soil particles, and put back into the oven at 40°C for 48 hr. The residues were weighed then placed into crucibles for ashing at 800°C for 2 hr.

The equations used to calculate the percent mass remaining were:

$$M_{\rm T} = M_{\rm F} - M_{\rm A} \tag{2.2}$$

$$% M_{R} = (M_{T} / M_{I}) * 100$$
 (2.3)

where:

 $M_T$  = corrected mass (g) remaining at time T

 $M_F$  = mass (g) of the residue after incubation (oven dry basis)

 $M_A$  = mass (g) of the ashed residue  $M_R$  = % of initial mass remaining at day T M, = initial residue mass (g) T is the incubation time in days

## 2.3.5. CO, Evolution

A second method for determining decomposition rate is to measure the amount of C evolved as CO<sub>2</sub>. To monitor microbial respiration, a known **mass** of residue, chopped into 4 to 5-cm lengths was spread evenly on 100 g airdried soil in an incubation jar. Addition of an amount of water to achieve the water content at -1/3 bar water potential as equalled to 60% water holding capacity plus 300% residue mass (Myrold et al., 1981) gave optimum moisture conditions of residue decomposition. An alkaline trap, 5 ml of a 30% KOH plus tropaelin 0 as indicator, in a 25-ml beaker was placed in each jar on top of the soil and residue. Tropealin 0 (Sigma Chemical Co, St. Louis, MO) was used to check if the KOH solution has reached a 50% CO<sub>2</sub> saturation (pH 11). Respired CO, was absorbed in the KOH trap.

Each jar was placed into a circulating water bath, set at 22°C ± 1°C, and hooked to an electrolytic respirometer. At the top of the respirometer, there was a 25 or 50-ml burette, a positive electrode for oxygen, and a 4-cm tube for overflow. At the bottom, there was a negative electrode for hydrogen. Both electrodes were platinum. The positive electrode was connected to a 500-ml chamber containing the electrolyte solution 8% (Na)<sub>2</sub>SO<sub>4</sub>. KOH was withdrawn after 3, 7,14,28,56 and 64 days of incubation. To remove all of the KOH, a 22-gauge needle with a Luer-lock fitting was inserted into the jar stopper and lengthened with a piece of capillary tubing to reach the bottom of the KOH trap. Fresh KOH was injected in the same manner. The amount of CO, trapped in the KOH was measured by a potentiometric method (Golterman, 1970) using an automatic titrator (Model DL 25, Mettler instrument Corp., Hightstown NJ).

The CO<sub>2</sub> evolution experiment used the same statistical design as the mass loss experiment with the addition of a control treatment (no residue). To correct the amounl: of CO<sub>2</sub> evolved from the residues, CO<sub>2</sub> evolution from the bare soil (control treatment) was sustracted from CO<sub>2</sub> evolved from treatments (soil plus residue) at each given time.

The reactions involved in KOH trapping the evolved CO2 are as follows:

$$HCO_{3} + K + HCI -----> H_{2}CO_{3} + KCI$$
 (2.5)

Each milliequivalent of 'KOH used to absorb evolved CO, is equivalent to 12 mg of CO, carbon. The formula used to calculate % C-CO, evolved is:

% C-CO<sub>2</sub> = [ 
$$K_1 * (1/M) * V * N * C_i$$
 ] (2.6)

where:

K, = 0.135, a calculated constant to convert the raw result into the desired unit

M = the mass (g) of the residue

V = the volume (ml) of HCI titrant

N = the concentration (N) of HCI titrant

C<sub>i</sub> = the initial carbon content (%) of the residue

## 2.3.6. Measurement of Specific Surface Area-to-Mass Ratio

Specific surface areas for the leaves and stems were measured using a digitizer (Summagraphics) and AutoCad version 10. As decomposition proceeded, the ratio between the specific surface area and the mass remaining was calculated at each sampling time.

The equation used to convert residue mass to cover is from Gregory (1982):

$$C = 1 - e^{(-km)}$$
 (2.7)

where:

C is the fraction of the surface cover remaining

m is the mass (kg ha-') of residue present on the surface

The constant k can be derived from the following equation:

$$k = -\log(I-C) / m$$
 (2.8)

## 2.3.7. Statistical Analysis

Statistical analysis of the data was done to determine differences among treatments, using the PC-SAS, Version 6.09 (SAS Inc., Cary NC). Comparisons between treatment means were made at the P =0.05 level using the Waller-Duncan's multiple range test procedure.

#### 2.4. Results

## 2.4.1. Initial Chemical Composition

The mean concentrations of total C and N, simple sugars, hemicellulose and lignin {Tables 2.3 and 2.4) were significantly different between the above-ground residues and roots for cotton cultivars DLP-5690 and DP-5215 For DLP-5690 above-ground residues, the total N content was 288% greater than the roots, whereas total carbon, simple sugar, hemicellulose and lignin contents were 3, 30, 22 and 17% lower, respectively. For DP-521 5 above-ground biomass, total N was 147% higher than the roots, whereas total carbon, simple sugar, hemicellulose and 51 % lower respectively. Cultivar HS-46 above-ground residues had 232% greater total N concentration than the roots, but total C was 0.3% lower, hemicellulose 8% lower, and lignin

15% lower. Simple sugar concentrations of the above-ground **biomass** were 177% lower than the roots.

Far peanut, the initial chemical composition (Tables 2.3 and 2.4) of the aboveground residues were significantly different from the roots, except for total C. Cultivar Florunner above-ground biomass had 88% higher simple sugar concentrations than the roots, but total N was 44% lower , hemicellulose 26% lower, and lignin 32% lower. For cultivar NC-7 above-ground residues, simple sugar contents were 31 % greater than the roots, but total N was 44% lower, hemicellulose 65% lower, and lignin 32% lower as well. Cultivar NC-11 above-ground biomass had 27% higher simple sugar concentrations than the roots, but hemicellulose and lignin were lower by 56% and 35% respectively.

| Crop    | Cultivar    | Total C  | Total         | N Sugars      | Hemicellulose  | Lignin        |
|---------|-------------|----------|---------------|---------------|----------------|---------------|
|         |             |          |               | g kg" resi    | due            |               |
| Cotten  | - OLP-5690  | 448.9 a' | 31.4 a        | 18.1 c        | 252.4 b        | 112.1 a       |
|         | DP-521 5    | 437.1 b  | 19.3 b        | 23.1 b        | 133.1 <b>c</b> | 80.7 c '      |
|         | HS-46       | 457.3 a  | 30.9 a        | 34.0 a        | 262.5 a        | 103.3 b       |
| Peanut  | Florunner   | 450.4 a  | 13.4 b        | 89.9 a        | 176.6 a        | 64.8 a        |
|         | NC-7        | 455.2 a  | 20.0 a        | 87.7 a        | 140.0 b        | 42.3 c        |
|         | NC-11       | 450.4 a  | <b>18.8</b> a | 66.8 a        | 108.2 c        | 50.4 b        |
| Sorghum | Triumph-266 | 438.2 c  | 11.9 b        | <b>41.1</b> b | 208.3 c        | 47.6 <b>a</b> |
|         | GW7-44BR    | 452.5 a  | <b>17.8</b> a | 32.5 <b>c</b> | 327.1 a        | <b>32.5</b> b |
|         | NKing-300   | 447.9 b  | 6.9 c         | <b>48.7</b> a | 273.7 b        | 48.2 <b>a</b> |

Table 2.3. Initial chemical composition of the above-ground residues.

'Values followed by the same letter, within specilies, are not significantly different by the Waller-Duncan's multiple range test at P = 0.05.

Sorghum above-ground residues and roots (Tables 2.3 and 2.4) were significantly different in initial total C and total N, simple sugar, hemicellulose, and lignin concentrations. For cultivar Triumph-266 above-ground residues, total N content was 86% greater than the roots, hemicellulose was 22% greater, but simple sugar and lignin contents were 37% and 41 % lower than the roots respectively. Cultivar GW-744BR above-ground biomass had total N and hemicellulose concentrations of 76 and 9% greater than the roots respectively, but simple sugar and lignin contents were 76 and 41% lower respectively. For cultivar Nking-300 above-ground residues, total C content was 15% higher than the roots but total N, simple sugar, hemicellulose, and lignin concentrations were 22, 67, 14 and 44% lower respectively.

Tables 2.3 and 2.4 indicated significant differences in initial chemical composition between cultivars within species.

| Crop                                   | Cultivar                              | Total C        | Total N                               | I Sugars               | Hemicellulose | Lignin  |
|----------------------------------------|---------------------------------------|----------------|---------------------------------------|------------------------|---------------|---------|
| ************************************** | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ |                | · · · · · · · · · · · · · · · · · · · | g kg <sup>-1</sup> res | sidue         |         |
| Cotton                                 | DLP-5690                              | 463.2 <b>a</b> | 8.1 ab'                               | 26.0 c                 | 322.6 a       | 135.7 b |
|                                        | DP-521 5                              | 458.9 a        | 7.8 b                                 | 38.5 b                 | 261.2 c       | 163.1 a |
|                                        | HS-46                                 | 458.9 a        | 9.3 a                                 | 94.3 a                 | 283.5 b       | 121.5 c |
| Peanut                                 | Florunner                             | 452.4 a        | 24.0 b                                | 47.7 b                 | 238.8 c       | 95.3 a  |
|                                        | NC-7                                  | 436.8 b        | 26.8 b                                | 66.7 a                 | 398.9 a       | 61.9 c  |
|                                        | NC-11                                 | 456.3 a        | 31.3 a                                | 68.5 a                 | 247.5 b       | 77.3 b  |
| Sorghum                                | Triumph-266                           | 404.5 a        | 6.4 b                                 | 65.6 c                 | 266.8 c       | 80.7 b  |
|                                        | GW-744BR                              | 346.0 c        | 10.1 a                                | 132.7 b                | 360.2 a       | 55.1 c  |
|                                        | NKing-300                             | 388.0 b        | 8.9 a                                 | 148.8 a                | 317.6 b       | 86.5 a  |

Table 2.4. Initial chemical composition of the plant roots.

'Values followed by the same letter, within species, are **not significantly** different by the Waller-Duncan's multiple range test at P = 0.05.

#### 2.4.2. Initial Specific Surface Area

For cotton, the specific: surface **area** (Table 2.5) of the leaves **and stems** before the incubation did rot significantly differ between the cultivars. **The** specifk surface **area** of DL.P-5690, DP-5215, and HS-46 leaves was **101**, 73 and 85% greater than the stems respectively.

No peanut cultivar was significantly different from one another for the aboveground specific surface area (Table 2.5). The specific surface area of the leaves was significantly greater than the stems by 95% for Florunner, 235% for NC-7, and 1113% for NC-I 1.

The initial specific surface area of the sorghum leaves and stems (fable 2.5) showed significant differences between cultivars except for GW-744BR. Triumph-266 leaf specifik surface area was greater by 45% than that of Xhe stems. GW-744BR leaf specific surface area was not significantly different from that of the stems. Nking-300 leaf specific surface area was 87% higher than that of the stems. The leaf specific surface area for Triumph-266 was also 18% greater than that of GW-744BR, but 9% lower lower than that of Nking-300. GW-744BR leaf specific surface area was 23% lower than that of NKing-300.

## 2.4.3. Initial Residue Mass

For all species, the stem mass was **much** greater than the leaves (**Table** 2.5). Within cotton species, cultivar HS-46 above-ground residue **mass** was higher than those of cultivars DP-5215 and DP-5690. No difference **was noted** between the initial mass of the roots of these three cultivars.

For peanut, there was no significant difference in either the above/round residue or the root mass between cultivars Florunner, NC-7 and NC-1 1.

| Crops   | Cultivars   | Relative                   | Initial n | nass (%) | Relative      | e Initial |
|---------|-------------|----------------------------|-----------|----------|---------------|-----------|
|         |             |                            |           |          | specifïc      | surface   |
|         |             |                            |           |          | area          | (%)       |
|         |             | Leaves                     | Stems     | Roots    | Leaves        | Stems     |
| Cotton  | DLP-5690    | 38.5 <b>a</b> <sup>1</sup> | 43.9 ab   | 17.6 a   | 66.8 a        | 33.2 a    |
|         | DP-5215     | 34.4 b                     | 49.1 a    | 16.5 a   | 63.4 a        | 36.6 a    |
|         | HS-46       | 40.8 a                     | 45.9 ab   | 13.3 b   | 64.9 a        | 35.1 a    |
| Peanut  | Florunner   | 24.3 'b                    | 69.5 a    | 6.2 a    | 65.4 b        | 33.6 a    |
|         | NC-7 2      | 7.8 ab 6                   | 67.5 ab   | 4.7 a    | 77.0 a        | 23.0 b    |
|         | NC-I 1      | 29.4 a                     | 65.1 b    | 5.5 a    | 68.0 <b>b</b> | 32.0 a    |
| Sorghum | Triumph-266 | 36.9 a                     | 44.5 b    | 18.6 a   | 59.2 b        | 40.8 b    |
|         | GW-744BR    | 33.2 b                     | 52.5 a    | 14.3 b   | 50.2 c        | 49.8 a    |
| *       | NKing-300   | 36.2 a                     | 46.9 b    | 16.9 ab  | 65.1 a        | 34.9 c    |

| Table 2.5. Relative initia | al mass and | specific surface | area of th | ne residue components. |
|----------------------------|-------------|------------------|------------|------------------------|
|----------------------------|-------------|------------------|------------|------------------------|

Values followed by the same letter, within species, are not significantly different by the **Waller-Duncan's** multiple range test at P = 0.05.

# 2.4.4. C lost as CO2

One method of determining residue decomposition rates is to measure the amount of C evolved as CO<sub>2</sub> after correction for the amount evolved from bare soil. For cotton residue, C evolved as CO<sub>2</sub> increased rapidly during the first fourteen days of incubation then started leveling off from day 15, and then showed no significant change after 28 days until the end of the expetiment.

Cultivar OLP-5690 above-ground biomass (Figure 2.1) showed cumulative C lost as  $CO_2$ , after 14 days, 35% which was significantly greater than the 22% evolved from the roots. For cultivar DP-521 5 above-ground residues (Figure 2.2), C lost, 30%, was greater than that of the roots, 10%. Cultivar HS-46 (Figure 2.3), showed no significant difference in cumulative  $CO_2$  evolved between the above-ground biomass, 30%, and the roots, 27%.

The decomposition rates differed among the cotton cultivars. DLP-5690 (Figure 2.4) above-ground residues were degraded faster than DP-5215 and HS-46 above-ground biomass. The latter two cultivars did not degrade at significantly different rates. Cumulative CO<sub>2</sub> evolution of the roots for DLP-5690, DP-5215 and HS-46 (Figure 2.5) induced a different scenario with cultivar HS-46 root decay rate (Table 2.6) being fastest followed by OLP-5690 roots, and DP-521 5 presented the slowest decomposition rate.

The total carbon evolved from the peanut cultivars Florunner, NC-7 and NC-11 above-ground residues (Fiigures 2.6, 2.7, and 2.8) was rapid **during** the **first** 14 days, 57, 53 and 50% respectively. The C **losses** were significantly higher than the roots, 15, 10, and 7% lost, respectively. **Florunner** above-ground residues were significantly greater in C loss than that of NC-7 and NC-1 1 (Figure 2.9). Also, Florunner roots (Figure 2.10) were significantly different than that of cultivars NC-7 and NC-I 1 in C evolved as **CO**<sub>2</sub>.

As a result, the decomposition rate of Florunner above-ground residues (Figure 2.9) was significantly higher than NC-7 and NC-1 1 above-grouncl residue **decay** rates, and Florunner root **degradability** (Figure 2.10) were significantly greater than **that** of cuftivars NC-7 **and** NC-I 1 roots.

Sorghunn cultivars Triumph-266 and GW-7448R showed significant difference in % C evolved as  $CO_2$  in the first 14 days (Figures 2.11, and 2.12) between the above-ground, 23 and 45%  $CO_2$ -C, respectively, and the roots, 18 and 34%  $CO_2$ -C, respectively. For cultivar Nking-300 above-ground residues, (Figure 2.13), the cumulative % C lost as  $CO_2$  was lower, 33% than that of the

roots, 40%. Consequently, GW-744BR above-ground residues (Figure 2.14) and Nking300 roots (Figure 2.15) had fastest decomposition rate **whereas** Triumph-266 and GW-744BR roots were decomposed **very slowly** (Table 2.6).

Peanut above-ground residues decay rate (Figure 2.16) decomposed significantly faster than cotton and sorghum. Cotton and sorghum **above**-ground biomass decomposition rates were not significantly different from **one** another. Sorghum roots have a faster decay rate than either cotton or peanut roots (Figure 2.17).

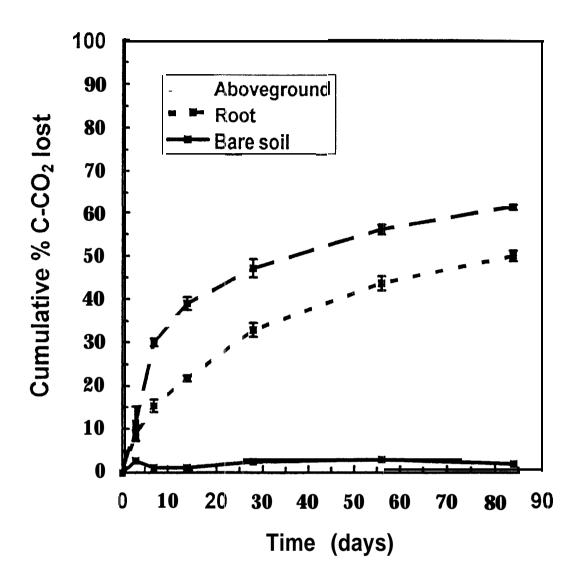



Figure 2.1 Decomposition of cotton DLP-5690 as rmeasured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time. CO<sub>2</sub> evolved from the bare soil was used to correct the CO<sub>2</sub> evolution from treatments with residues.

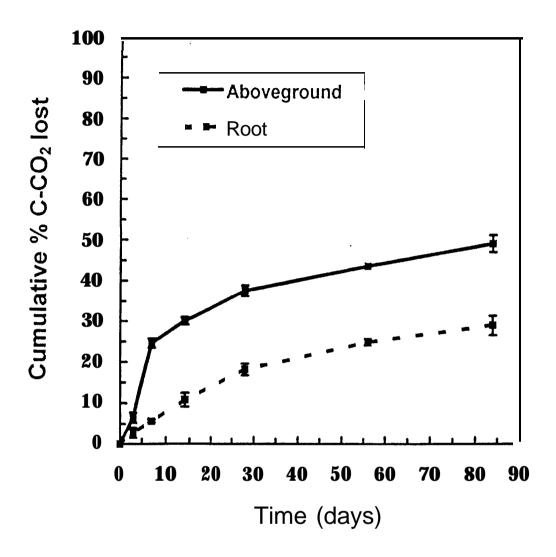



Figure 2.2. Decomposition of cotton DP-521 5 as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

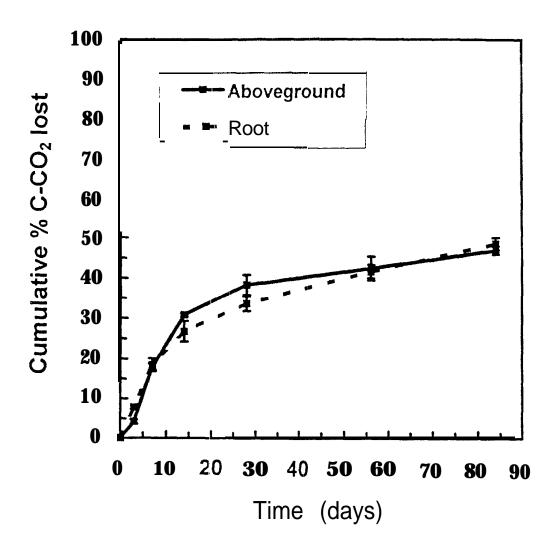



Figure 2.3. Decomposition of cotton HS-46 as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

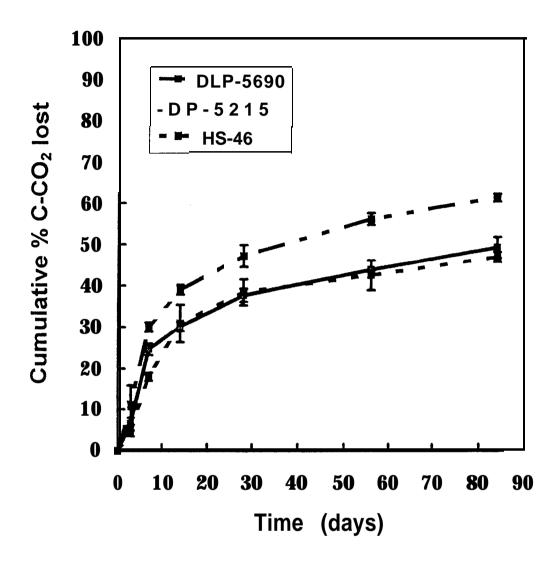



Figure 2.4. Decomposition of cotton above-ground biomass as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

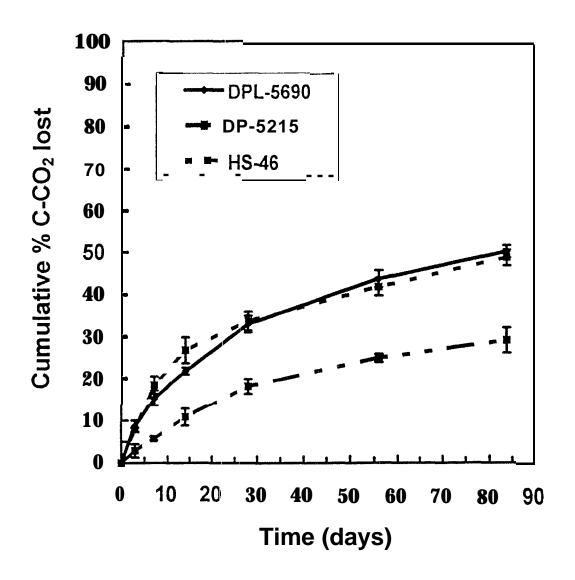



Figure 2.5. Decomposition of cotton roots as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

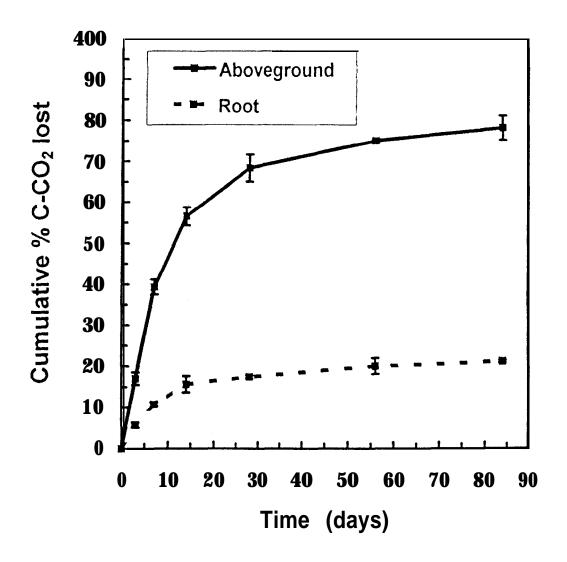



Figure 2.6. Decomposition of peanut Florunner as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

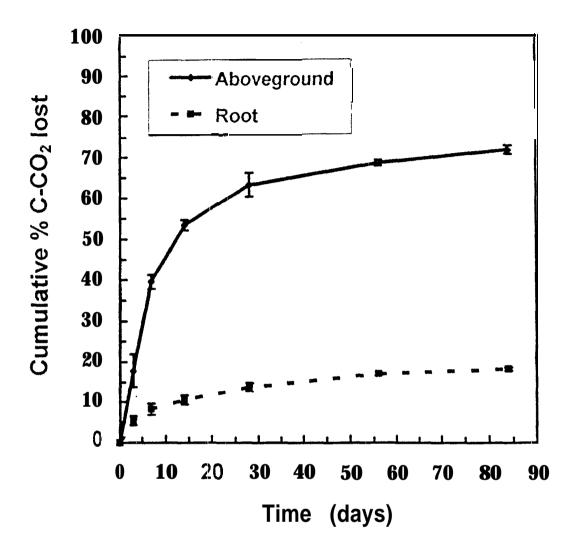



Figure 2.7. Decomposition of peanut NC-7 as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.




Figure 2.8. Decomposition of peanut NC-I 1 as determined by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

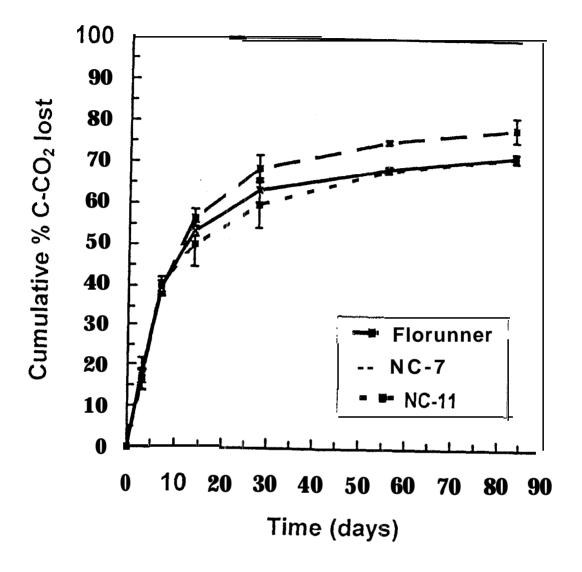



Figure 2.9. Decompositior: of peanut above-ground biomass as measured by  $CO_2$  evolution over time. Bars represent standard deviations at given time.

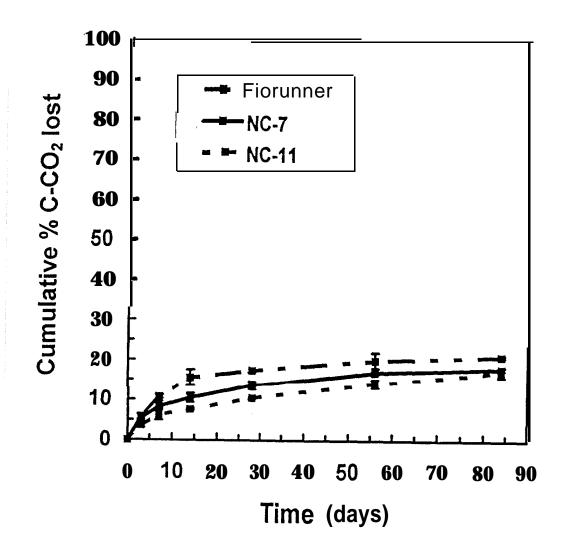



Figure 2.10. Decomposition of peanut roots as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

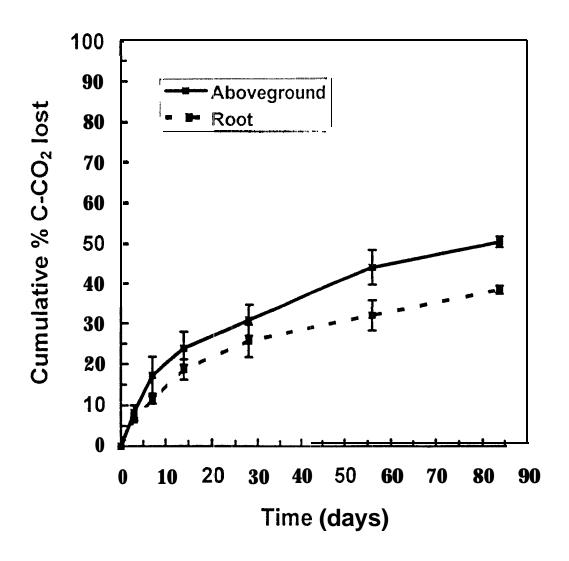



Figure 2.11. Decomposition of sorghum Triumph-266 as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations **at** given time.

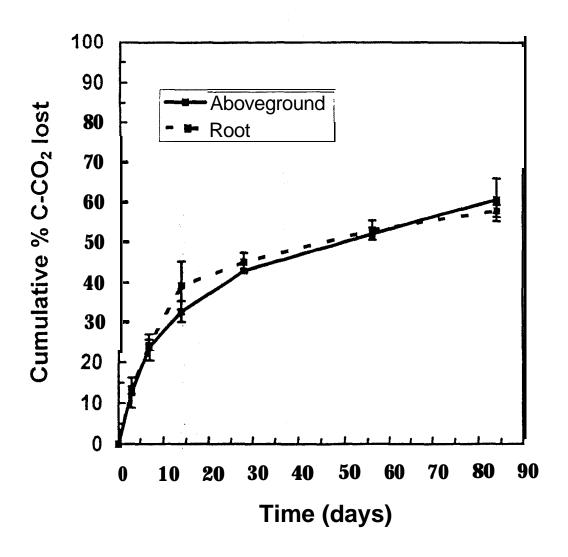



Figure 2.13. Decompos'ition of sorghum NKing-300 as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

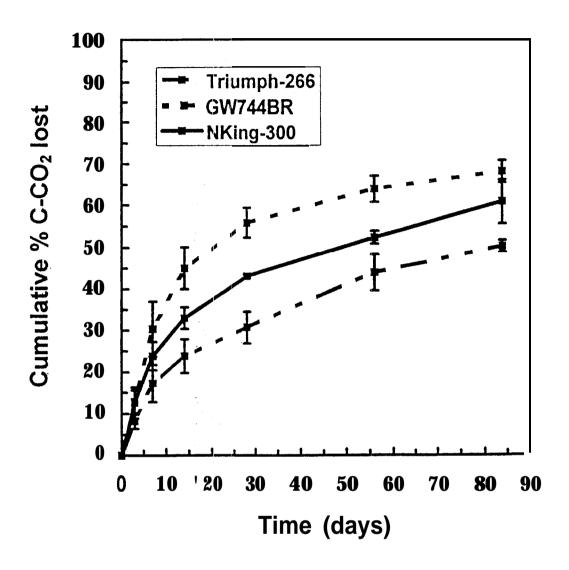



Figure 2.14 Decomposition of sorghum above-ground biomass as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

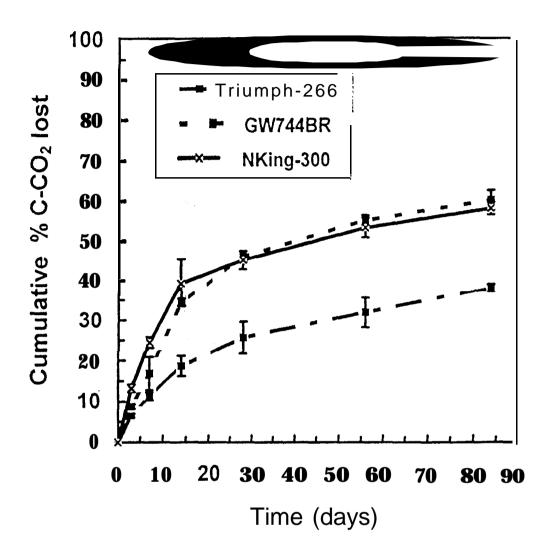



Figure 2.15. Decomposition of sorghum roots as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

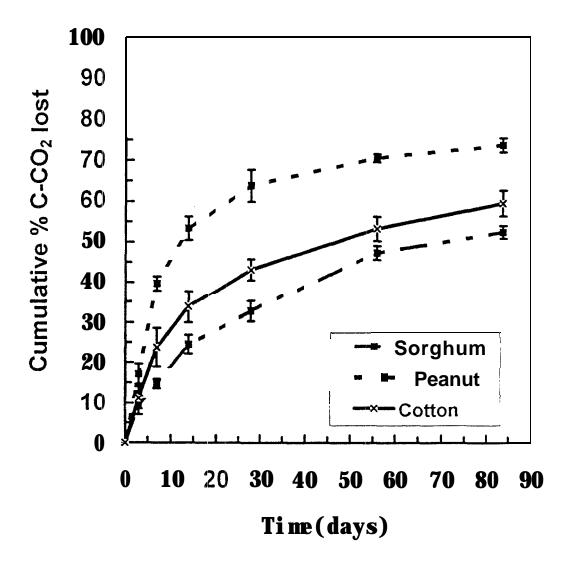



Figure 2.16. Mean decomposition rate of the above-ground biomass for each of the three crops as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

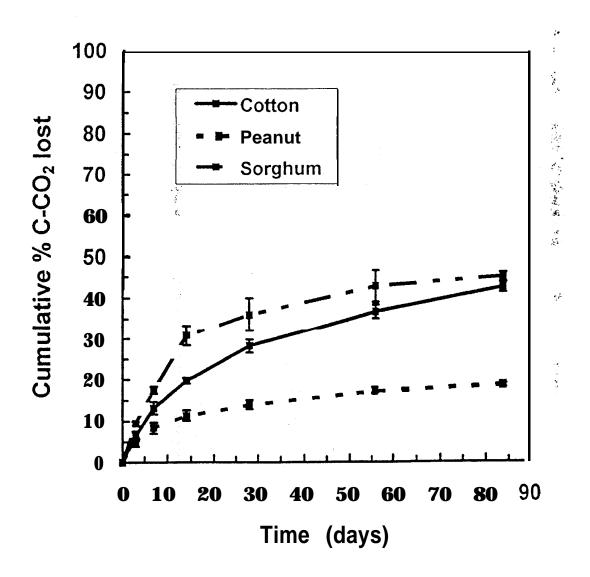



Figure 2.17. Mean decomposition rate of the roots for each of the three crops as measured by CO<sub>2</sub> evolution over time. Bars represent standard deviations at given time.

## 2.4.5. Change in Mass loss

In determining mass loss, the above-ground residues were split in leaves and stems and each of these components was measured separately. For cotton cultivars (Figures 2.18, 2.19 and 2.20), the rate of mass loss of the leaves was significantly higher than the stems and roots. However, no significant difference was found between stems and the above-ground biomass in any of the three cultivars. DLP-5690 (Figure 2.21) had a faster above-ground residue breakdown rate, 38%, followed by that of DP-5215, 30% and HS-46, 26%. HS-46 root mass loss (Figure 2.22) was higher, 29%, than that of DLP-5690 and DP-5215, 24 and 17% respectively.

Peanut leaf mass loss was significantly faster than that of the stems which were much faster than rocts (Figures 2.23, 2.24 and 2.25) for all cultivars. Cultivars Florunner and NC-'7 showed no significant difference between stems and the total above-ground in the percent mass remaining **during** the first 14 days. Only NC-1 1 presented higher mass loss for the leaves, 43%, than stems and roots, 26 and 9% respectively. There was no difference in rate of breakdown of the above-ground residues between the three **cultivars** (Figures 2.26), but Florunner root had a faster mass loss rate than the roots from the other **two** cultivars (Figure 2.27).

Sorghum cultivars showed significant differences between the above-ground residues and the root breakdown (Figures 2.28, 2.29, and 2.30) in the early decomposition. However, only cultivar Triumph-266 presented a significant difference between leaves and stems. There was no difference in decay rates between the above-ground residues for the three cultivars (Figure 2.31).

Significant differences in mass remaining were observed between the mean mass loss of the cultivars of cotton, peanut, and sorghum above-ground biomass (Figure 2.33) in the early decomposition phase. Peanut mass loss was greater, 45%, than cotton and sorghum, 33 and 25%, respectively. However, sorghum

root breakdown (Figure 2.34) was faster, 12%, than that for cotton and peanut roots, 7 and 5%, respectively.

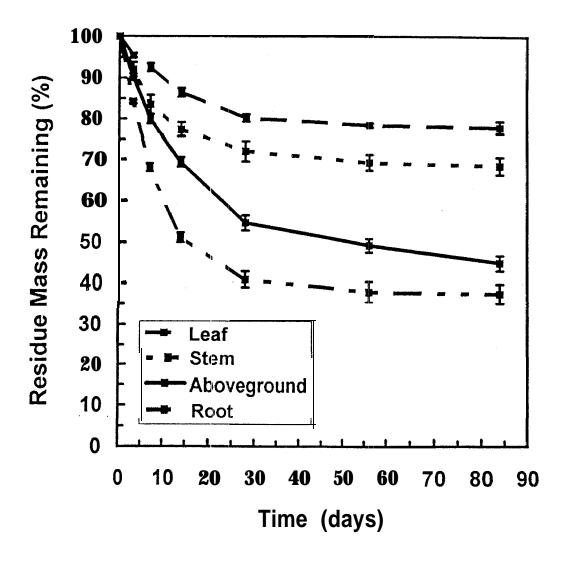



Figure 2.18. Decomposition of cotton DLP-5690 as measured by mass loss over time. Bars represent standard deviations at given time.

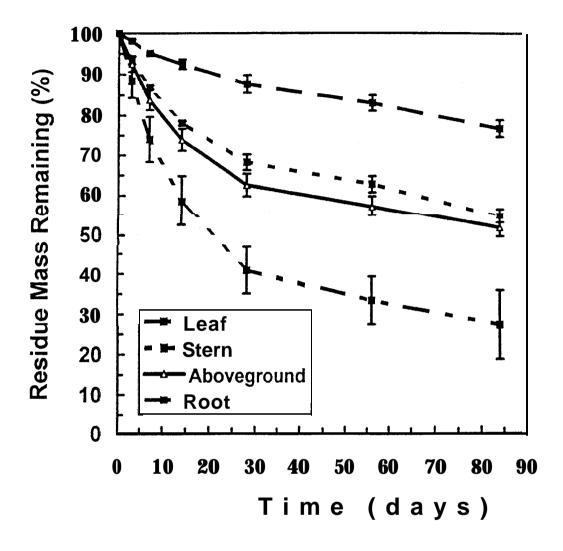



Figure 2.19. Decomposition of cotton DP-521 5 as measured by mass loss OVer time. Bars represent standard deviations at given time.



Figure 2.20. Decomposition of cotton HS-46 as measured by mass loss over time. Bars represent standard deviations at given time.

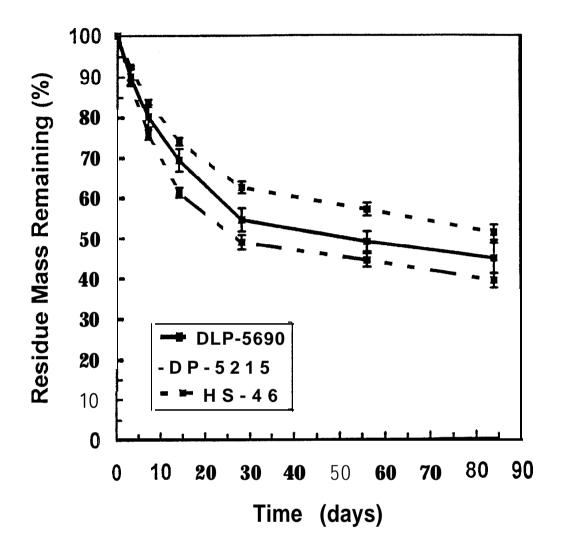



Figure 2.21. Decomposition of cotton above-ground biomass as measured by mass loss over time. Bars represent standard deviations at given time.

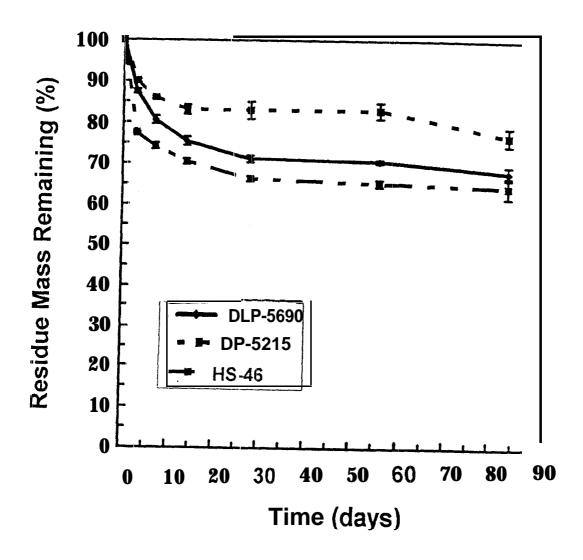
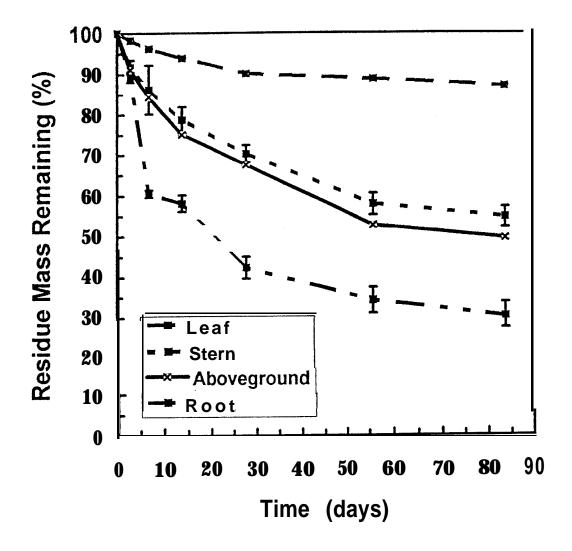




Figure 2.22. Dec:omposition of cotton roots as measured by mass loss over time. Bars represent standard deviations at given time.



'Figure 2.23. Decomposition of peanut Florunner as measured by mass loss over time. Bars represent standard deviations at given time.

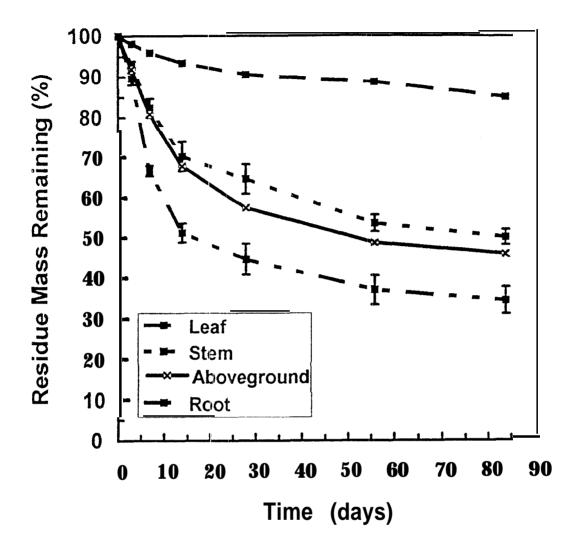



Figure 2.24. Decomposition of peanut NC-7 as measured by mass loss over time. Bars represent standard deviations at given time.

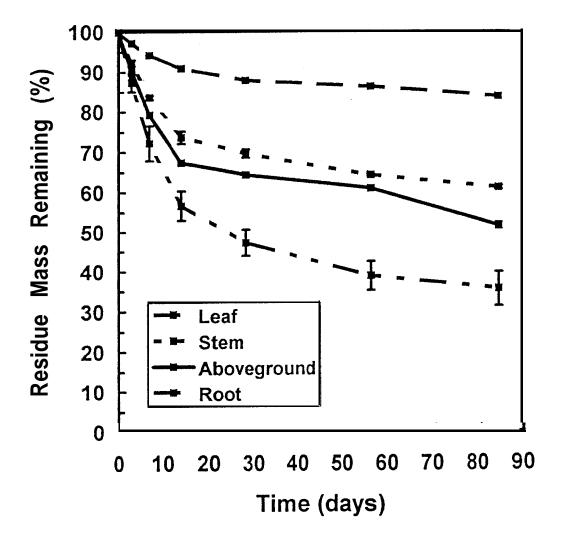



Figure 2.25. Decomposition of peanut NC-11 as measured by mass loss over time. Bars represent standard deviations at given time.




Figure 2.26. Decomposition of peanut above-ground biomass as measured by mass loss over ltime. Bars represent standard deviations at given time.

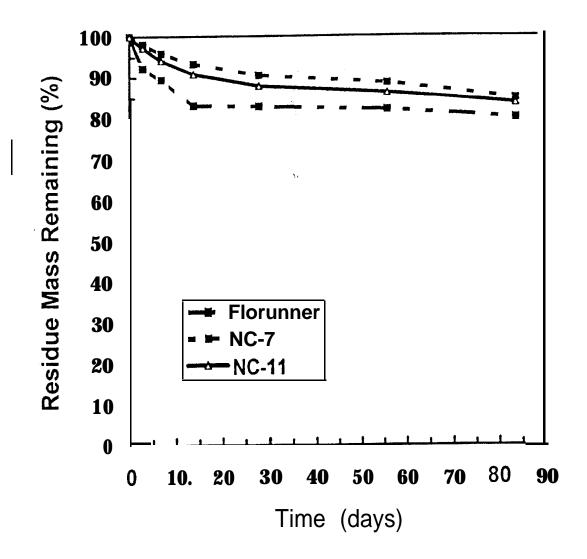



Figure 2.27 Decomposition of peanut roots as measured by mass loss over time. Bars reoresent standard deviations at given time.

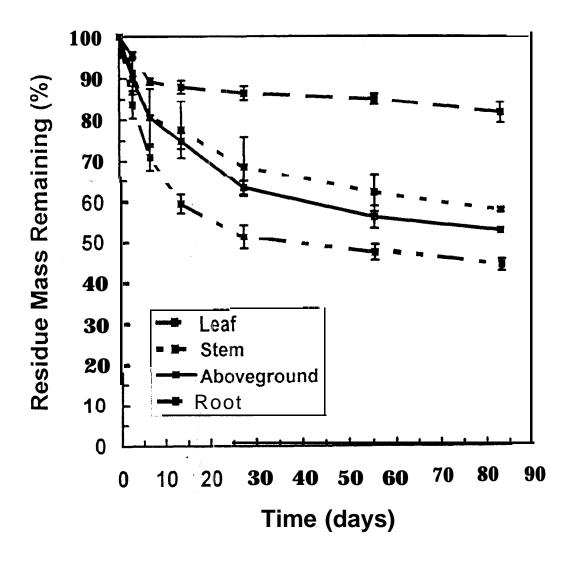



Figure 2.28 Decomposition of sorghum Triumph-266 as measured by mass loss over time. Bars represent standard deviations at given time.

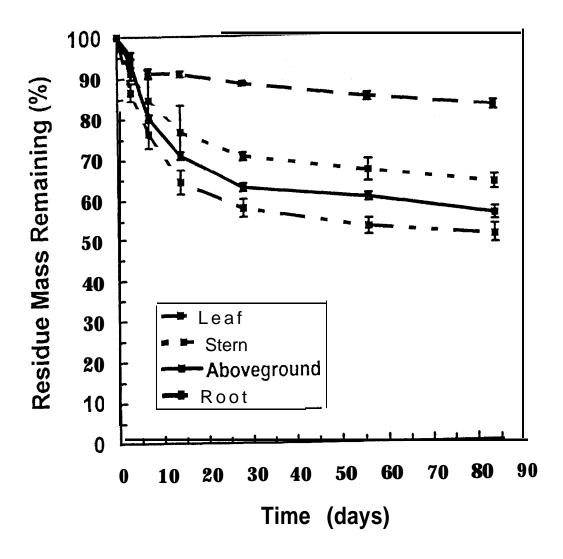



Figure 2.29. Decomposition of sorghum GW-744BR as measured by mass loss over time. Bars represent standard deviations at given time.

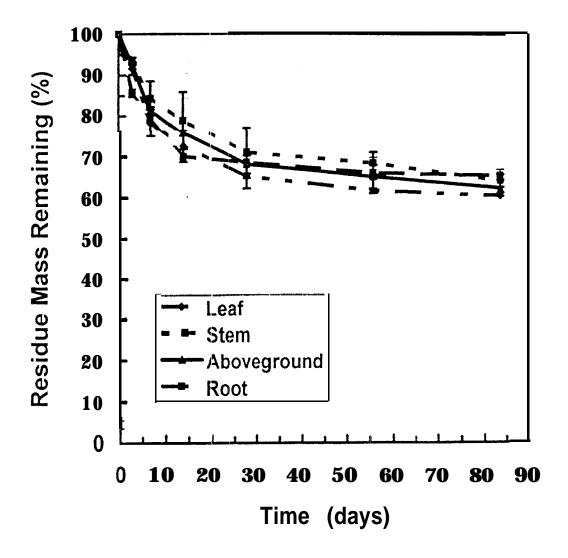



Figure 2.30. Decomposition of sorghum Nking-300 as measured by mass loss over time. Bars represent standard deviations at given time.

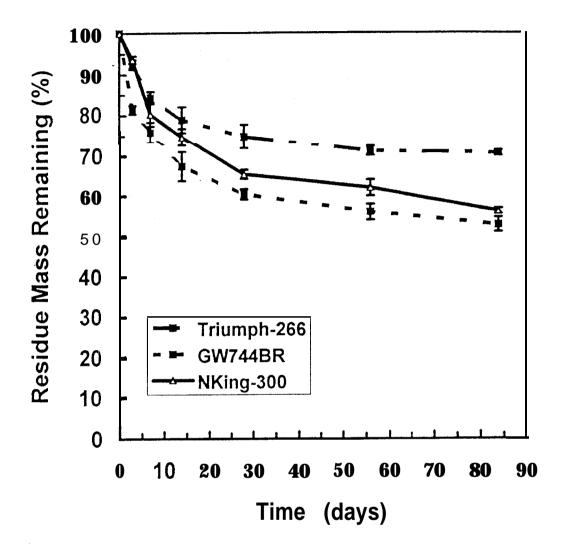



Figure 2.31. Decomposition of sorghum above-ground biomass as measured by mass loss over time. Bars represent standard deviations at given time.

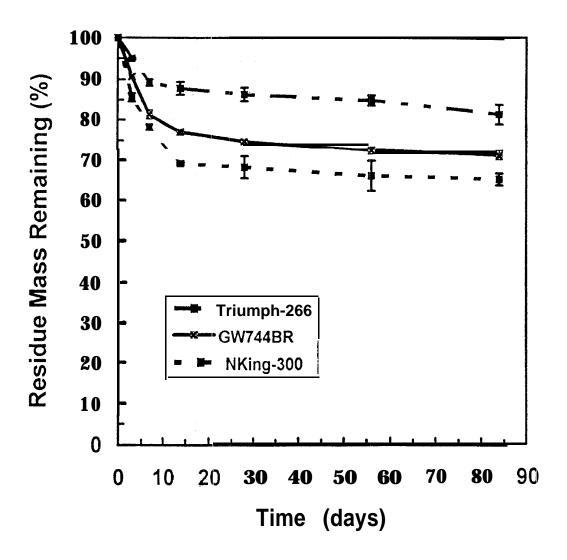



Figure 2.32. Decomposition of sorghum roots as measured by mass loss over time. Bars represent standard deviations at given time.

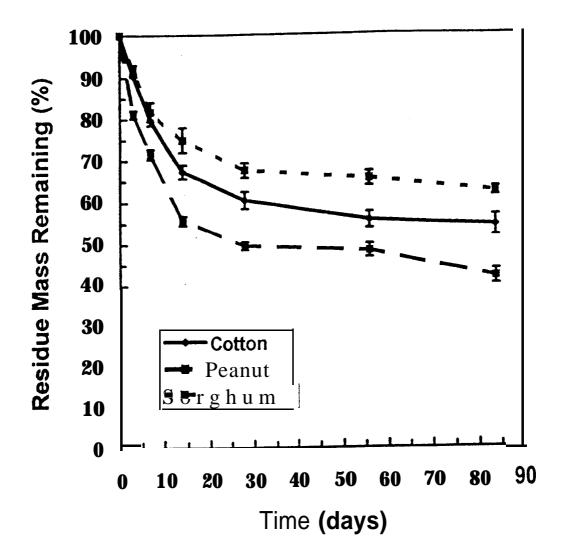



Figure 2.33. Mean decomposition rate of the above-ground biomass for each of the three crops as measured by mass loss over time. Bars represent standard deviations at given time.

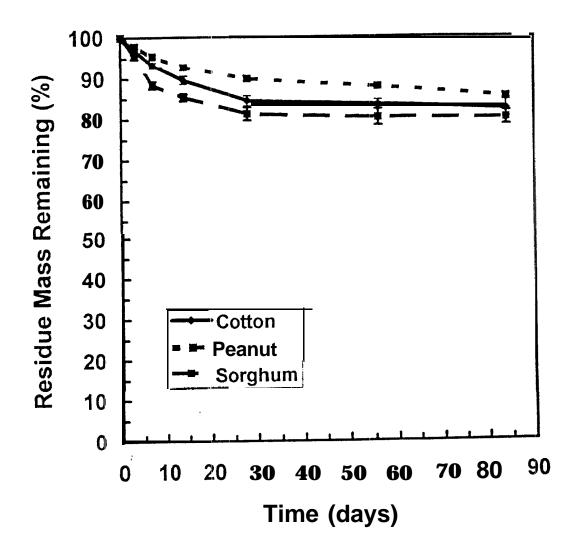



Figure 2.34,. Mean decomposition rate of the roots for each of the three crops as measured by mass loss over time. Bars represent standard deviations at given time.

## 2.5. Discussion

The decomposition rates for ail cotton (Figures 2.1, 2.2, 2.3, 2.4, and 2.5), peanut (Figures 2.6, 2.7, 2.8, 2.9, and 2.10), and sorghum (2.11, 2.12, 2.13, 2.14, and 2.15) cultivars followed the pattern for Michaelis-Menten first-order kinetics. The rapid increase in  $CO_2$  evolution during the first 14 days was probably due to the high total N content, the high level of readily available C in the form of extractable sugars or a combination of the two (Tables 2.3 and 2.4). Kinetically, the  $CO_2$  evolution from the residues studied exhibited a lineaf dependence on the chemical composition of the residue. The rapid disappearance of these soluble compounds were probably related to a quick build up of the microbial activity which would increase the  $CO_2$  respiration. Also, the readily available C and N components in the crop residues might provide the initial energy and nutrients necessary to activate the microorganisms that are responsible for the degradation of the less readily available components of the residue.

The leveling **off phase** of the CO<sub>2</sub> evolution, between **days 15** and 28, would be the period where hemicelllulose was the main fraction available to the microofganisms. As the decomposition process proceeds, CO<sub>2</sub> evolution **slows** down, **following** an exponential curve, probably due to **change in chemical** composition of the remaining residue available to the microorganisms. I think that in this phase of decomposition, the hemicellulose fraction probably disappears initially at a rapid rate, but the subsequent degradation appears to be slower. The degradation of hemicellulose is more marked when **the** environment is aerobic, **and** when there is availability of inorganic **nutrients**, especially nitrogen, (Alexander, 1977). At this stage of **the decomposition** process, I think that there is probably not enough N or readily available C to keep the microbial activity at high level. As a result, there is a decrease in decomposition rate and respiration, resulting in a slower rate of CO<sub>2</sub> evolution. All residue types show the same trend and similar slopes in this portion of the curve. suggesting that that the second phase of the decomposition is probably not a good element of comparison of  $CO_2$  evolution.

After 28 days of decomposition process, the remaining residues entered the third phase of the decomposition process. At this point, the slowly available residue components dominated the residue substrate. Lignin, known to be resistant to degradation, was probably the major remaining component. The rate and extent of lignin decomposition are affected by temperature, availability of nitrogen, and by constituents of the residues undergoing decay (Sarkanen et al., 1971). At this stage of degradation, all the readily available nutrients are expected to vanish. Lignin is probably being decomposed by relatively slowly growing microorganisms (Witkamp et al., 1963). Consequently, microbial respiration is very low. As a result, CO<sub>2</sub> evolution follows a quasi steady-state for the rest of the decomposition. Lignin continues to disappear however.

Cotton cultivars DLP-5690 and DP-521 5 above-ground biomass (Figures 2.1 and 2.2) showed greater cumulative CO<sub>2</sub> evolution than the roots due to higher total N, lower hemicellulose and lignin concentration of the above-ground residue. In addition, lower lignin content plus high specific surface area-to-mass ratios for the above-ground residue provide microorganisms better access ta available C sources (Collins et al., 1990; Jensen 1994). Cultivar HS-46 above-ground residues and roots (Figure 2.3) were not different in cumulative CO<sub>2</sub> evolved probably due to higher **level** of total concentration of N, but lower sugar, hemicellulose and lignin contents for the above-ground biomass than the roots. The specific surface area-to-mass was probably too low in above-ground to provide microorganisms good access to available C sources.

For all peanut cultivars (Figures 2.6, 2.7, and 2.8), above-ground residues showed much higher cumulative CO<sub>2</sub> evolved than the roots due to the higher simple sugar contents available to the microorganisms, combined with lower lignin concentration of the above-ground biomass. The insignificant difference

in sugar concentrations between Florunner, NC-7, and NC-1 1 above-ground residues (Table 2.3) certainly excludes any difference in their cumulative CO<sub>2</sub> evolved (Figure 2.9). Peanut is a legume, and the highest N level is concentrated not in the above-ground biomass but in the root system where the nuts are produced (Table 2.4).

the only sorghum cultivar, GW744BR, showing significant difference in CO<sub>2</sub> evolution between the above-ground biomass and roots (Figure 2.12), had the highest total N, and the lowest simple sugar and lignin concentrations in the above-ground than the roots. For the other cultivars, Triumph-266 and Nking-300 (Figures 2.11, and 2.13), higher available C in the form of simple sugar concentrations in the roots probably contributed to their higher CO2 evolution level, matching that of the above-ground residues. Sorghum roots are fibrous and high in sugar content (Table 2.4). These results were consistent with Leonard et al. (1963) who observed that high levels of sugars in sorghum roots furnished the energy for the multiplication of soil microorganisms which compete with plants for the available soil nitrogen. The data (Tables 2.3, 2.4, and 2.5) support the differences in cumulative CO<sub>2</sub> evolution among residues. These results agreed with Collins et al. (19903 data in their study of decomposition of winter wheat residues. They found that cumulative  $CO_2$  evolution among residue components increased as the concentration of soluble C increased, and CO<sub>2</sub> production from chaff was initially more rapid than that from stems, but after 15 days, decomposition of the chaffs and stems produced CO<sub>2</sub> at the same rate.

Residue decomposition is a process in which the rate of transformation is proportional to the qualitative amount of residue available to the microorganisms. This qualitative amount of residue is reflected by the concentration of the different chemical compounds and the physical nature of the residue. The chemical composition of the residue constitutes probably the most important regulator of the decomposition (Knapp et al., 1983a). In this study, three pools were sorted out as they represented three different phases of the

CO<sub>2</sub> evolution kinetics: 1) nitrogen and readily available carbon in the form of simple sugars, 2) hemicellulose, and 3) lignin. My data show that this compares well with what Stroo et al. (1989) have observed in predicting rate of wheat decomposition. Nitrogen is required by the microorganisms for the synthesis of amino acids, nucleotides, and other compounds. These microorganisms also requite carbon source to construct all their carbon-containing biomolecules, Hemicellulose, a non-structural carbohydrate, second only to cellulose in quantity, represents a significant source of energy and nutrients to the microorganisms. Lignin is the third most abundant constituent of the plant residues and is slow to degrade.

Residue decomposition, as measured by cumulative  $CO_2$  evolution, cannot be related to a single pool, but a set of all defined pools, each of them playing a particular role. However, for legume species, the pool of N and available C in the form of simple sugars seems to play the determinant role. Cheshire et al. (1988) reported that using a single pool tends to underestimate changes in the residue decomposition with time.

In this study, the common trend in the CO<sub>2</sub> evolution rates from the roots did not present any real break between the second phase with decreasing of hemicellulose availability and the steady phase with lignin availability. This was probably due to the high <concentrations of hemicellulose and lignin present in the roots. Most root systems store a relatively appreciable level of readily available C in the form of sugars, but when matched with higher contents of structural carbohydrate and lignin available to the microorganisms, the decomposition process remains slow. The decomposition rate of roots could be an important. information in the management strategies to prevent soil erosion by water. Even though it has been found that root. degradation was more complete in undisturbed soil (Martin, 1989) compared to tilled soil, the results obtained from this study, with air-cfried roots, would still be useful to quantify root decomposition. The differences in residue decomposition between the above-ground biomass and the roots of these cultivars used in this study is due to differences in initial chemical and physical characteristics of the two residue components of each given cultivar, and also in morphologic variation between cultivars (Stott, 1992). Jensen (1994) related decomposition of plant residues at different total C:N ratios with different particle sizes. But, in the early decomposition process, microorganisms are more likely to utilize the readily available fraction (soluble C in the form of sugars) of the plant residues than the total C pool which includes the more recalcitrant fraction (Stott, 1992).

In the first fourteen days, the residue mass remaining decreased quite At day 15, the mass remaining started leveling off and then showed no rapidly. significant change from day 28 until the end of the experiment. The rapidity at which the breakdown of the residues occurred in the early phase was mainly dependent on the initial chemical and physical nature of the residues. For most cases, high levels of total N and readily available C in the form of sugars were essential to a rapid decomposition. The degradation of the leaves usually was so fast that even if the stems were breaking down slowly, the weight loss of the overall above-ground still remained relatively high. Table 2.3 showed that the peanut aboveground residues (legume) that had the fastest weight loss rate in the early decomposition had highest concentrations of simple sugars, relatively high N content, relatively low hemicellulose and lignin levels compared to cotton and sorghum. Also, peanut residues have the second highest specific surface area-to-mass ratio after cotton (Table 2.6) which provides microorganisms much better access to available C sources. Cotton above-ground residues had the second highest level of N, relatively high concentrations of sugar, hemicellulose, and lignin. For sorghum above-ground residues, a combination of low N content, high hemicellulose level and a relatively low lignin content versus relatively high concentrations of sugars but a lower specific surface area-tomass ratio of the residues made the rate of breakdown the slowest among the

crop species. These results were consistent with previous work of Collins (1988) and Stroo et al. (1989).

The same pattern of CO<sub>2</sub> evolution was observed in mass loss as well in this study.

## 2.51. Change in the Specific Surface Area-to-Mass Relationship

Specific surface area-to-mass relationship, represented by a k value, is a specific surface area-to-mass ratio with dimension of ha kg" of residue. In Gregory's (1982) equation, (eq. 2.7), k is specific for a given crop and considered to be constant over time. Specific surface area-to-mass relationship (Figures 2.35, 2.36, 2.37) for cotton was significantly different. Cultivars DLP-5690 and DP-5125 above-ground biomass k values were significanly greater than that of cultivar HS-46 The first two cultivars were not significantly different in k value. Figures 2.38, 2.39 and 2.40 did not showed significant **difference** in k values between peanut cultivars Fiorunner, NC-7 and NC-I 1. Sorghum cultivars Triumph-266, GW744BR and Nking-300, were not significantly different in specific surface area-to-mass ratio (Fgures 2.41, 2.42 and 2.43). However, there was a significant difference between the mean k value of each species. The initial k value (Figure 2.44) for cotton was greater, 0.00048 ha kg-', than peanut and sorghum, 0.06029 and 0.00019 ha kg<sup>-1</sup> respectively. In the first 10-14 days, change in specific surface area-to-mass ratio was relatively rapid for cotton and peanut, residues, but change in sorghum was quite slow.

Stott et al. (1994) found a k value of 0.00023 ha kg<sup>-1</sup> for com from field data. This was consistent with the range of values from this study as the three crop species used, sorghum is the crop that is physiologically and morphologically closest to com, and both are monocotyledons. Compared to com, sorghum has a lower osmotic concentration of the leaf juices, but the stalks, crown, and root juices are higher in sorghum (Leonard et al., 1963). In addition to its juicy stem, sorghum leaf area is smaller than com. Therefore, sorghum residue decomposition may be somewbat faster than com. Consequently, a k value for sorghum should be smaller, but close to that of com residue.

K was found to be a value specific to each crop species. It changes within a certain range over time during the decomposition process because it is a ratio of specific surface area over mass of the decomposing residue (Eq. 2.8). In this study, significant differences were observed between cultivars of cotton, but not from peanut and sorghum. However, the significant difference in mean k values between cotton, peanut and sorghum species was consistent with its specificity to each crop (Stott, 1994).

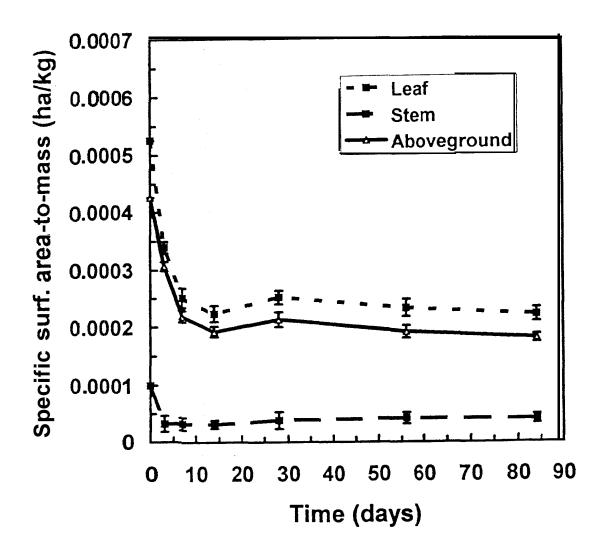



Figure 2.35. Change in specific surface area-to-mass for cotton DLP-5690 over time. Bars represent standard deviations at given time.

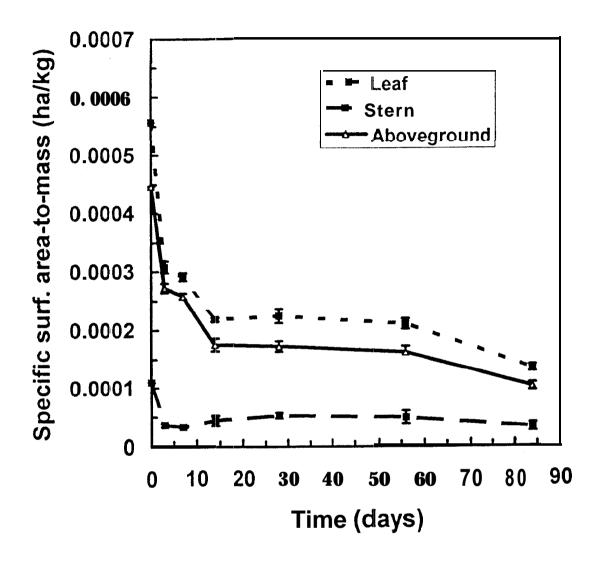



Figure 2.36. Change in specific surface area-to-mass for cotton DP-5215 over time. Bars represent standard deviations at given time.

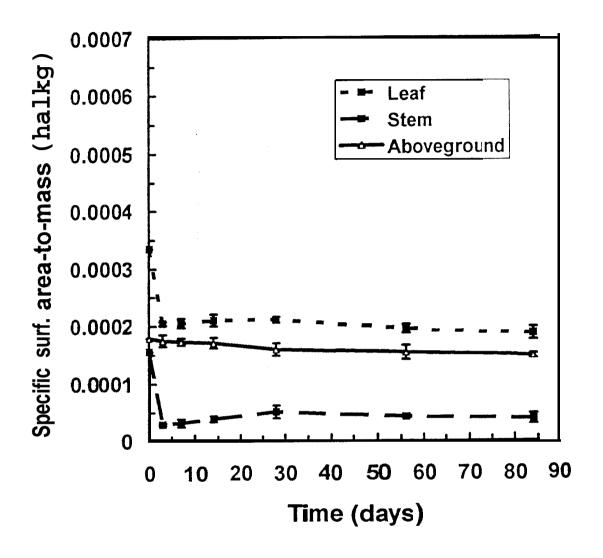



Figure 2.37. Change in specific surface area-to-mass for cotton HS-46 over time. Bars represent standard deviations at given time.

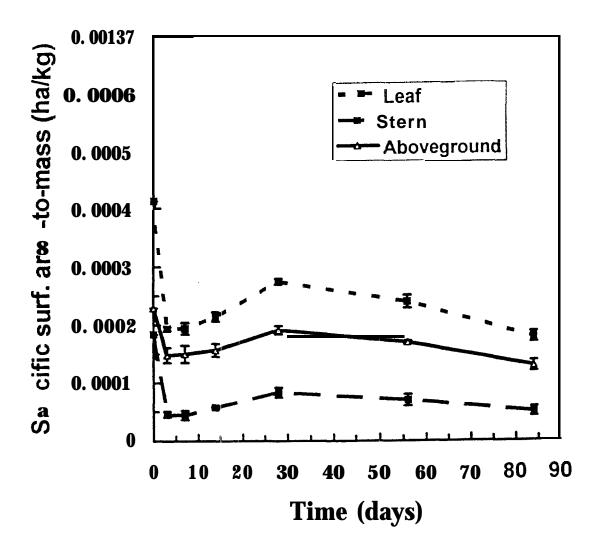



Figure 2.38. Change in specific surface area-to-mass for peanut Florunner over time. Bars represent standard deviations at given time.

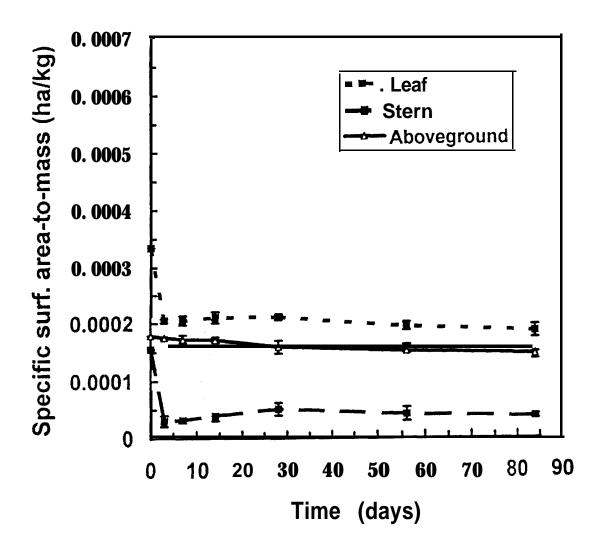



Figure 2.39. Change in specific surface area-to-mass for peanut NC-7 over time. Bars represent standard deviations at given time.

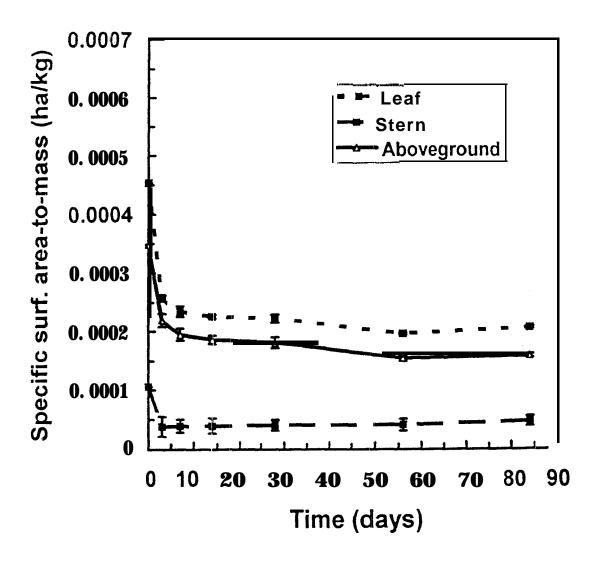



Figure 2.40. Change in specific surface area-to-mass for peanut NC-I Y **over** time. Bars represent standard deviations at given time.

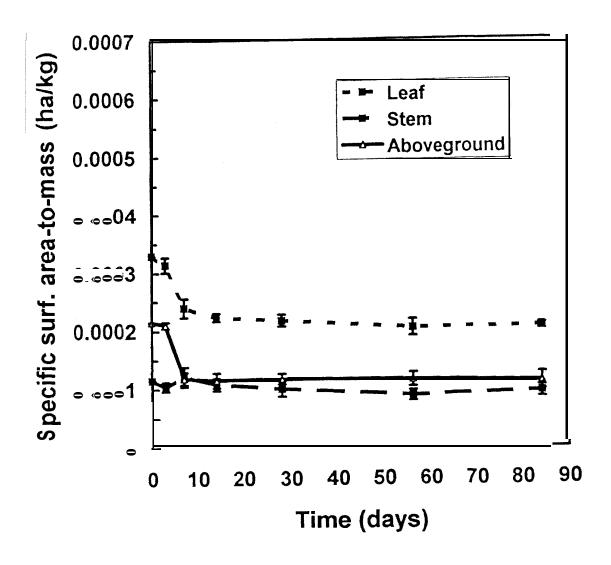



Figure 2.41. Change in specific surface area-to-mass for sorghum Triumph-266 over time. Bars represent standard deviations at given time.

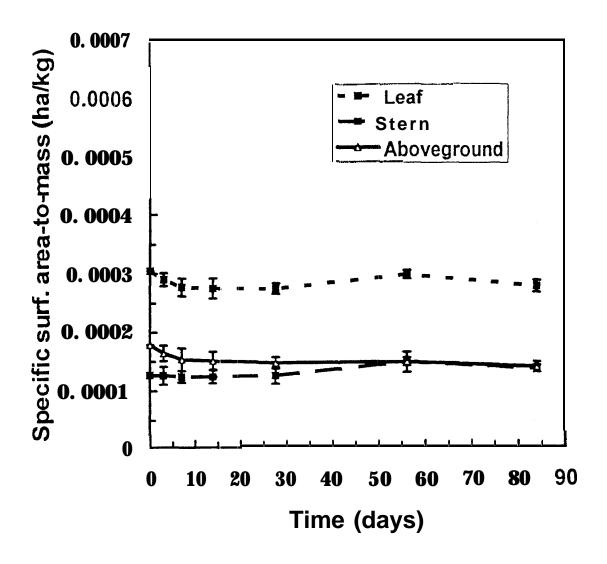



Figure 2.412. Change in specific surface area-to-mass for sorghum GW-744BR over time. Bars represent standard deviations at given time.

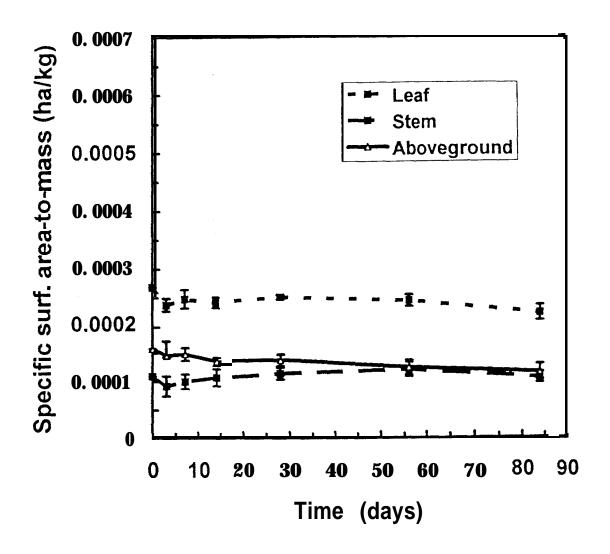



Figure 2.43. Change in specific surface area-to-mass for sorghum Nking-300 over time. Bars represent standard deviations at given time.

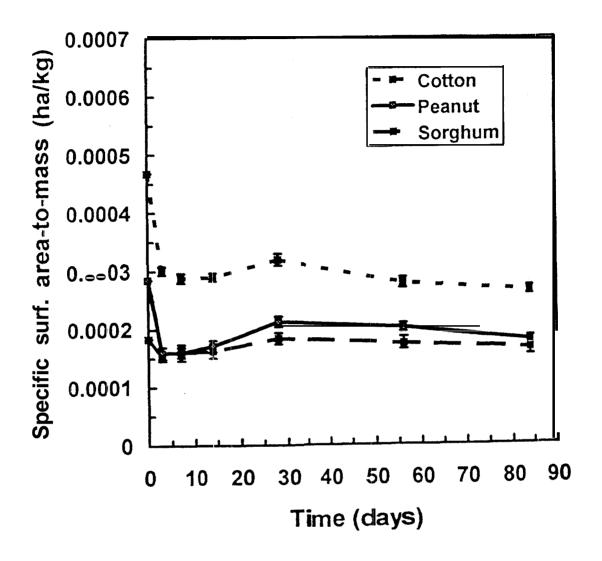



Figure 2.44. Change in specific surface area-to-mass for the three crops over time. Bars represent standard deviations at given time.

#### 2.5.2. Relationship between Mass loss and Car-bon loss

Residue decomposition can be measured by car-bon loss or mass loss. Carbon loss as estimated by CO<sub>2</sub> evolution, is the most used method (Knapp et al., 1983; Stott et al. 1986; Stroo et al., 1989; Collins et al., 1990). Measuring decomposition via mass loss simulates changes in the field and is more important. in natural resource models that need to predict the amount of soil surface covered by residues at any given time. To relate field measurements of residue mass loss to laboratory experiments, in which CO<sub>2</sub> evolution is the variable, a relationship between mass loss and CO<sub>2</sub> evolution was determined using linear regression. The mass loss-carbon loss relation was determined for the above-ground residues and roots of three cultivars each of three species, cotton, peanut, and sorghum (Figure 2.45). The equation of best fit was linear:

Mass loss = 
$$0.16 + 0.58 \text{ CO}_2$$
 evolution (2.9)

where mass loss (%  $d^{-1}$ ) and CO<sub>2</sub> evolution (%  $d^{-1}$ ) rates were calculated based on the first 14 days of incubation.

The residue decomposition measured by  $CO_2$  evolution was higher than the mass loss measurement because the simulation of field measurements of residue mass loss involved uncontrolled field conditions which, with time, did not provide optimal conditions to the microorganisms. Stroo et al. (1989) found that residue mass loss was greater than the proportion of C lost as  $CO_2$ -C, and hypothesized that some physical fragmentation occurred during decomposition preventing full residue recovery. For Collins (1988), the C concentration in the wheat straw decreased slightly as decomposition progressed and some C might be lost as gases other than  $CO_2$ , resulting in greater mass loss than carbon loss.

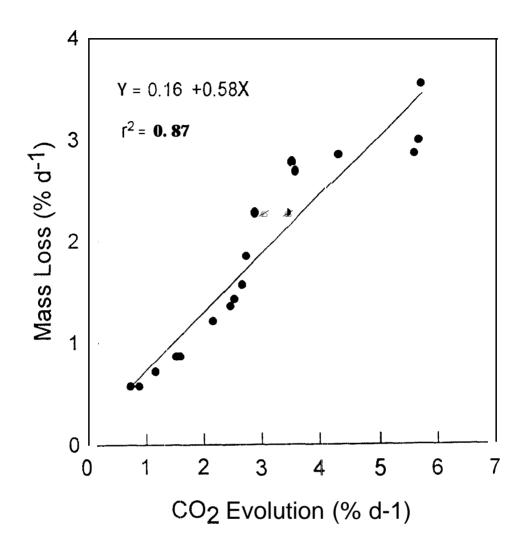



Figure 2.45. Relationship between mass loss and CO<sub>2</sub> evolution for above-ground lbiomass and roots of three cultivars of cotton, peanut and sorghum in the early stage of decomposition.

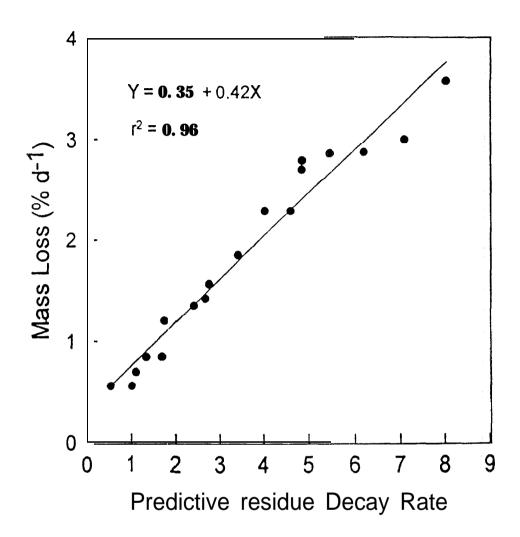



Figure 2.46. Relationship between mass loss and predictive decay rate using above-ground biomass and roots of three cultivars of cotton, peanut and sorghum.

#### 2.5.3. Prediction of Residue Decay

This prediction of residue decay is an attempt to describe in a certain way the contribution of different parameters to the rate of plant residue decomposition. The C:N ratio has been used for long time as a predictor of decomposition, but it has been shown recently that it correlated pooriy with decomposition rate (Stott, 1992). After it has been found that C:N ratio solely could not sufficiently describe the rate of decomposition (Hernan et al., **1977**), lignin and lignin-to-nitrogen were also tested for a better prediction of decay rate (Hargrove et al., 1986). Collins et al. (1990) used a relationship with total carbohydrate, C, N and lignin and concluded that the relationship did not seem to hold when the components were mixed before decomposition. The relationship used to predict the plant residue decay rate included total N, simple sugars readily available as fraction soluble C, hemicellulose considered as somewhat available after the soluble fraction, and then lignin which mark the boundary between fractions available and recalcitrant.

The predictive decay rate  $P_D$  is expressed in the following equation:

$$P_{D} = (N*Sugars*Hemicellulose*K) / Lignin$$
(2.10)

where N, (nitrogen), sugars, hemicellulose, and lignin are expressed in g kg-', and k is the specific surface area-to-mass ratio (ha kg-').

For mass loss (Figures 2.46), the equation of best fit was linear in the form:

Mass loss = 
$$0.35 + 0.42 P_D$$
 (2.11)

For  $CO_2$  evolution (Figure 2.47), a linear regression fitted the equation in the form:

$$CO_2$$
 evolution = 0.47 + 0.70  $P_D$  (2.12)

where mass loss (%  $d^{-1}$ ) and CO<sub>2</sub> evolution (%  $d^{-1}$ ) rates were based on the first fourteen days of incubation.

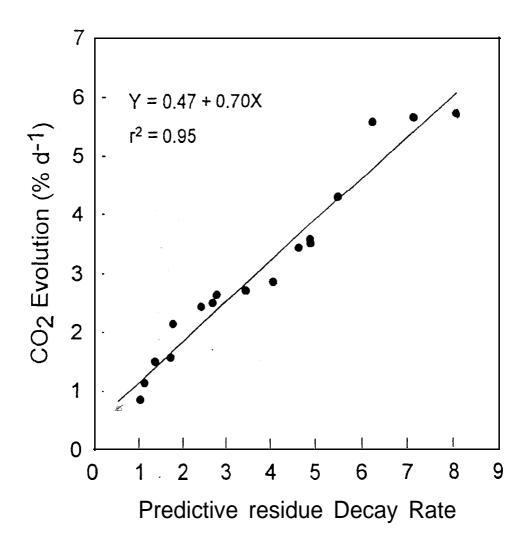



Figure 2.47. Relationship between CO<sub>2</sub> evolution and predictive decay rate using above-ground biomass and roots of three cultivars of cotton, peanut, sorghum.

| Crop    | Cultivar    | Residue     | Component         | Predictive   | Rate cons | tant (% d <sup>-1</sup> )* |
|---------|-------------|-------------|-------------------|--------------|-----------|----------------------------|
|         |             | Туре        | Ratio             | Rate         | CO₂ Loss  | Mass Loss                  |
| Cotton  | DLP-5690    | ieaf / stem | 46.7:53.3         | 5.45         | 4.2       | . 2.9                      |
|         |             | root        | 100               | <b>1</b> .13 | 2.1       | 1.2                        |
|         | DP-521 5    | leaf / stem | 41.2:58.8         | 4.86         | 3.2       | 2.8                        |
|         |             | root        | 100               | 0 53         | 0.7       | 0.6                        |
|         | HS-46       | leaf / stem | 47.1:52.9         | 2.66         | 2.5       | 1.4                        |
|         |             | root        | 100               | 2.75         | 2.6       | 1.6                        |
| Peanut  | Florunner   | leaf / stem | 25.9:74.1         | 6.20         | 5.6       | 29                         |
|         |             | root        | 100               | 1.34         | 15        | 0.9                        |
|         | NC-7        | leaf / stem | <b>29</b> ,2.70.8 | 7 10         | 5.6       | 3.0                        |
|         |             | root        | 100               | 1.10         | 1.1       | 07                         |
|         | NC-1 1      | leaf / stem | 31.1:68.9         | 8.04         | 5.7       | 3.2                        |
|         |             | root        | 100               | 1.01         | 0.9       | 06                         |
| Sorghum | Triumph-266 | leaf / stem | 45.3:54.7         | 4.60         | 2.7       | 1.9                        |
|         |             | root        | 100               | 1.70         | 1.6       | 0.9                        |
|         | GW744BR     | leaf / stem | 38.7:61.3         | 4.02         | 3.4       | 2.3                        |
|         |             | root        | 100               | 2.40         | 2.4       | 1.4                        |
|         | NKing-300   | leaf / stem | 43.6.56.4         | 3.40         | 2.9       | <b>2</b> .1                |
|         | -           | root        | 100               | 4.85         | 3.6       | 2.7                        |

Table 2.6. Predictive ratio and Rate constants of CO<sub>2</sub> Loss and Mass Loss.

\* The rate constant is calculated as the slope of the curve (%) divided by 7 days,

9 -0

### 2.6. Conclusions

The initial chemical and physical characteristics of the plant residues and roots impacted the rates of decomposition . The decomposition rates determined by  $CO_2$  evolution and mass loss showed differences between cultivars, for cotton, peanut and sorghum. Due to their leguminous nature, the three peanut cultivars were decomposed rapidly, and were different in decay rates among them. The degradability of peanut above-ground residue was highest followed by cotton, while the sorghum above-ground decomposition fate was the slowest. The plant roots did not follow the **same** order in degradability as did the plant above-ground residues. Sorghum roots were decomposed faster than cotton and peanut. There was significant difference between the decomposition rates of the **cotton** and peanut roots.  $CO_2$  evolution and mass loss methods used to determine rates of decomposition were highly correlated.

Changes in **specific** surface **area-to-mass** measurements showed significant differences between cultivars within cotton only, but there were differences between species as if k value was a constant specific for **each** crop.

It was possible to develop a prediction decay equation from the initial chemical and physical characteristics of the residues for the early stage of decomposition.

This predictive decay equation in the early decomposition process is a partial result that **can** be used to **predict** decomposition rate of residue in the **early** stage. A validation of the predictive equation with decomposition rates measured in the field will certainly help predict the decomposition rate of **any** plant residue over time. Once validated, this predictive decay equation will be a useful tools for land managers, conservation planners, environmental **scientists** and even those **concerned** with construction sites. It also **could** be used as parameter in a **crop** breeding program. Predicting residue decomposition, used in a management program, **can** help solve **soil** erosion problem, but also **can** 

109

help control accumulation of crop residues when it is viewed as a nuisance to crop establishment and growth, or as a disposal problem.

Future work will include using the predictive decay equation to develop residue decay parameters for erosion prediction models such as RUSLE (Revised Universal Soit Loss Equation), RWEQ (Revised Wind Erosion Equation), WEPP (Water Erosion Prediction Project), and WEPS (Wind Erosion Prediction System).

# 2.7. References

- Berg, B., M. Muller, and B. Wessen. 1987. Decomposition of red clover (*Trifolium pratense*) roots. Soil Biol. Biochem. 19:589-593.
- Bottner, P., Z. Sallih, and G. Billes. 1988. Root activity and carbon metabolism in soils. Biology and Fertility of Soils 7:71-78.
- Broder, M.W., and G.H. Wagner. 1988. Microbial colonization and decomposition of com, wheat, and soybean residues. Soil Sci. Soc. Am. J. 52:112-117.
- Cheng, W., and D.C. Coleman. 1990. Effect of living roots on **soil** organic **matter** decomposition. Soil Biol. Biochem. 22:781-787.
- Cherney, J.H, J.J. Volenec, and W.E. Nyquist. 1985. Sequential fiber analysis of forage as influenced by sample weight. Crop Sci. 251113-I 115.
- Cheshire, M.V., J.D. Russell, and A.R. Frazer. 1988. The decomposition of plant residues in soil. J. Sci. Food Agric. 45:133-134.
- Colllins, H.P., L.F. Elliott, R.W. Rickman, D.F. Bezdicek, and R.I. Papendick. 1990. Decomposition and interactions among wheat residue components. Soil Sci. Soc. Am. J. 54:780-785.
- Davis, J.S., and J.E. Gander. 1967. A re-evaluation of the Roe procedure for the determination of fructose. Anal. Biochem. 19:72-79.

Elliott, L.F., H.F. Stroo, R.I. Papendick, C.L. Douglas, G.S. Campbell, and D.E. Stott. 1986. Decomposition of surface managed crop residues. pp81-91. in:L.F. Elliott (ed.) STEEP Conservation concepts and accomplishments. Washington State University Press. Pullman, WA

- Goering, H.K., and P.J. Van Soest. 1970. Forage fiber analysis. Agriculture Hanbook No. 379. Agricultural Research Service. USDA.
- Gregory, J.M., T.R. McCarty, F. Ghidey, and E.E. Alberts. 1985. Derivation and evaluation of a residue decay equation. Am. Soc. Ag. Eng.: 98, 99, 101, 105. Trans. ASAE.

Van Handel, E. 1968. Sucrose analysis. Anal. Biochem. 22:280-283.

- Hargrove, W.L., P.B. Ford, and Z.C. Soma. 1966. Crop residue decomposition under controlled and field conditions. Station Bulletin Dept of Agronomy, Univ. of Georgia, Georgia Station, GA 30223-I 797.
- Herman, V.A., W.B. McGill, and J.F. Dormaar. 1977. Effects of initial chemical composition on decomposition of roots of three grass species. Can. J. Soil Sci. 57:205-215.
- Jensen, E.S. 1994. Mineralization-immobilization of nitrogen in soil amended with low C:N ratio plant residues with different particle sizes. Soii Biol. Biochem. 26:519-521.
- Knapp, E.B., L.F. Elliott, and G.S. Campbell. 1983. Microbial respiration and growth during the decomposition of wheat straw. Soil Biol. Biochem. 15:319-323.
- Leonard, H.W., and J.L. Martin. 1963. Cereal crops. The McMillan Company, New York City, NY.
- Martin, J.K. 1989. In situ decomposition of rootderived carbon. Soil Biiol. Biochem. 21:973-974.
- Sarkanen, K.V., and C.H. Ludwig, 1971. Lignins: Occurrence, formation, structure, and reactions. Wiley-Interscience, New York City, NY.

- Stott, D.E., L.F. Elliott, R.I. Papendick, and G.S. Campbell. 1986. Low water temperature or low water potential effects on the microbial decomposition of wheat residues. Soil Biol. Biochem. 18:577-582.
- Stott, D.E.,, H.F. Stroo, L.F. Elliott, R.I. Papendick and P.W. Hunger. 1990. Wheat residue loss from fields under no-till management. Soil Sci. Soc. Am. J. 54:92-98.
- Stott, D.E. 1992. Mass and C losses from com and soybean residues as associated with their chemical composition. Agron. Abstr. p.267. Paper in preparation
- Stott, D.E. 1993. Changing relationship between mass and surface area of decomposing residues. Agronomy Abstracts p.261. Paper in preparation.
- Stroo, H.F., K.L. Bristow, L.F. Elliott, R.I. Papendick, and G.S. Campbell. 1989. Predicting rates of wheat residue decomposition. Soil Sci. Soc. Am. J. 53:91-99.

#### CHAPTER 3

## CROP RESIDUE DECOMPOSITION WITH CHANGE IN SOIL DEPTH

## 3.1. Abstract

Microorganisms play a major role in the crop residue decomposition psocess, and it has been assumed that microbial activity is uniformed with soil depth in a given tillage system. This study was conducted to determine variation in residue decomposition rates related to the microbial activity with changes in soil depth under established no-till and a moldboard plow tillage system, on a silty clay loam soil at the Purdue Agronomy Research Center, West Lafayette, IN. Soil cores were sampled at O-20 cm and then partitioned into O-I, 1-5, 5-12.5 and 12.520 cm sections constituting the different sampling soil The peanut (Fastigiata vulgaris) residue used in the experiment was the depths. Spanish Tampsan 90 cultivar. The decomposition rate was quantified by measuring the amount of CO<sub>2</sub>-C evolved from an electrolytic respirometer incubation system, loading 2 g of airdried residues in 100 g air-dried soil for each treatment. Soil depth in no-till soil, signifkantly influenced residue decomposition. After 84 days, cumulative % CO2 evolution from the surface soil (O-I cm) was high, 50%, whereas, from the lower depth soil (12.5-20 cm), CO<sub>2</sub>-C was much lower, 22%. From the intermediate depth soil, (1-5 cm), residue decomposition as measured by CO<sub>2</sub>-C evolution was significantly lower, 37%, than from the surface soil, but significantly higher than decomposition from the lower depth soil. From the plowed sites, a reverse situation occurred due to

inverting residues. Residue decomposition rates from lower depth soils (5-12.5 cm and 12.5-20 cm) as measured  $CO_2$ -C evolution was 40% and 38% respectively, and not significantly different from each other, but were significantly greater than the decomposition rates, 21% and 13%  $CO_2$ -C evolved from soil obtained from the shallower depths, I-5 cm and O-1 cm, respectively. Due to lower microbial activity, residue decomposition decreased with soil depth in no-till situation whereas in a moldboard piow tillage system, it increased with soil depth.

### 3.2. Introduction

The amount of crop residues remaining on the soil surface and within the top 20 cm of the soil profile are critical factors in erosion control. A successful crop residue management system depends upon an understanding of the factors governing crop residue decomposition, and how much residue cover is lost from a field site.

Tillage influences the physical environment near the soil surface, thus affecting biological process in the soif. Soif profile differences between no-till and conventionally tilled soil have been reported and can be detected after a few years of changing from conventional to no-till management practices (Dick, 1983). According to Doran (1980), no-till soils have more total microbial biomass than conventionai tillage soils in the surface O-7.5 cm. In addition, there are increases in soil water content, organic carbon contents, and total nitrogen levels in the no-till soils probably due to higher amounts of residue left on the soil surface in the no-till system. Each tillage event causes a movement of moist soil to the surface, which then dries rapidly.

Surface residues affect soil temperature patterns and soil water content, thus affecting **biological** activity in the soil (Roper, 1985). Along with soil physical and chemical characteristics, microorganisms play a major **role** in the crop residue decomposition process. Therefore, knowledge of crop residue decomposition undet a given tillage system, and how decomposing activities of the microbial populations are distributed as soil depth changes would be useful information for predictive rnodels.

The objective of this study was to determine if there is a difference with depth in residue decomposition rates when soil is held under identical environmental conditions.

### 3.3. Materials and Methods

### 3.3.1. Soil and Site Description

A Drummer silty clay loam soil (fine-silty, mixed, mesic Typic Haplaquoll) was used in this experiment. The sampling site was a nineteen-year tillage corn/soybean rotation field experiment located at the **Purdue** Agronomy Research Center in West Lafayette, IN. The site has less than 2% slope, is tiled at a 20-m spacing, and the soil is well structured (Table 3.2).

The plots were established in 1975 and consist of corn/soybean rotation under a variety of tillage managements. The **two** tillage systems sampled in this study were: (i) fall moldboard plowing to 20 cm, with **one** disking and **one field** cultivation to 10 cm in the spring prior to cultivation and (ii) **no-till** planting with **2.5-cm-wide** fluted coulters to cut through residues and **open** a slot ahead of standard planter units (Griffith et al., 1988).

The soil samples used for this experiment were taken from the no-till and moldboard plow plots of com following soybean. For each treatment, four replicate plots were sampled, The samples were taken from between rows 2 and 3 within each plot as this row was uncompaded by wheel traffic. In each plot, four soit cores were taken from the 0-5 cm layer using rings, and four other soil cores were also sampled from the O-20 cm layer using soil probes. The samples were then partitioned into O-I cm, 4-5 cm, 5-12.5 cm, and 12.5-20 cm

soil depths The soil samples taken with the rings were to **complete** the amount of soil needed for the experiment at depths O-I cm and 1-5 cm. The samples were airdried, ground to pass a Z-mm sieve, and stored until use.

### 3.32. Plant Materials

Peanut (*Fastigiata vulgaris*), Spanish Tampsan 90 cultivar, was grown in 5-gallon buckets, using a sanitized soil mix. The plants were grown in the greenhouse for 125 days. On a three-week basis, the plants were treated with specific compounds against white flies and spidermites. After harvesting, the aboveground biomass (stems and leaves), the below ground biomass (roots) and the yield biomass (pods) were separated from one another. The residue samples were washed to remove excess soil. After washing, residue samples were dried at 40°C for 48 hr and weighed.

A subsample of plant residue was finely ground (< 0.3 mm) for chemical analysis, using a Straub Grinding Mill (Model 4E, Straub CO, Philadelphia PA). Total C, H, and N contents (Table 3.1) were determined using a dry combustion analyzer (Model CHN-600; Leco Cor-p., St. Joseph, MI). Lignin, cellulose, and hemicellulose contents were determined by sequential fiber analysis using the Goering et. al. (1970) procedure (see chapter 2 for details). Chemical analysis were done in triplicate.

| Residue type                                                    |                                        |      | Cellulose                  | Hemicellulose | Lignin | Ash  |
|-----------------------------------------------------------------|----------------------------------------|------|----------------------------|---------------|--------|------|
| 44676423 2007) 2 f f f f fan swie f i di gegenni i fignan waare | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      | g kg <sup>-1</sup> residue |               |        |      |
| Aboveground*                                                    | 397.4                                  | 24.4 | 191.0                      | 241.5         | 68.7   | 17.0 |
| Roots                                                           | 397.0                                  | 22.3 | 286.5                      | 230.7         | 85.0   | 22.2 |

Table 3.1. Initial chemical composition of the peanut residues

\*Aboveground is the non-harvested material, primarily stems and leaves.

### 3.33 Decomposition Experiment

Residue decomposition rates were determined by the amount of C evolved as CO<sub>2</sub> over time. The experiment consisted of eight treatments. Four treatments were composed of soil from the no-till system at four depths (O-1 cm, I-5 cm, 5-12.5 cm and 12.5-20 cm), the other four were from the moldboard plow system, at the same depths. For each treatment, 100 g soif and 2 g peanut residue (ovendried basis) were placed in an incubation jar. The 2 g residue consisted of 1 g stem, 0.5 g leaf and 0.5 g roots, representing the proportion of each residue component left in the field after harvest. The controls consisted of soil from each treatment with no residue. The incubation jars were connected to electrolytic respirometers (Knapp et al., 1983a). The optimal moisture content for incubation was consiclered to be the water content at -1/3 bar water potential as equalled to 60% water' holding capacity, plus 300% of the residue mass (Myrold et al., 1981). The moistened soil was mixed thoroughly, the dry residue spread evenly on the soil surface, soil to residue contact insured and then the incubation jar was tightly sealed (Stott et al., 1986). The jars were submerged in a water tank and insulated by putting styrofoam on. The water temperature was maintained at  $22^{\circ}C \pm 1^{\circ}C$  with a circulating water bath.

The amount of CO<sub>2</sub> respired was captured in an alkaline trap of 5 ml 30% KOH. An indicator, tropaelin 0, (Sigma Chemical CO, St. Louis, MO), was added to the KOH solution to indicate if the solution has reached a **50%** CO, saturation (pH 11). To remove the KOH, a 22-gauge needle with a Luer lock fitting through the stopper and lengthened with a sufficient piece of capillary tubing to reach the bottom of the KOH trap will be used. Fresh KOH was injected in the same manner, thus the incubation chamber remained sealed throughout the experiment (Stott et al., 1986). KOH was withdrawn after 3, **7**, 14, 28, 56 and 84 days of incubation. The amount of CO, evolved during the

decomposiition was measured by titration of the KOH solution using Golterman (1970) potentiometric titration method.

#### 3.3.4. Incubation system

The system used to incubate the soils consisted mainly of a respirometer and an incubation jar held in a circulating water bath to maintain a constant temperature and prevent condensation within the jars. The circulating bath (Model 2095, S/N, Forma Scientific, Marietta OH) was connected to a plexiglas water tank in which the jars were held (Stott et al., 1986). Each incubation jar was connected to an electrolytic respirometer. At the top of each respirometer, there was a 25 or 50-ml burette, a positive electrode for oxygen, and a 4-cm tube for overflow. At the bottom, there is a negative electrode for hydrogen. Both electrodes were platinum. The positive electrode is connected to a 500-ml chamber containing the electrolyte solution 8% (Na)<sub>2</sub>SO<sub>4</sub>.

Within each incubation jar, there was a **small** glass cup to hold the alkaline trapping solution. Respired CO, was absorbed in the KOH trap, thereby reducing the total pressure in the incubation **jar**. This causes the electrolyte to be drawn up into the **capillary** tube containing the 0, electrode. As the electrical circuit is completed,  $H_2O$  is hydrolyzed with  $H_2$  being **captured** in the gas burette.

3.35. Measurement of CO, evolution

The reactions involved in the KOH trapping the evolved CO, are as follows:

HCO, + 
$$K'$$
 + HCI ----->  $H_2CO_3$  + KCI (3.2)

Each milliequivalent of KOH used to absorb evolved CO, is equivalent to 12 mg of CO, carbon.

The formula used to calculate cumulative % C-CO, evolved is:

% C-CO, = [ 
$$K_{1} \approx (1/M) * V * N * C$$
, ] (3.3)

where:

 $K_1 = 0.315$ , a calculated constant to convert the raw result into the desired unit M = mass of the residue in grams

V = volume of HCI titrant in ml

N = concentration of HCI titrant in normality

 $C_i$  = initial carbon content of the residue in percent.

## 3.3.6. Statistical Design

The experiment **consisted** in a completely randomized design **with** treatment soils from two management systems, **and** four **soil** depths (eight treatments plus controls). The experiment was **done** in triplicate.

Statistical analysis of the data was run to determine **differences** among treatments using the PC-SAS, Version 6.09 (Statistical Analysis System 1985). Analysis System 1985).

# 3.4. Results and discussion

The mean concentrations of total C (Table 3.2) from the surface **0** to I-5 cm no-till soil were significantly greater than **that** of plowed soil (P = 0.05). However, below 5 cm, there was no significant difference in total C contents between the two tillage systems. Within the no-till system, total C contents were not significantly different from the surface 0 to 1-5 cm, but they were significantly higher than those below 5 cm. No significant difference in total C concentration was observed along the profile 0 to 20 cm within the moldboard plowed soii. Total N content (Table 3.2) was significantly greater from the surface O-I cm notill than plowed soil. Below 12.5 cm, the mean concentrations of totai N of moldboard piowed soil were significantly higher than those of no-till soil. Within no-till system, total N contents were significantly decreasing with depth soils, whereas within the plowed soil, total N contents were increasing.

| Depth (cm)           | Tillage  | Clay | Silt | Sand | рН      | Total C  | Total N  |
|----------------------|----------|------|------|------|---------|----------|----------|
|                      |          | (%)  | (%)  | (%)  |         | (g kg-ʻ) | (g kg-') |
| O-1                  | No-Till  | 27.9 | 57.6 | 14.5 | 5.84 a  | 28.4 a'  | 4.0 a    |
|                      | M. Plow* | 35.9 | 54.9 | 9.1  | 5.98 a  | 23.7 b   | 3.0 b    |
| l - 5                | No-Till  | 28.8 | 59.9 | 11.2 | 6.05 a  | 26.1 a   | 3.2 b    |
|                      | M. Plow  | 39.2 | 50.8 | 10.0 | 5.92 a  | 23.1 b   | 3.1 b    |
| 5 - 12.5             | No-Till  | 40.3 | 50.1 | 9.7  | 5.01 b  | 23.9 b   | 2.9 b    |
|                      | M. Plow  | 30.2 | 58.4 | 11.3 | 5.50 ab | 23.8 b   | 3.5 ab   |
| 12.5 <del>-</del> 20 | No-Till  | 37.7 | 51.6 | 10.7 | 4.76 b  | 23.4 b   | 2.6 c    |
|                      | M. Plow  | 28.6 | 59.3 | 12.1 | 5.47 ab | 22.4 b   | 6.3 ab   |

Table 3.2. Physical and chemical characteristics of the soit samples

M. Plow = Moldboard Plow

'Values within columns, followed by the **same letter** are not significantly different by **the** Waller-Duncan's multiple range test at P = 0.05.

Soil depth influenced significantly microbial residue decomposition in both tillage systems. After 84 days, high microbial activity resulted in 50% CO& evolved from the surface soil (O-I cm), as compared to 23% C evolved from the lowest depth soil, 12.5-20 cm, (Figure 3.1). The amount of the  $CO_2$ -C evolved from the intermediate depth soil, I-5 cm, was significantly (P = 0.05) lower, 38%, than from the surface soil, but significantly higher than the  $CO_2$ -C evolved, 25% and 23%, from the lower depth soils, 5-12.5 and 12.5 • 20 cm respectively.

In the moldboard plow system, a reverse situation occurred (Figure 3.2). Residue decomposition rates did not differ from the lower depth soils, 5-12.5 and 12.5-20 cm, 42% and 40%  $CO_2$ -C evolved respectively. They were, however, significantly greater (P = 0.05) than the decomposition rates in soils from the shallower depths, 1-5 and O-I cm, measured as 27% and 21%  $CO_2$ -C evolved respectively.

In the no-tilled soil, the decomposition rate in the shallow depth soils, O-I cm and 1-5 cm, did not differ significantly from rates in the lower depth moldboard plowed soils, S-12.5 cm and 12.5-20 cm. There was also no significant difference (P = 0.05) in C evolution between the lower depth no-till soils, 5-12.5 un and 12.5-20 cm, and the top layer moldboard plow soils, O-I cm and 1-5 cm.

The amount of CO<sub>2</sub>-C evolved measured during the residue decomposition process is an index of the activity of **the** microorganisms being Along the top 20-cm of the soil profile, residue decomposition as respiring. determined by microbial respiration showed great differences across the no-till and moldboard plow systems. Microbial respiration in surface no-till was significantly greater than that in plowed soit (Figures 3.1 and 3.2). At greater depth, microbial respiration was much higher in moldboard plowed soil than in no-till system. These results were consistent with the observations of Barber et al. (1977) and Doran (1980b) who found that respiration rates from surface no-tilt soils were significantly greater than those from plowed soils. However, at a soil depth below 50 and 75 mm, these indexes of **microbial** activity were often greater in plowed soils, reversing the trend noted in **the** surface 0- to- 75 mm. In general, the presence of surface crop residues in **no-till** system results in physical and chemical changes in the soil environment. The organic matter distribution is shifted towards the surface, the **pore size** distribution **induces** larger macropores, water is lost more slowly due to iow evaporation, nutrients are translocated by plants from the subsoil to the surface during the plant life

cycle. Consequently, optimal conditions for an increase in  $CO_2$  evolution are created through a stratification of the microbial respiration at the top of the soil profile. Most researchers (Campbell et al., 1976; Lal et al., 1976; and Blevins et al., 1977) have concluded that the increased microbial activity observed in the surface layer of reduced or no-tillage soils, is related to their greater organic carbon C and water contents resulting from the maintenance of wop residues on the soil surface. In the moldboard plowed soil, the trend of microbial respiration observed was reversed (Figure 3.2). The increase in  $CO_2$  evolution due to maximal microbial activity extended to a greater soil depth than with no-till. This could be due primarily to the plowing action which inverted the residues into a deeper depth soil. Moreover, soil air diffusion rates resulting from plowing and cultivation accelerate the process by which soil microorganisms oxidize organic matter which becomes considerably reduced at the surface.

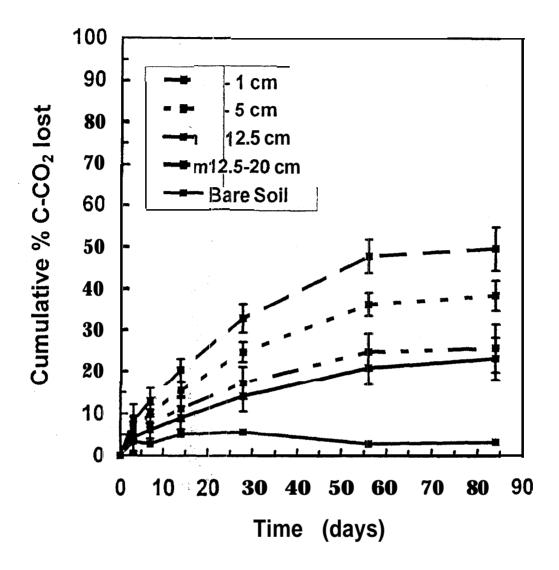



Figure 3.1. Cumulative CO<sub>2</sub>-C evolution from different depth no-till soils amended with peanut residue. CO<sub>2</sub> evolved from the bare soil was used to correct the CO<sub>2</sub> evolution from the treatments with residues.

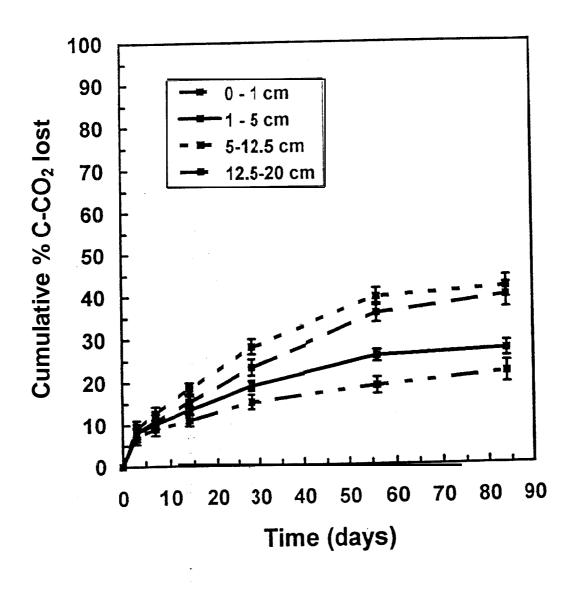



Figure 3.2. Cumulative CO<sub>2</sub>-C evolution from different depth moldboard plowed soils amended with peanut residue.

### 3.5. Conclusion

Residue decomposition fates decreased with soil depth in a no-till management system, whereas in a moldboard plow system, it increased with soil depth, when temperature and moisture are held constant. This might be due to the fact that in no-till soil, crop residues are left at the soil surface whereas in a moldboard plow system, surface residue biomass is incorporated into the soil profile. This leads to an enrichment of the microbial population in the lower levels of the plow layer within the moldboard plow system.

Currently, plant residue decomposition models assume a uniformity in the activity of microbial populations with depth and focuses rather on environmental conditions. Since this study has showed that, at least in the top 20 cm of the soil profile, microbial activity is subject to changes depending upon the management practices, the model's assumptions that the extent of potential microbial activity is about the same where the residues are concentrated within the profile seem to be verified.

## 3.6. References

- Barber, D.A., and C.J. Standetl. 1977. Preliminary observations on the effects of direct drilling on the microbial activity of soil, p.58-60. In: Agric. Res. Council 1976 Annual Report, Letcombe Lab., Wantage, England.
- Blevins, R.L., G.W. Thomas, and P.L. Cornielus. 1977. Influence of no-tillage and nitrogen feriilization *on* certain soit properties after 5 years of continuous com. Agron. J. 69:383-386.
- Campbell, C.A., E.A Paul, and W.B. McGill. 1976. Effect of cultivation and cropping on the amounts and forms of soil N p. 9-I 01. In: W. A. Rica [ed.]. Proc. Western Can. Nitrogen Symp., Calgary, Alberta, Canada.
- Dick, W.A. 1984. Influence of long-term tillage and crop rotation combinations on soil enzyme activities. Soil Sci. Soc. Am. J. **48**:569-574.
- Doran, J.W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 44:765-771.
- Golterman, H.L. 1970. methods for chemical analysis of fresh waters. IPI. Handbook No. 8. Blackwell, Oxford.
- Griffith, D.R, E.J., Klavdivko, J.M., Mannering, T.D. West, and S.D. Parsons. 1988. Long-term tillage and rotation effects on com growth and yield on high and low organic, poorly drained soils. Ag. J. 80:599-605.
- Knapp, E.B., L.F., Elliott, and G.S. Campbell. **1983.** Microbial respiration and growth during the decomposition of wheat straw. Soil Biol. Biochem. 15:319-323.
- Lal, R. 1976. No-tillage effects on soil properties under different **crops** in Nigeria. Soil Sci. Soc. Am. J. 40:762-768.

- Myrold, D.D., L.F. Elliott, R.I. Papendick, and G.S. Campbell. 1981. Water potential-water content characteristics of wheat straw. Soil Sci. Soc. Am. J. 45329-333.
- Raper. M.M. 1985. Straw decomposition and nitrogenaze activity (C<sub>2</sub>H<sub>2</sub> reduction):effects of soil moisture and temperature. Soil Biol. Biochem. 17:65-71.
- Stott, D.E., L.F. Elliott, R.E. Papendick, and G.S. Campbell. 1986. Low temperature or low water potential effects on the microbial decomposition of wheat residues. Soil Biol. and Biochem. 18:577-582.

APPENDICES

| Sampling | Date | Tillage        | Soil depth<br>(ന്ന) | Replicate                     |                                                     | CO2 evolved                   |
|----------|------|----------------|---------------------|-------------------------------|-----------------------------------------------------|-------------------------------|
| 8/28/9   | 3    | No-Till        | 0-1 cm              | 1<br>2<br>3<br>control        | (ml)<br>25. 452<br>36. 635<br>28. 71<br>10.824      | (%)<br>4.607<br>8.13<br>5.634 |
|          |      | No-Till        | 1-5 cm              | 1<br>2<br>3<br><b>control</b> | 19.603<br><b>18.963</b><br>14.01<br><b>7.141</b>    | 3. 925<br>3. 723<br>2. 163    |
|          |      | No-Till        | 5-12.5 cm           | 1<br>2<br>3<br>control        | <b>26. 149</b><br><b>20. 533</b><br>28.919<br>9.685 | 5. 185<br>3. 416<br>6. 058    |
|          |      | No-Till        | 12.5-20cm           | 1<br>2<br>3<br>control        | 21. 86<br>24. 353<br>20. 845<br>9.2909              | 3. 965<br>4. 744<br>3. 639    |
|          |      | Moldboard Plow | o-l an              | 1<br>2<br>3<br>control        | 22. 087<br>27. 51<br>2.725<br>8. 028                | 5. 056<br>6. 766<br>6. 664    |
|          |      | Moldboard Plow | 1-5 <b>cm</b>       | 1<br>2<br>3<br>control        | 31. 179<br>37. 646<br>28. 323<br>8. 473             | 7. 152<br>9. 189<br>6. 252    |
|          |      | Moldboard Plow | 5-12.5 cm           | 1<br>2<br>3<br>control        | 22. 137<br>21. 103<br>24. 361<br>9. 223             | 4. 067<br>3. 742<br>4. 774    |
|          |      | Moldboard Plow | 12.5-20cm           | 1<br>2<br>3<br>control        | 29. 74<br>30. 325<br>27. 146<br>13.638              | 5. 072<br>5.256<br>4. 255     |

Table A. CO2 evolution from no-till and moldboard plowed soils amended with peanut residue.

Table A. Continued.

I

niko : Anna ili (alak

.

| Sampling Date | Tillage        | Soil depth<br>(cm) | Replicate  | Volume HCI<br>(ml) | CO2 evolved<br>(%) |
|---------------|----------------|--------------------|------------|--------------------|--------------------|
| 9/01/93       | No-Till        | 0-1 cm             | 1          | 111.47             | 18.437             |
| 0,01.00       |                | 0-1 011            | 2          | 68.532             | 18.863             |
|               |                |                    | 23         | 101.6              | 18.131             |
|               |                |                    | control    | 9.029              | 10, 101            |
|               |                |                    | 00111101   | 0.020              |                    |
|               | No-Till        | 1-5 cm             | 1          | 29.016             | 6. 458             |
|               |                |                    | 2          | 29.383             | 6.306              |
|               |                |                    | 3          | 32.517             | 5.169              |
|               |                |                    | control    | 10252              | 01200              |
|               |                |                    |            |                    |                    |
|               | No-Till        | 5-12.5 ur          | 1 <b>1</b> | 32248              | 8.368              |
|               |                |                    | 2          | 39.701             | 7.625              |
|               |                |                    | 3          | 32.639             | 9.313              |
|               |                |                    | control    | 8.528              |                    |
|               |                |                    |            |                    |                    |
|               | No-Till        | 12.5-20cm          | 1          | 29.922             | 6.697              |
|               |                |                    | 2          | 30.288             | 7.525              |
|               |                |                    | 3          | 26.12              | 5.858              |
|               |                |                    | control    | 9.6649             |                    |
|               |                |                    |            |                    |                    |
|               |                | • •                |            |                    |                    |
|               | Moldboard Plow | 0-1 cm             | 1          | 26.631             | 7.844              |
|               |                |                    | 2          | 16.971             | 8.248              |
|               |                |                    | 3          | 22.38              | 8.894              |
|               |                |                    | control    | 5.993              |                    |
|               | Moldboard Plow | l-5 cm             | 1          | 15. 539            | 0.057              |
|               | Woluboalu 110w | 1-5 CM             | 2          | 23252              | 8.357<br>11.436    |
|               |                |                    | 2          | 23232<br>16.974    | 7.922              |
|               |                |                    | control    | <b>6.606</b>       | 1.366              |
|               |                |                    | Control    | 0.000              |                    |
|               | Moldboard Plow | 5-12.5 cm          | 1          | 43.858             | 8.917              |
|               |                | • • • • • • • • •  | 2          | 48.578             | 9228               |
|               |                |                    | 3          | 41.093             | 9.25               |
|               |                |                    | control    | 7.935              |                    |
|               |                |                    |            |                    |                    |
|               | Moldboard Ple  | w 12.5-20c         | <b>m</b> 1 | 32.815             | 8. 439             |
|               |                |                    | 2          | 29.983             | 8.241              |
|               |                |                    | 3          | 26.839             | 6.816              |
|               |                |                    | control    | 7. <b>8</b> 7      |                    |
|               |                |                    |            |                    |                    |

#### Table A. Continued.

| Sampling <b>Date</b> | Tillage        |                    | Replicate              | Volume HCI                                      |                                            |
|----------------------|----------------|--------------------|------------------------|-------------------------------------------------|--------------------------------------------|
| 9/08/93              | No-Till        | (cm)<br>o-1 cm     | 1<br>2<br>3<br>control | (ml)<br>116. 3<br>130. 25<br>132. 51<br>19. 534 | (%)<br>31.5<br>33.81<br>33.382             |
|                      | No-Till        | 1-5 cm             | 1<br>2<br>3<br>control | 36. 415<br>35.748<br>34. 35<br>19. 487          | 8. 743<br>8. 501<br>7. 175                 |
|                      | No-1-111       | 5-12.5 cm          | 1<br>2<br>3<br>control | 32. 303<br>34. 48<br>26.754<br>7. 974           | 11. 872<br>112<br>11. 848                  |
|                      | No-Till        | 12.5-20cm          | 1<br>2<br>3<br>control | 25. 277<br>13. 442<br>28. 362<br>8. 259         | 8. 994<br>8. 225<br>8. 572                 |
|                      | Moldboard Plow | o-1 cm             | 1<br>2<br>3<br>control | 35. 363<br>35. 983<br>37. 409<br>8. 176         | 11. 514<br>12. 002<br>12. 841              |
|                      | Moldboard Flow | l-5 cm             | 1<br>2<br>3<br>control | 43. 263<br>32. 929<br>382 39<br>19. 956         | 11. 504<br>13. 188<br>10. 39               |
|                      | Moldboard Plow | 5-12.5 cm          | 1<br>2<br>3<br>control | 101. 757<br>104. 13<br>113. 12<br>23. 631       | 19. 464<br>20.096<br>21.331                |
|                      | Moldboard Plow | 12. <b>5-2</b> 0cm | 1<br>2<br>3<br>control | 95. 9<br>98. 57<br>88. 987<br>24. 483           | 18. <b>083</b><br>1 <b>8248</b><br>15. 527 |

Table A. Continued.

| Sampling Date<br>9/22/93 | Tillage<br>No-Till         | Soildepth<br>(cm)<br>o-1 cm | Replicate<br>1<br>2<br>3<br>control | Volume HCI<br>(ml)<br>88.465<br>94.14<br>92.137<br>20.94 | CO2 evolved<br>(%)<br>36. 862<br>43. 692<br>42. 994 |
|--------------------------|----------------------------|-----------------------------|-------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
|                          | No-Till                    | 1-5 cm                      | 1<br>2<br>3<br>control              | 34. 915<br>39. 983<br>32. 714<br>20. 902                 | 10. 635<br>11.077<br>8. 77                          |
|                          | No-Till                    | S-12.5 cm                   | 1<br>4<br>controi                   | 17. 145<br>16. 13<br>19. 003<br>a 2 7 4                  | 12. 87<br>12. 261<br>13. 297                        |
|                          | No-Till                    | 12.5-20cm                   | 1<br>2<br>3<br>control              | 21. 814<br>17. 51<br>22. 632<br>11. 831                  | 10. 342<br>8. 992<br>10.057                         |
|                          | Moldboard Plow             | o-I cm                      | 1<br>2<br>3<br>control              | 26.005<br>30.43<br>3429<br>10. 198                       | 13. 648<br>14. 733<br>16. 093                       |
|                          | Moldboard Plow             | 1-5 cm                      | 1<br>2<br>3<br>control              | 17. 121<br>12.82<br>14274<br>8. 455                      | 12. 674<br>13. 777<br>11. 175                       |
|                          | Moldboard Plow             | 5-12.5 an                   | 1<br>2<br>3<br>control              | 87. 143<br>95. 016<br>96. 121<br>11. 377                 | 29. 692<br>31. 387<br>32. 772                       |
|                          | Moldboard Plo <del>w</del> | 12.5-20cm                   | 1<br>2<br>3<br>control              | 93. 507<br>86. 175<br>84. 728<br>12.303                  | 29.048<br><b>28.218</b><br><b>25.304</b>            |

| Sampling Date | Tillage         | Soil <b>depth</b><br>(cm) | Replicate |                  | CO2 evolved        |
|---------------|-----------------|---------------------------|-----------|------------------|--------------------|
| 101201'93     | No-Till         | 0-1 cm                    | 1         | (ml)<br>81. 543  | (%)                |
| 101201 00     | 10-1111         | 0-1 011                   | 2         | 79. 698          | 48. 005<br>51. 29  |
|               |                 |                           | 23        | <b>85. 312</b>   | <b>44. 854</b>     |
|               |                 |                           | control   | 92705            | 44. 0J4            |
|               |                 |                           | Control   | 36703            |                    |
|               | No-Till         | 1-5 cm                    | 1         | 67.18            | 18.621             |
|               |                 |                           | 2         | 58.076           | 17.836             |
|               |                 |                           | 3         | 62.668           | 18.651             |
|               |                 |                           | control   | 8.006            |                    |
|               | No-Till         | 5-18BREN                  | DIX       | 21. 183          | 14. 727            |
|               |                 |                           | 2         | 14.176           | <b>34. 871</b>     |
|               |                 |                           | 3         | 23. 298          | 15.44              |
|               |                 |                           | control   | 7.42             |                    |
|               | No-Till         | 12.5-20cm                 | 1         | <b>28.</b> 31    | 13.005             |
|               |                 |                           | 2         | 22.205           | 10.831             |
|               |                 |                           | 3         | 30. 167          | 11. 623            |
|               |                 |                           | control   | 8. 584           |                    |
|               |                 |                           |           |                  |                    |
|               | Moldboard Plow  | o-l cm                    | 1         | 13299            | 9. 925             |
|               |                 |                           | 2         | 16. 321          | 15.93              |
|               |                 |                           | 3         | 20278            | 17.623             |
|               |                 |                           | control   | 7.456            |                    |
|               | Moldboard Plow  | 1-5 cm                    | 1         | 13. 626          | <b>13. 538</b>     |
|               | ·····           | , o an                    | 2         | 16. 31           | 15.002             |
|               |                 |                           | 3         | 1525             | 12. 258            |
|               |                 |                           | control   | 7. 231           |                    |
|               | Moldboard Plow  | 5.12 5 cm                 | 1         | 19 051           | 30. 494            |
|               | MURUUUAIG FIUW  | J-12.J UII                | 2         | 13.951<br>16.449 | 30. 494<br>32. 526 |
|               |                 |                           | 2<br>3    | 18.322           | 32. 320<br>34. 104 |
|               |                 |                           | control   | 8. 012           | J4, 1V4            |
|               |                 |                           | WHU VI    | 0, VI <i>4</i>   |                    |
|               | Mol dboard Plow | 12.5-20cm                 | 1         | <b>59. 783</b>   | 35.891             |
|               |                 |                           | 2         | 62.742           | 35.463             |
|               |                 |                           | 3         | 64.044           | 32. 725            |
|               |                 |                           | control   | 9.076            |                    |
|               |                 |                           |           |                  |                    |

,

#### Table A. Continued.

| Sampling Date | Tillage        | Soildepth<br>(cm) | Replicate | Volume HC!<br>(ml)        | CO2 evolved<br>(%) |
|---------------|----------------|-------------------|-----------|---------------------------|--------------------|
| 11117'193     | No-Tilt        | 0-1 CM            | 1         | 118.98                    | 45. 678            |
|               |                |                   | 2         | 113.1                     | 51.346             |
|               |                |                   | 3         | 116. 41                   | 54.506             |
|               |                |                   | control   | 10. 5261                  |                    |
|               | No-Till        | 1-5 cm            | 1         | 138.69                    | 25. 361            |
|               |                |                   | 2         | 13329                     | 18. 554            |
|               |                |                   | 3         | 124.69                    | 25. 385            |
|               |                |                   | control   | 12.9856                   |                    |
|               | No-Till        | s-12.5 cfn        | 1         | 114.08                    | 21. 998            |
|               |                |                   | 2         | 113. 74                   | 23.856             |
|               |                |                   | 3         | 118.83                    | 28.489             |
|               |                |                   | control   | 12. 5632                  |                    |
|               | No-Till        | 12.5-20cm         | 1         | 10272                     | 24. 951            |
|               |                |                   | 2         | 92.911                    | 16.885             |
|               |                |                   | 3         | 105. 71                   | 25. 304            |
|               |                |                   | control   | 12. <b>88</b> 47          |                    |
|               | Moldboard Plow | 0-1 CM            | 1         | 105 78                    | 1 a. 933           |
|               | MUNDUALU PIOW  | 0-1 (41)          | 1<br>2    | 105. <b>76</b><br>127. 39 | 15.884             |
|               |                |                   | 2<br>3    | 127. 39                   | 15. 884<br>17. 083 |
|               |                |                   | control   |                           | 17.085             |
|               |                |                   | CONTROL   | 11. 4571                  |                    |
|               | Moldboard Plow | 1-5 cm            | 1         | 146. 73                   | 18.447             |
|               |                |                   | 2         | 159.03                    | 20.118             |
|               |                |                   | 3         | 14218                     | <b>24. 825</b>     |
|               |                |                   | control   | 12.0564                   |                    |
|               | Moldboard Plow | 5-12.5 an         | 1         | 155. 3                    | 38. 4552           |
|               |                |                   | 2         | 14923                     | 40.584             |
|               |                |                   | 3         | 122.83                    | 35. 59             |
|               |                |                   | control   | 10. 5238                  |                    |
|               | Moldboard Plow | 12.5-20cm         | 1         | 138.16                    | 34. 623            |
|               |                |                   | 2         | 133. 10                   | 31. 412            |
|               |                |                   | 3         | 145.24                    | 35.959             |
|               |                |                   | control   | 92351                     |                    |
|               |                |                   |           |                           |                    |

| 01/07/94         DLP-5690         Aboveground         1         36,802         8,816           2         36,147         8,609         3         39,838         16,072           control         8,814          8,814            Root         1         35,465         8,996            2         37,274         9,585         3         29,647         7,163           control         6,906           42,898         11,081           2         34,413         11,526         3         36,44         9,047           control         6,906           2         11,208         1,664           2         19,712         4,343         3         13,954         2,529           control         5,924              HS-46         Aboveground         1         30,417         8,04           2         32,489         8,692         3         34,084         9,195           control         5,924            2         30,111         7,331           3         32,638         8,147 </th                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         36.147         8.609           3         39.838         16.072           control         8.814           Root         1         35.465         8.996           2         37.274         9.585         3         29.647         7.163           control         6.906         2         37.274         9.585         3         29.647         7.163           control         6.906         1         42.898         11.081         2         44.31         11.526           3         36.44         9.047         control         7.718         3         36.44         9.047           Root         1         11.208         1.664         2         19.712         4.343           3         13.954         2.529         control         5.924         1         3           HS-46         Aboveground         1         30.417         8.04         2         32.489         8.692           3         34.084         9.195         control         4.892         3         31.594         1.33.16           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved         (ml)         (%)                                                                                  |
| 3         39.838         16.072           control         8.814           Root         1         35.465         8.996           2         37.274         9.585         3         29.647         7.183           control         6.906         1         42.898         11.081         2         44.31         11.526           3         36.44         9.047         7.183         control         7.718         6.644           2         44.31         11.526         3         36.44         9.047           3         13.954         2.529         control         7.718           Root         1         11.208         1.664         2         19.712         4.343           3         31.954         2.529         control         5.924         3         34.084         9.195           control         1         31.916         7.92         2         30.111         7.351           3         32.638         8.147         .001/1         7.351         3         32.638         8.147           01/11/.94         DLP-5690         Aboveground         1         47.774         13.878           2         42.52                                                                                                       |
| Control         8.814           Root         1         35.465         8.996           2         37.274         9.585         3           3         29.647         7.163           control         6.906         1         42.898           1         9.647         7.163           control         6.906         1         11.526           3         36.44         9.047           2         44.31         11.526           3         36.44         9.047           control         7.718           Root         1         11.208         1.664           2         19.712         4.343         3           3         13.954         2.529         control           control         5.924         1         3         3.4084         9.195           control         2         30.111         7.351         3         3         3.2.638         8.147           control         4.892         3         3.1916         7.92         3         3         3.2.638         8.147           control         4.892         1         3         3.2.638         8.147         control                                                                                                                                                   |
| Root         1         35.465         8.996           2         37.274         9.585           3         29.647         7.163           control         6.906         1           1         42.898         11.081           2         44.31         11.526           3         36.44         9.047           2         44.31         11.526           3         36.44         9.047           2         19.712         4.343           3         36.44         9.047           control         7.718         600           1         11.208         1.664           2         19.712         4.343           3         13.954         2.529           control         5.924         1           3         32.489         8.692           3         34.084         9.195           control         4.892         1           3         32.489         8.692           3         34.084         9.195           control         4.892         1           1         3.916         7.92           2         30.111                                                                                                                                                                                                                      |
| DP-5215         Aboveground         2         37. 274         9.585           3         29.647         7.163         control         6.906           1         42.898         11.081         2         44.31         11.526           3         36.44         9.047         control         7.718         3         36.44         9.047           control         7.718         7.163         3         36.44         9.047           control         7.718         7.163         3         36.44         9.047           control         7.718         2         19.712         4.343         3         3         3.954         2.529           control         5.924         1         30.417         8.04         2         3         34.084         9.195           control         5.924         1         31.916         7.92         2         30.111         7.351         3         32.638         8.147           control         6.771         2         30.111         7.351         3         32.638         8.147           control         01/11.94         DLP-5690         Aboveground         1         47.774         13.878           2<                                                                         |
| DP-5215         Aboveground         i         42.898         11.081           2         44.31         11.526         3         36.44         9.047           3         36.44         9.047         control         7.718           Root         1         11.208         1.664           2         19.712         4.343         3           3         13.954         2.529         control         5.924           Broot         1         30.417         8.04         2           2         34.084         9.195         control         5.924           3         34.084         9.195         control         4.892           8.041         2         30.111         7.351         3           3         32.638         8.147         control         6.771           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved           (m)         (%)         1         47.774         13.878           2         42.452         12.199         3         42.117           3         32.527         6.094         3         31.598         8.637           control         1                                                                                                            |
| DP-5215         Aboveground         1         42.898         11.081           2         44.31         11.526         3         36.44         9.047           control         7.718         -         -         control         7.718           Root         1         11.208         1.664         2         19.712         4.343           3         13.954         2.529         -         control         5.924         -           HS-46         Aboveground         1         30.417         8.04         2         32.489         8.692           3         34.084         9.195         -         control         5.924         -           HS-46         Aboveground         1         30.417         8.04         2         32.489         8.692           3         34.084         9.195         control         4.892         -         -           Root         1         31.916         7.92         2         30.111         7.351           3         32.638         8.147         -         control         6.771           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved         -                                                                                |
| 2         44.31         11.526           3         36.44         9.047           control         7.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sampling Date         Cultivar         Residue         3         36.44         9.047           N11         208         1.664         2         19.712         4.343         3         13.954         2.529           Control         1         30.417         8.04         2         32.489         8.692           3         34.084         9.195         2         32.489         8.692           3         34.084         9.195         control         4.892           Root         1         31.916         7.92         2           3         32.638         8.147         control         6.771           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved           (ml)         (%)         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           2         23.527         6.094         3         31.598         8.637           2 </th                                                                             |
| Root         1         11.208         1.664           2         19.712         4.343         3         13.954         2.529           3         13.954         2.529         control         5.924         1         30.417         8.04           2         32.489         8.692         3         34.084         9.195           control         1         31.916         7.92         2         30.111         7.351           3         32.638         8.147         control         4.692         1         31.916         7.92           2         30.111         7.351         3         32.638         8.147           control         4.692         1         7.718         1         7.92           2         30.111         7.351         3         32.638         8.147           control         6.771         Replicate         Volume HCI CO2 evolved         (ml)         (%)           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           3         31.598         8.637         control         3.7                                                                                 |
| Root         1         11.208         1.664           2         19.712         4.343         3           3         13.954         2.529         control         5.924           1         30.417         8.04         2         3         34.084         9.195           2         32.489         8.692         3         34.084         9.195         control         4.892           3         34.084         9.195         control         4.892         3         32.638         8.147           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved         (ml)         (%)           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           6         71         22.3527         6.094         3         31.598         8.637           2         23.853         8.934         3         41.5                                                                        |
| kit         2         19.712         4.343           3         13.954         2.529           control         5.924         1           1         30.417         8.04           2         32.489         8.692           3         34.084         9.195           control         4.892         3           3         34.084         9.195           control         4.892         3           3         34.084         9.195           control         4.892         3           3         34.084         9.195           control         6.771         7.92           2         30.111         7.351           3         32.638         8.147           control         6.771         6.771           Sampling Date         Cultivar         Residue         Replicate         Volume HCl CO2 evolved           (ml)         (%)         1         47.774         13.878           2         42.452         12.199         3         42.117           3         31.598         8.637         control         3.722           Root         1         27.52.7         6.094                                                                                                                                                          |
| HS-46         Aboveground         3         13.954         2.529           HS-46         Aboveground         1         30.417         8.04           2         32.489         8.692         3         34.084         9.195           3         34.084         9.195         control         4.692         1         31.916         7.92           2         30.111         7.351         3         32.638         8.147           5         Control         6.771         Control         6.771           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved           (ml)         01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           2         23.527         6.094         3         31.598         8.637           2         23.527         6.094         3         31.598         8.637      <                                                                    |
| HS-46         Aboveground         1         30.417         8.04           2         32.489         8.692         3         34.084         9.195           3         34.084         9.195         control         4.892         7           8         0.11         7.32         2         30.111         7.351         3         32.638         8.147           5         0.1/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           6001         1         22.112         5.649         2         23.527         6.094           3         31.598         8.637         5.489         3         31.598         8.637           001/11         9.992         2         33.853         8.934         3         41.594         11.373                                                                                                                                                                                         |
| HS-46       Aboveground       1       30.417       8.04         2       32.489       8.692         3       34.084       9.195         control       4.892         Root       1       31.916       7.92         2       30.111       7.351         3       32.638       8.147         control       6.771       Volume HCI CO2 evolved         (ml)       (%)       (ml)       (%)         01/11/94       DLP-5690       Aboveground       1       47.774       13.878         2       42.452       12.199       3       42.117       12.094         control       3.722       1       2.094       2       23.527       6.094         3       31.598       8.637       2       23.527       6.094       3       31.598       8.637         control       1       37213       9.992       2       33.853       8.934       3       41.594       11.373         control       1       37213       9.992       2       33.853       8.934       3       41.594       11.373                                                                                                                                                                                                                                                              |
| 2         32.489         8.692           3         34.084         9.195           control         4.892           Root         1         31.916         7.92           2         30.111         7.351         3         32.638         8.147           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved           01/11/94         DLP-5890         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           Control         3.722         7         6.094         3         31.598         8.637           Control         1         22.112         5.649         2         23.527         6.094           3         31.598         8.637         control         4.177         1           DP- 5215         Aboveground         1         37213         9.992         2         33.853         8.934         3         41.594         11.373           Control         5.489         11.373         5.489         11.373         11.373                                                                                                                                                      |
| Root         control         4.892           1         31.916         7.92           2         30.111         7.351           3         32.638         8.147           control         6.771           Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           01/11/94         DLP-5690         Aboveground         1         27.12         5.649           2         42.452         12.199         3         42.117         12.094           control         3.722         6.094         3         31.598         8.637           Control         3         31.598         8.637         6.094         3         31.598         8.637           control         1         37213         9.992         2         33.853         8.934           3         41.594         11.373         6.0171         1.373         6.0171                                                                                                                                                                     |
| Root         1         31.916         7.92         2         30.111         7.351         3         32.638         8.147         6.771           Sampling Date         Cultivar         Residue         Residue         Control         6.771         6.771           01/11/94         DLP-5690         Aboveground         1         47.774         13.878         2         42.452         12.199           3         42.117         12.094         2         3.527         6.094         3         31.598         8.637           Control         1         22.112         5.649         2         23.527         6.094         3         31.598         8.637           DP- 5215         Aboveground         1         37213         9.992         2         33.853         8.934         3         41.594         11.373           Control         3         41.594         11.373         5.489         11.373         11.373                                                                                                                                                                                                                                                                                                  |
| 2         30.111         7.351           Sampling Date         Cultivar         Residue         Control<br>Replicate         6.771           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           Control         3         31.598         8.637           Control         1         22.112         5.649           2         23.527         6.094           3         31.598         8.637           Control         3         31.598           3         31.598         8.637           Control         1         37213           9.992         2         33.853           3         41.594         11.373           Control         5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sampling Date         Cultivar         Residue         3         32.638         8.147           Sampling Date         Cultivar         Residue         Control<br>Replicate         6.771         Volume HCI CO2 evolved           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           3         42.117         12.094         control         3.722           Root         1         22.112         5.649           2         23.527         6.094           3         31.598         8.637           control         3.7213         9.992           2         33.853         8.934           3         41.594         11.373           control         3         41.594                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sampling Date         Cultivar         Residue         control<br>Replicate         6. 771<br>Volume HCI CO2 evolved<br>(ml)           01/11/94         DLP-5690         Aboveground         1         47. 774         13. 878           2         42. 452         12. 199         3         42. 117         12.094           3         42. 117         12.094         control         3. 722           Root         1         22. 112         5. 649           2         23. 527         6.094           3         31. 598         8. 637           control         1         37213         9. 992           2         33.853         8. 934           3         41. 594         11. 373           control         5.489         11. 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sampling Date         Cultivar         Residue         Replicate         Volume HCI CO2 evolved<br>(ml)         (%)           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           3         42.117         12.094         control         3.722         2         23.527         6.094           3         31.598         8.637         control         3         31.598         8.637           DP- 5215         Aboveground         1         37213         9.992         2         33.853         8.934         3         41.594         11.373         control         1.373         control         5.489         2         3.853         8.934         3         41.594         11.373         2         3.41.594         11.373         2         3.41.594         11.373         2         3.489         3         41.594         3.722         3         3         41.594         3.722         3         3.653         8.934         3         41.594         3         3         3         3         3         41.594         11.373         3         41.594         11.373         3 </th |
| (ml)         (%)           01/11/94         DLP-5690         Aboveground         1         47.774         13.878           2         42.452         12.199         3         42.117         12.094           2         control         3.722         3         1         25.649           2         23.527         6.094         3         31.598         8.637           2         23.527         6.094         3         31.598         8.637           2         23.523         6.094         3         31.598         8.637           2         23.853         8.934         3         41.374         13.373           0P-5215         Aboveground         1         37213         9.992         2         33.853         8.934         3         41.594         11.373         control         5.489         11.373         5.489         11.373         5.489         11.373         5.489         11.373         5.489         11.373         5.489         11.373         5.489         11.373         11.373         11.373         11.373         11.373         11.373         11.373         11.373         11.373         11.373         11.373         11.373         11.373                                           |
| 01/11/94 DLP-5690 Aboveground 1 47.774 13.878<br>2 42.452 12.199<br>3 42.117 12.094<br>control 3.722<br>Root 1 22.112 5.649<br>2 23.527 6.094<br>3 31.598 8.637<br>control 4.177<br>DP-5215 Aboveground 1 37213 9.992<br>2 33.853 8.934<br>3 41.594 11.373<br>control 5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 42.452 12.199<br>3 42.117 12.094<br>control 3.722<br>Root 1 22.112 5.649<br>2 23.527 6.094<br>3 31.598 8.637<br>control 4.177<br>DP-5215 Aboveground 1 37213 9.992<br>2 33.853 8.934<br>3 41.594 11.373<br>control 5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| control         3.722           Root         1         22.112         5.649           2         23.527         6.094           3         31.598         8.637           control         4.177         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Root         1         22.112         5.649           2         23.527         6.094           3         31.598         8.637           control         4.177           DP-5215         Aboveground         1         37213         9.992           2         33.853         8.934         3         41.594         11.373           control         5.489         5.489         5.499         5.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2 23.527 6.094<br>3 31.598 8.637<br>control 4.177<br>DP-5215 Aboveground 1 37213 9.992<br>2 33.853 8.934<br>3 41.594 11.373<br>control 5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3       31.598       8.637         control       4.177         DP-5215       Aboveground       1       37213       9.992         2       33.853       8.934         3       41.594       11.373         control       5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Control 4.177<br>DP-5215 Aboveground 1 37213 9.992<br>2 33.853 8.934<br>3 41.594 11.373<br>Control 5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DP-5215         Aboveground         1         37213         9.992           2         33.853         8.934         3         41.594         11.373           control         5.489         5.489         5.489         5.489         5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 33.853 8.934<br>3 41.594 11.373<br>control 5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 41.594 11.373<br>control 5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| control 5.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Root 1 14.836 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>2 10. 527 3. 282</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 14.19 2.548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| control 6.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HS-46 Aboveground 1 35.986 9.806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>2 41.309</b> 11.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>2 41.309</b> 11.483<br><b>3 37.654 10.331</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 41.309 11.483<br>3 37.654 10.331<br>control 4.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2       41.309       11.483         3       37.654       10.331         control       4.854         Root       1       43.354       11.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2       41.309       11.483         3       37.654       10.331         control       4.854         Root       1       43.354       11.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table B. CO2 evolution from soit amended with cotton residues.

#### Replicale Volume HCI CO2 evolved Sampling Date Cullivar Residue (%) (ml) 12.382 01/18/94 **OLP-5690** Aboveground 45.272 1 II .423 2 42.227 3 45.224 9. 2174 control 5.862 Root 6.411 1 28.654 2 31275 7.174 3. 26.557 5.688 ٢ control 8.499 **OP- 5215** Aboveground 36.638 8.675 1 37.826 2 9.05 3 42.816 10.622 ÷. ٤ control 9.094 Root 3.367 1 21.623 2 26.762 5.005 æ 3 6.912 32.816 control 10.87 HS-46 Aboveground 1 34.074 7.961 2 43.664 11.051 3 39.345 15.921 control 6.799 Root 39.803 8.892 1 2 45. 515 10.691 3 38. 588 5.359 control 11.573 Sampling Date Cultivar Residue Replicate Volume HCI CO2 evolved (ml) (%) 02/01/94 **OLP-5690** Aboveground 1 54.596 14.643 2 39.725 9.959 3 46.41 12.065 control 8.106 Root 1 13.097 50.65 2 10.163 41. 599 3 10.044 41.159 control 927 **OP-5215** Aboveground 5.88 28.301 1 2 36.699 8. 525 3 35.295 8.063 control 9.633 Root 1 5.827 29.14 2 38.976 8.925 3 33.667 7253 control 10.641 HS-46 Aboveground 4. 981 1 36.741 2 35.502 7.091 3 48.061 10.417 control 12.99 7.821 Root 1 38.138 2 39.013 8.098 3 4.551 27.758 control 13.309

#### Table B. Conlinued

| Sampling Date             | Cultivar                | Residue                                                  | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    | CO2 evolved                                                                                                                                                                                                                                                                                                            |
|---------------------------|-------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ml)                                                                                                                                                                                                                                               | (%)                                                                                                                                                                                                                                                                                                                    |
| 03/01/94                  | DLP-5                   | 690 Aboveg                                               | round 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42.405                                                                                                                                                                                                                                             | 10. 299                                                                                                                                                                                                                                                                                                                |
|                           |                         |                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.942                                                                                                                                                                                                                                             | 8.893                                                                                                                                                                                                                                                                                                                  |
|                           |                         |                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.43                                                                                                                                                                                                                                              | 7.787                                                                                                                                                                                                                                                                                                                  |
|                           |                         |                                                          | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9. 709                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |
|                           |                         | Root                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.19                                                                                                                                                                                                                                              | 10.173                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.081                                                                                                                                                                                                                                             | 12.659                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.299                                                                                                                                                                                                                                             | 9. 262                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.893                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |
|                           | DP-5215                 | Aboveground                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30. 515                                                                                                                                                                                                                                            | 6.298                                                                                                                                                                                                                                                                                                                  |
|                           | D1 0210                 |                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.354                                                                                                                                                                                                                                             | 5. 933                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.208                                                                                                                                                                                                                                             | 6227                                                                                                                                                                                                                                                                                                                   |
|                           |                         |                                                          | kortnos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10. 519                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                      |
|                           |                         | Root                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.137                                                                                                                                                                                                                                             | <b>5.897</b>                                                                                                                                                                                                                                                                                                           |
|                           |                         | 11001                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.763                                                                                                                                                                                                                                             | 6. 724                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.492                                                                                                                                                                                                                                             | 7. 5 <b>84</b>                                                                                                                                                                                                                                                                                                         |
|                           |                         |                                                          | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.414                                                                                                                                                                                                                                             | 7.501                                                                                                                                                                                                                                                                                                                  |
|                           | HS-46                   | Aboveground                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                 | 1. 597                                                                                                                                                                                                                                                                                                                 |
|                           |                         | riber egi ealla                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24. 378                                                                                                                                                                                                                                            | 2. 976                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29. 349                                                                                                                                                                                                                                            | 7. 691                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14. 93                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |
|                           |                         | Root                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42. 395                                                                                                                                                                                                                                            | 9. 233                                                                                                                                                                                                                                                                                                                 |
|                           |                         | 1000                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.148                                                                                                                                                                                                                                             | 6. 006                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41. 523                                                                                                                                                                                                                                            | 8. 959                                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.081                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |
|                           |                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.001                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |
| Sampling Date             | Cultivar                | Residue                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                    | CO2 evolved                                                                                                                                                                                                                                                                                                            |
| Sampling Date             | Cultivar                | Residue                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCI                                                                                                                                                                                                                                         | CO2 evolved                                                                                                                                                                                                                                                                                                            |
|                           |                         |                                                          | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume HCI<br>(m/)                                                                                                                                                                                                                                 | (%)                                                                                                                                                                                                                                                                                                                    |
| Sampling Date<br>03/29/94 | Cultivar<br>' D L P - 5 |                                                          | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume HCI<br>(ml)<br>20.388                                                                                                                                                                                                                       | (%)<br>4. 455                                                                                                                                                                                                                                                                                                          |
|                           |                         |                                                          | Replicate V<br>pround 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume HCl<br>(ml)<br>20.388<br>22.722                                                                                                                                                                                                             | (%)<br>4. 455<br>5. 19                                                                                                                                                                                                                                                                                                 |
|                           |                         |                                                          | Replicate<br>round 1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Volume</b> HCl<br>(ml)<br>20.388<br>22.722<br>25.546                                                                                                                                                                                            | (%)<br>4. 455                                                                                                                                                                                                                                                                                                          |
|                           |                         | 690 Aboveç                                               | Replicate<br>pround 1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Vol ume</b> HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244                                                                                                                                                                                  | (%)<br>4. 455<br>5. 19<br>6. 079                                                                                                                                                                                                                                                                                       |
|                           |                         |                                                          | Replicate<br>round 1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Vol une</b> HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828                                                                                                                                                                          | (%)<br>4.455<br>5.19<br>6.079<br>6.004                                                                                                                                                                                                                                                                                 |
|                           |                         | 690 Aboveç                                               | Replicate<br>pround 1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Vol une</b> HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041                                                                                                                                                                | (%)<br>4.455<br>5.19<br>6.079<br>6.004<br>7.819                                                                                                                                                                                                                                                                        |
|                           |                         | 690 Aboveç                                               | Replicate<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Vol une</b> HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153                                                                                                                                                      | (%)<br>4.455<br>5.19<br>6.079<br>6.004                                                                                                                                                                                                                                                                                 |
|                           | ' D L P - 5             | 690 Aboveç<br>Root                                       | Replicate<br>round 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Vol une</b> HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218                                                                                                                                             | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33                                                                                                                                                                                                                                                           |
|                           |                         | 690 Aboveç                                               | Replicate<br>round 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Vol une</b> HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312                                                                                                                                   | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023                                                                                                                                                                                                                                                 |
|                           | ' D L P - 5             | 690 Aboveç<br>Root                                       | Replicate<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553                                                                                                                                 | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023<br>4. 414                                                                                                                                                                                                                                       |
|                           | ' D L P - 5             | 690 Aboveç<br>Root                                       | Replicate v<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volume HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714                                                                                                                       | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023                                                                                                                                                                                                                                                 |
|                           | ' D L P - 5             | 690 Aboveg<br>Root<br>Aboveground                        | Replicate<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vol une HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54                                                                                                              | (%)<br>4. 455<br>5. 19<br>6. 079<br>6. 004<br>7. 819<br>5. 33<br>4. 023<br>4. 414<br>8.099                                                                                                                                                                                                                             |
|                           | ' D L P - 5             | 690 Aboveç<br>Root                                       | Replicate V<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vol une HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377                                                                                                    | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023<br>4. 414<br>8.099<br>4. 106                                                                                                                                                                                                                    |
|                           | ' D L P - 5             | 690 Aboveg<br>Root<br>Aboveground                        | Replicate v<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Vol ume</b> HCl<br>(mJ)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433                                                                                   | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023<br>4. 023<br>4. 414<br>8.099<br>4. 106<br>6. 724                                                                                                                                                                                                |
|                           | ' D L P - 5             | 690 Aboveg<br>Root<br>Aboveground                        | Replicate v<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>2<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>2<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>2<br>control<br>3<br>control<br>3<br>control<br>2<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>2<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>2<br>contr | Vol une HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074                                                                                | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023<br>4. 414<br>8.099<br>4. 106                                                                                                                                                                                                                    |
|                           | 'DLP-5<br>DP-5215       | 690 Aboveg<br>Root<br>Aboveground<br>Root                | Replicate<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074<br>13.085                                                                       | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023<br>4. 023<br>4. 414<br>8.099<br>4. 106<br>6. 724<br>1. 571                                                                                                                                                                                      |
|                           | ' D L P - 5             | 690 Aboveg<br>Root<br>Aboveground                        | Replicate V<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>1<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vol une HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074                                                                                | (%)<br>4. 455<br>5. 19<br>6. 079<br>6.004<br>7. 819<br>5. 33<br>4. 023<br>4. 023<br>4. 414<br>8.099<br>4. 106<br>6. 724                                                                                                                                                                                                |
|                           | 'DLP-5<br>DP-5215       | 690 Aboveg<br>Root<br>Aboveground<br>Root                | Replicate<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074<br>13.085<br>23.304                                                             | (%)<br>4. 455<br>5. 19<br>6. 079<br>6. 004<br>7. 819<br>5. 33<br>4. 023<br>4. 023<br>4. 414<br>8. 099<br>4. 106<br>6. 724<br>1. 571<br>3. 802                                                                                                                                                                          |
|                           | 'DLP-5<br>DP-5215       | 690 Aboveg<br>Root<br>Aboveground<br>Root                | Replicate V<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074<br>13.085<br>23.304<br>23.618                                                   | (%)<br>4. 455<br>5. 19<br>6. 079<br>6. 004<br>7. 819<br>5. 33<br>4. 023<br>4. 023<br>4. 414<br>8. 099<br>4. 106<br>6. 724<br>1. 571<br>3. 802<br>3. 901                                                                                                                                                                |
|                           | 'DLP-5<br>DP-5215       | 690 Aboveg<br>Root<br>Aboveground<br>Root                | Replicate V<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vol ume HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074<br>13.085<br>23.304<br>23.618<br>29.596<br>11233<br>29.388                     | <ul> <li>(%)</li> <li>4. 455</li> <li>5. 19</li> <li>6. 079</li> <li>6. 004</li> <li>7. 819</li> <li>5. 33</li> <li>4. 023</li> <li>4. 414</li> <li>8. 0999</li> <li>4. 106</li> <li>6. 724</li> <li>1. 571</li> <li>3. 802</li> <li>3. 901</li> <li>5. 784</li> <li>5. 185</li> </ul>                                 |
|                           | 'DLP-5<br>DP-5215       | 690 Aboveg<br>Root<br>Aboveground<br>Root<br>Aboveground | Replicate v<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vol une HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074<br>13.085<br>23.304<br>23.618<br>29.596<br>11233<br>29.388<br>35.092           | <ul> <li>(%)</li> <li>4. 455</li> <li>5. 19</li> <li>6. 079</li> <li>6. 004</li> <li>7. 819</li> <li>5. 33</li> <li>4. 023</li> <li>4. 1023</li> <li>4. 414</li> <li>8. 099</li> <li>4. 106</li> <li>6. 724</li> <li>1. 571</li> <li>3. 802</li> <li>3. 901</li> <li>5. 784</li> <li>5. 185</li> <li>6. 981</li> </ul> |
|                           | 'DLP-5<br>DP-5215       | 690 Aboveg<br>Root<br>Aboveground<br>Root<br>Aboveground | Replicate v<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vol une HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074<br>13.085<br>23.304<br>23.618<br>29.596<br>11233<br>29.388<br>35.092<br>39.702 | <ul> <li>(%)</li> <li>4. 455</li> <li>5. 19</li> <li>6. 079</li> <li>6. 004</li> <li>7. 819</li> <li>5. 33</li> <li>4. 023</li> <li>4. 414</li> <li>8. 0999</li> <li>4. 106</li> <li>6. 724</li> <li>1. 571</li> <li>3. 802</li> <li>3. 901</li> <li>5. 784</li> <li>5. 185</li> </ul>                                 |
|                           | 'DLP-5<br>DP-5215       | 690 Aboveg<br>Root<br>Aboveground<br>Root<br>Aboveground | Replicate v<br>pround 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vol une HCl<br>(ml)<br>20.388<br>22.722<br>25.546<br>6.244<br>2828<br>34.041<br>26.153<br>9.218<br>21.312<br>22.553<br>25.714<br>8.54<br>26.377<br>34.433<br>28.074<br>13.085<br>23.304<br>23.618<br>29.596<br>11233<br>29.388<br>35.092           | (%)<br>4.455<br>5.19<br>6.079<br>6.004<br>7.819<br>5.33<br>4.023<br>4.023<br>4.414<br>8.099<br>4.106<br>6.724<br>1.571<br>3.802<br>3.901<br>5.784<br>5.185<br>6.981                                                                                                                                                    |

Table B. Continued

| Sampling Dat              | e Cultivar              | Residue                          | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCI                                                                                                                                                                                                                             | CO2 evolved                                                                                                                                                                                                                                                                      |
|---------------------------|-------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01/07/04                  |                         | 1 house mun                      | a 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ml)                                                                                                                                                                                                                                   | (%)                                                                                                                                                                                                                                                                              |
| 01/07/94                  | Florunner               | Abovegroun                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.688                                                                                                                                                                                                                                 | 16.744                                                                                                                                                                                                                                                                           |
|                           |                         |                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54. 927                                                                                                                                                                                                                                | 15.874                                                                                                                                                                                                                                                                           |
|                           |                         |                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63. 257                                                                                                                                                                                                                                | la. 496                                                                                                                                                                                                                                                                          |
|                           |                         | Boot                             | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4. 531                                                                                                                                                                                                                                 | 0 001                                                                                                                                                                                                                                                                            |
|                           |                         | Root                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23. 105                                                                                                                                                                                                                                | 6. 331                                                                                                                                                                                                                                                                           |
|                           |                         |                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.229                                                                                                                                                                                                                                 | 5. 74                                                                                                                                                                                                                                                                            |
|                           |                         |                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.802                                                                                                                                                                                                                                 | 5.291                                                                                                                                                                                                                                                                            |
|                           | NC 7                    | Abauaand                         | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.004                                                                                                                                                                                                                                  | 01 700                                                                                                                                                                                                                                                                           |
|                           | NC- 7                   | Abovegrd                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.344                                                                                                                                                                                                                                 | 21. 769                                                                                                                                                                                                                                                                          |
|                           |                         |                                  | 2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.194<br>59.837                                                                                                                                                                                                                       | 14.791                                                                                                                                                                                                                                                                           |
|                           |                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6236                                                                                                                                                                                                                                   | 16.884                                                                                                                                                                                                                                                                           |
|                           |                         | Root                             | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.321                                                                                                                                                                                                                                 | 4. 413                                                                                                                                                                                                                                                                           |
|                           |                         | KUUI                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.458                                                                                                                                                                                                                                 | 4. 413<br>6. 348                                                                                                                                                                                                                                                                 |
|                           |                         |                                  | 2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23. 3 <b>8</b> 9                                                                                                                                                                                                                       | 6. 348<br>5. 379                                                                                                                                                                                                                                                                 |
|                           |                         |                                  | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>6.31</b>                                                                                                                                                                                                                            | 3. 379                                                                                                                                                                                                                                                                           |
|                           | NC-11                   | Abovegrd                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64. 357                                                                                                                                                                                                                                | 18. 303                                                                                                                                                                                                                                                                          |
|                           | NC-TT                   | Abovegia                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>60.58</b>                                                                                                                                                                                                                           | 17. 113                                                                                                                                                                                                                                                                          |
|                           |                         |                                  | 2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.838                                                                                                                                                                                                                                 | 14. 045                                                                                                                                                                                                                                                                          |
|                           |                         |                                  | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.25                                                                                                                                                                                                                                   | 14.045                                                                                                                                                                                                                                                                           |
|                           |                         | Root                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 25<br>20. 765                                                                                                                                                                                                                       | 4.0484                                                                                                                                                                                                                                                                           |
|                           |                         | 11001                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.087                                                                                                                                                                                                                                 | 3204                                                                                                                                                                                                                                                                             |
|                           |                         |                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19. 426                                                                                                                                                                                                                                | 3. 626                                                                                                                                                                                                                                                                           |
|                           |                         |                                  | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7. 912                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                            |
|                           |                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |
| Sampling Date             | e Cultivar              | Residue                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        | CO2 evolved                                                                                                                                                                                                                                                                      |
| Sampling Date             | e Cultivar              | Residue                          | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCI                                                                                                                                                                                                                             | CO2 evolved                                                                                                                                                                                                                                                                      |
| Sampling Date<br>01/11/94 |                         | Residue<br>Abovegrd              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCI<br>(ml)                                                                                                                                                                                                                     | (%)                                                                                                                                                                                                                                                                              |
| · _                       | e Cultivar<br>Florunner |                                  | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Volume</b> HCI<br>(ml)<br>72.47                                                                                                                                                                                                     | ( <b>%</b> )<br>21. 416                                                                                                                                                                                                                                                          |
| · _                       |                         |                                  | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Volume</b> HC!<br>(ml)<br>72. 47<br>72. 078                                                                                                                                                                                         | (%)<br>21. 416<br>21.292                                                                                                                                                                                                                                                         |
| · _                       |                         |                                  | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Volume</b> HCI<br>(ml)<br>72.47                                                                                                                                                                                                     | ( <b>%</b> )<br>21. 416                                                                                                                                                                                                                                                          |
| · _                       |                         |                                  | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329                                                                                                                                                                                        | (%)<br>21. 416<br>21.292                                                                                                                                                                                                                                                         |
| · _                       |                         | Abovegrd                         | Replicate<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482                                                                                                                                                                               | (%)<br>21. 416<br>21.292<br>24.206                                                                                                                                                                                                                                               |
| · _                       |                         | Abovegrd                         | Replicate 1 2 3 control 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536                                                                                                                                                                     | (%)<br>21.416<br>21.292<br>24.206<br>5.283                                                                                                                                                                                                                                       |
| · _                       |                         | Abovegrd                         | Replicate 1 2 3 control 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76                                                                                                                                                            | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039                                                                                                                                                                                                                            |
| · _                       |                         | Abovegrd                         | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021                                                                                                                                                  | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039                                                                                                                                                                                                                            |
| · _                       | Florunner               | Abovegnd<br>Root                 | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762                                                                                                                                         | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491                                                                                                                                                                                                                  |
| · _                       | Florunner               | Abovegnd<br>Root                 | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439                                                                                                                               | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458                                                                                                                                                                                                        |
| · _                       | Florunner               | Abovegrd<br>Root<br>Abovegrd     | Replicate 1 2 3 control 1 2 3 control 1 2 3 control 1 2 3 control 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142                                                                                                  | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763                                                                                                                                                                                             |
| · _                       | Florunner               | Abovegnd<br>Root                 | Replicate 1 2 3 control 1 2 3 control 1 2 3 control 1 2 3 control 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818                                                                                        | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763                                                                                                                                                                                             |
| · _                       | Florunner               | Abovegrd<br>Root<br>Abovegrd     | Replicate 1 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05                                                                               | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763<br>20. 046<br>4. 078<br>1. 631                                                                                                                                                              |
| · _                       | Florunner               | Abovegrd<br>Root<br>Abovegrd     | Replicate 1 2 3 control 1 2 2 3 control 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934                                                                     | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763<br>20. 046<br>4. 078                                                                                                                                                                        |
| · _                       | Florunner<br>NC- 7      | Abovegrd<br>Root<br>Root         | Replicate 1 2 3 control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871                                                            | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763<br>20. 046<br>4. 078<br>1. 631<br>2.854                                                                                                                                                     |
| · _                       | Florunner               | Abovegrd<br>Root<br>Abovegrd     | Replicate 1 2 3 control 1 2 3 control 1 2 3 control 1 2 3 control 1 1 2 3 control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871<br>78.608                                                  | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763<br>20. 046<br>4. 078<br>1. 631<br>2.854<br>23. 048                                                                                                                                          |
| · _                       | Florunner<br>NC- 7      | Abovegrd<br>Root<br>Root         | Replicate 1 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871<br>78.608<br>77.964                                        | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5.039<br>4. 491<br>22.458<br>22. 763<br>20.046<br>4.078<br>1.631<br>2.854<br>23.048<br>22.846                                                                                                                                     |
| · _                       | Florunner<br>NC- 7      | Abovegrd<br>Root<br>Root         | Replicate 1 2 3 control 1 2 2 3 control 2 co | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871<br>78.608<br>77.964<br>82.152                              | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763<br>20. 046<br>4. 078<br>1. 631<br>2.854<br>23. 048                                                                                                                                          |
| · _                       | Florunner<br>NC- 7      | Abovegrd<br>Root<br>Root<br>Root | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871<br>78.608<br>77.964<br>82.152<br>5.438                     | <ul> <li>(%)</li> <li>21. 416</li> <li>21.292</li> <li>24.206</li> <li>5.283</li> <li>5.039</li> <li>4.491</li> <li>22.458</li> <li>22.763</li> <li>20.046</li> <li>4.078</li> <li>1.631</li> <li>2.854</li> <li>23.048</li> <li>22.846</li> <li>25.74</li> </ul>                |
| · _                       | Florunner<br>NC- 7      | Abovegrd<br>Root<br>Root         | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871<br>78.608<br>77.964<br>82.152<br>5.438<br>16.526           | <ul> <li>(%)</li> <li>21. 416</li> <li>21.292</li> <li>24.206</li> <li>5.283</li> <li>5.039</li> <li>4.491</li> <li>22.458</li> <li>22.763</li> <li>20.046</li> <li>4.078</li> <li>1.631</li> <li>2.854</li> <li>23.048</li> <li>22.848</li> <li>25.74</li> <li>3.676</li> </ul> |
| · _                       | Florunner<br>NC- 7      | Abovegrd<br>Root<br>Root<br>Root | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871<br>78.608<br>77.964<br>82.152<br>5.438<br>16.526<br>11.794 | (%)<br>21. 416<br>21.292<br>24.206<br>5.283<br>5. 039<br>4. 491<br>22.458<br>22. 763<br>20. 046<br>4. 078<br>1. 631<br>2.854<br>23. 048<br>22.848<br>22.848<br>25. 74<br>3. 676<br>1. 519                                                                                        |
| · _                       | Florunner<br>NC- 7      | Abovegrd<br>Root<br>Root<br>Root | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCl<br>(ml)<br>72.47<br>72.078<br>81.329<br>4.482<br>19.536<br>18.76<br>17.021<br>2.762<br>77.439<br>78.409<br>69.781<br>6.142<br>19.818<br>12.05<br>15.934<br>6.871<br>78.608<br>77.964<br>82.152<br>5.438<br>16.526           | <ul> <li>(%)</li> <li>21. 416</li> <li>21.292</li> <li>24.206</li> <li>5.283</li> <li>5.039</li> <li>4.491</li> <li>22.458</li> <li>22.763</li> <li>20.046</li> <li>4.078</li> <li>1.631</li> <li>2.854</li> <li>23.048</li> <li>22.848</li> <li>25.74</li> <li>3.676</li> </ul> |

Table C. CO2 evofution from amended with peanut residues.

| Sampling Da             | ate Cultivar              | Residue                              | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  | CO2 evolved                                                                                                                                                      |
|-------------------------|---------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01/18/94                | Florunner                 | Abovegrd                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ml)                                                                                                                                                                                                                             | (%)                                                                                                                                                              |
| 01710/34                | TIOTUTITIET               | Anovegia                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65. 556<br>60. 144                                                                                                                                                                                                               | 17.659                                                                                                                                                           |
|                         |                           |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>69. 144</b>                                                                                                                                                                                                                   | 18.789                                                                                                                                                           |
|                         |                           |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.386                                                                                                                                                                                                                           | 15.085                                                                                                                                                           |
|                         |                           | Deat                                 | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9. 494                                                                                                                                                                                                                           | 0.704                                                                                                                                                            |
|                         |                           | Root                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23. 601                                                                                                                                                                                                                          | 3. 521                                                                                                                                                           |
|                         |                           |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34. 305                                                                                                                                                                                                                          | 6. 893                                                                                                                                                           |
|                         |                           |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.134                                                                                                                                                                                                                           | 4. 319                                                                                                                                                           |
|                         |                           | A h                                  | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12. 422                                                                                                                                                                                                                          |                                                                                                                                                                  |
|                         | NC- 7                     | Abovegrd                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>68</b> . 505                                                                                                                                                                                                                  | 14. 199                                                                                                                                                          |
|                         |                           |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>63. 581</b>                                                                                                                                                                                                                   | 12.648                                                                                                                                                           |
|                         |                           |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70. 333                                                                                                                                                                                                                          | 14. 775                                                                                                                                                          |
|                         |                           | Deet                                 | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23. 428                                                                                                                                                                                                                          |                                                                                                                                                                  |
|                         |                           | Root                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19. 943                                                                                                                                                                                                                          | 3. 282                                                                                                                                                           |
|                         |                           |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13. 561                                                                                                                                                                                                                          | 1.272                                                                                                                                                            |
|                         |                           |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16. 752                                                                                                                                                                                                                          | 2. 277                                                                                                                                                           |
|                         |                           |                                      | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9. 522                                                                                                                                                                                                                           |                                                                                                                                                                  |
|                         | NC-I 1                    | Abovegrd                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3529                                                                                                                                                                                                                             | 14.854                                                                                                                                                           |
|                         |                           |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37. 517                                                                                                                                                                                                                          | 8.94                                                                                                                                                             |
|                         |                           |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26. 597                                                                                                                                                                                                                          | 5.501                                                                                                                                                            |
|                         |                           | -                                    | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9. 133                                                                                                                                                                                                                           |                                                                                                                                                                  |
|                         |                           | Root                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.661                                                                                                                                                                                                                           | 1.602                                                                                                                                                            |
|                         |                           |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.61                                                                                                                                                                                                                            | 1.208                                                                                                                                                            |
|                         |                           |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13. 551                                                                                                                                                                                                                          | 1.504                                                                                                                                                            |
|                         |                           |                                      | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.774                                                                                                                                                                                                                            |                                                                                                                                                                  |
|                         |                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                  |
| Sampling Da             | te Cultivar               | Residue                              | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  | CO2 evolved                                                                                                                                                      |
|                         |                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ml)                                                                                                                                                                                                                             | (%)                                                                                                                                                              |
| Sampling Da<br>02/01/94 | ite Cultivar<br>Florunner | Residue<br>A <b>bove</b> grd         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ml)<br>48.081                                                                                                                                                                                                                   | <b>(%)</b><br>11.851                                                                                                                                             |
|                         |                           |                                      | 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (mf)<br>48.081<br>57.352                                                                                                                                                                                                         | <b>(%)</b><br>11.851<br><b>14.771</b>                                                                                                                            |
|                         |                           |                                      | 1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ml)<br>48.081<br>57. 352<br>58. 875                                                                                                                                                                                             | <b>(%)</b><br>11.851                                                                                                                                             |
|                         |                           | Abovegrd                             | 1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ml)<br>48.081<br>57.352<br>58.875<br>10.457                                                                                                                                                                                     | (%)<br>11.851<br><b>14.771</b><br>8.951                                                                                                                          |
|                         |                           |                                      | 1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ml)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8                                                                                                                                                                             | (%)<br>11.851<br><b>14.771</b><br>8.951<br>1.497                                                                                                                 |
|                         |                           | Abovegrd                             | 1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ml)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1                                                                                                                                                                     | (%)<br>11.851<br><b>14.771</b><br>8.951<br>1.497<br><b>1.907</b>                                                                                                 |
|                         |                           | Abovegrd                             | 1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ml)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b>                                                                                                                                                     | (%)<br>11.851<br><b>14.771</b><br>8.951<br>1.497                                                                                                                 |
|                         | Florunner                 | Abovegrd<br>Root                     | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ml)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045                                                                                                                                           | (%)<br>11.851<br><b>14.771</b><br><b>8.951</b><br>1.497<br><b>1.907</b><br><b>2.1489</b>                                                                         |
|                         |                           | Abovegrd                             | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688                                                                                                                                 | (%)<br>11.851<br><b>14.771</b><br><b>8.951</b><br>1.497<br><b>1.907</b><br><b>2.1489</b><br>9.285                                                                |
|                         | Florunner                 | Abovegrd<br>Root                     | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692                                                                                                                       | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442                                                                                  |
|                         | Florunner                 | Abovegrd<br>Root                     | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ml)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816                                                                                                             | (%)<br>11.851<br><b>14.771</b><br><b>8.951</b><br>1.497<br><b>1.907</b><br><b>2.1489</b><br><b>9.285</b>                                                         |
|                         | Florunner                 | Abovegrd<br>Root<br>Abovegrd         | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ml)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191                                                                                                    | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441                                                                         |
|                         | Florunner                 | Abovegrd<br>Root                     | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ml)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742                                                                                          | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16                                                                 |
|                         | Florunner                 | Abovegrd<br>Root<br>Abovegrd         | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893                                                                                | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317                                                        |
|                         | Florunner                 | Abovegrd<br>Root<br>Abovegrd         | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816                                                                      | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16                                                                 |
|                         | Florunner<br>NC-7         | Abovegrd<br>Root<br>Root             | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535                                                             | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239                                               |
|                         | Florunner                 | Abovegrd<br>Root<br>Abovegrd         | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535<br>31.055                                                   | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239<br>6.589                                      |
|                         | Florunner<br>NC-7         | Abovegrd<br>Root<br>Root             | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535<br>31.055<br>36.909                                         | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239<br>6.589<br>7.122                             |
|                         | Florunner<br>NC-7         | Abovegrd<br>Root<br>Root             | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535<br>31.055<br>36.909<br>31.026                               | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239<br>6.589                                      |
|                         | Florunner<br>NC-7         | Abovegrd<br>Root<br>Root<br>Abovegrd | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br>M 867<br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535<br>31.055<br>36.909<br>31.026<br>10.137                            | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239<br>6.589<br>7.122<br>15.336                   |
|                         | Florunner<br>NC-7         | Abovegrd<br>Root<br>Root             | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br>M 867<br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535<br>31.055<br>36.909<br>31.026<br>10.137<br>14.297                  | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239<br>6.589<br>7.122<br>15.336<br>3.072          |
|                         | Florunner<br>NC-7         | Abovegrd<br>Root<br>Root<br>Abovegrd | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br><b>M 867</b><br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535<br>31.055<br>36.909<br>31.026<br>10.137<br>14.297<br>12.939 | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239<br>6.589<br>7.122<br>15.336<br>3.072<br>2.645 |
|                         | Florunner<br>NC-7         | Abovegrd<br>Root<br>Root<br>Abovegrd | 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mi)<br>48.081<br>57.352<br>58.875<br>10.457<br>18.8<br>20.1<br>M 867<br>14.045<br>36.688<br>48.692<br>30.816<br>7.191<br>22.742<br>16.893<br>19.816<br>9.535<br>31.055<br>36.909<br>31.026<br>10.137<br>14.297                  | (%)<br>11.851<br>14.771<br>8.951<br>1.497<br>1.907<br>2.1489<br>9.285<br>12.442<br>7.441<br>4.16<br>2.317<br>3.239<br>6.589<br>7.122<br>15.336<br>3.072          |

Table C. Continued

.

•

| Sampling Da   | te Cultivar        | <b>Resi due</b>                      | <b>R</b> eplicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Volume HCI                                                                                                                                                                                                                                      |                                                                                                                                                                        |
|---------------|--------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (m <b>i)</b>                                                                                                                                                                                                                                      | (%)                                                                                                                                                                    |
| 03/01/94      | Florunner          | Abovegtd                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.579                                                                                                                                                                                                                                            | 6. 422                                                                                                                                                                 |
|               |                    |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.468                                                                                                                                                                                                                                            | 6. 387                                                                                                                                                                 |
|               |                    |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.011                                                                                                                                                                                                                                            | 7. <b>188</b>                                                                                                                                                          |
|               |                    | - · ·                                | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12. 189                                                                                                                                                                                                                                           |                                                                                                                                                                        |
|               |                    | Root                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20. 668                                                                                                                                                                                                                                           | 0.67                                                                                                                                                                   |
|               |                    |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.078                                                                                                                                                                                                                                            | 3. 319                                                                                                                                                                 |
|               |                    |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30. 363                                                                                                                                                                                                                                           | 3.723 .                                                                                                                                                                |
|               |                    |                                      | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18. 541                                                                                                                                                                                                                                           |                                                                                                                                                                        |
|               | NC- 7              | Abovegrd                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>34.804</b>                                                                                                                                                                                                                                     | 5. 342                                                                                                                                                                 |
|               |                    |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>32.648</b>                                                                                                                                                                                                                                     | 4. 725                                                                                                                                                                 |
|               |                    |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36. 702                                                                                                                                                                                                                                           | 5.94                                                                                                                                                                   |
|               |                    | _                                    | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.643                                                                                                                                                                                                                                            |                                                                                                                                                                        |
|               |                    | Root                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.385                                                                                                                                                                                                                                            | 3. 696                                                                                                                                                                 |
|               |                    |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20. 284                                                                                                                                                                                                                                           | 3. 035                                                                                                                                                                 |
|               |                    |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.298                                                                                                                                                                                                                                            | 3.354                                                                                                                                                                  |
|               | · ·                |                                      | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.649                                                                                                                                                                                                                                            |                                                                                                                                                                        |
|               | NC-1 1             | Abovegrd                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.067                                                                                                                                                                                                                                            | 8. 797                                                                                                                                                                 |
|               |                    |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34. 764                                                                                                                                                                                                                                           | 7. 757                                                                                                                                                                 |
|               |                    |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.099                                                                                                                                                                                                                                            | 8. 171                                                                                                                                                                 |
|               |                    | <b>–</b> /                           | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. 157                                                                                                                                                                                                                                           |                                                                                                                                                                        |
|               |                    | Root                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.375                                                                                                                                                                                                                                            | 2. 778                                                                                                                                                                 |
|               |                    |                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27. 712                                                                                                                                                                                                                                           | 4. 774                                                                                                                                                                 |
|               |                    |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24. 562                                                                                                                                                                                                                                           | 3. 782                                                                                                                                                                 |
| • " -         | <b>A</b> 10        |                                      | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.554                                                                                                                                                                                                                                            |                                                                                                                                                                        |
| Sampling Date | e Cultivar         | <b>Residue</b>                       | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCI                                                                                                                                                                                                                                        | CO2 evolved                                                                                                                                                            |
|               |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                                        |
|               | <b>_</b> ,         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mi)                                                                                                                                                                                                                                              | (%)                                                                                                                                                                    |
| 03/29/94      | Florunner          | Abovegrd                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18263                                                                                                                                                                                                                                             | 2. 159                                                                                                                                                                 |
| 03/29/94      | Florunner          | Abovegrd                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>18263</b><br>10. 178                                                                                                                                                                                                                           | 2.159<br>1.495                                                                                                                                                         |
| 03/29/94      | Florunner          | Abovegrd                             | 2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18263<br>10. 178<br>31.409                                                                                                                                                                                                                        | 2. 159                                                                                                                                                                 |
| 03/29/94      | Florunner          | -                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18263<br>10. 178<br>31.409<br>11. 429                                                                                                                                                                                                             | 2. 159<br>1 · 4 9 5<br>6.293                                                                                                                                           |
| 03/29/94      | Florunner          | Abovegrd<br>Root                     | 2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492                                                                                                                                                                                                  | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343                                                                                                                   |
| 03/29/94      | Florunner          | -                                    | 2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023                                                                                                                                                                                       | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343<br>1. 1954                                                                                                        |
| 03/29/94      | Florunner          | -                                    | 2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984                                                                                                                                                                            | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343                                                                                                                   |
| 03/29/94      |                    | Root                                 | 2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228                                                                                                                                                                 | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343<br>1. 1954<br><b>0. 668</b>                                                                                       |
| 03/29/94      | Florunner<br>NC- 7 | -                                    | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112                                                                                                                                                      | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343<br>1. 1954<br><b>0. 668</b><br>3. 853                                                                             |
| 03/29/94      |                    | Root                                 | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312                                                                                                                                           | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343<br>1. 1954<br><b>0. 668</b><br>3. 853<br>3. 286                                                                   |
| 03/29/94      |                    | Root                                 | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329                                                                                                                                | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343<br>1. 1954<br><b>0. 668</b><br>3. 853                                                                             |
| 03/29/94      |                    | Root<br>Abovegrd                     | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879                                                                                                                     | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343<br>1. 1954<br><b>0. 668</b><br>3. 853<br>3. 286<br>2. 031                                                         |
| 03/29/94      |                    | Root                                 | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688                                                                                                          | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486                                                                    |
| 03/29/94      |                    | Root<br>Abovegrd                     | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55                                                                                                 | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81                                                           |
| 03/29/94      |                    | Root<br>Abovegrd                     | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108                                                                                      | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486                                                                    |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root             | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978                                                                            | 2. 159<br><b>1</b> . <b>4 9 5</b><br>6.293<br>1. 343<br>1. 1954<br><b>0. 668</b><br>3. 853<br>3. 286<br>2. 031<br>1. 486<br><b>0. 81</b><br><b>0. 989</b>              |
| 03/29/94      |                    | Root<br>Abovegrd                     | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325                                                                 | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583                                       |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root             | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325<br>23. 369                                                      | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583<br>4. 487                             |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root             | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>5<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>5<br>control<br>5<br>control<br>3<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>3<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>co | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325<br>23. 369<br>18. 674                                           | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583                                       |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root<br>Abovegrd | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325<br>23. 369<br>18. 674<br>9. 123                                 | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583<br>4. 487<br>3.008                    |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root             | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325<br>23. 369<br>18. 674<br>9. 123<br>22. 221                      | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583<br>4. 487<br>3.008<br>4. 162          |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root<br>Abovegrd | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325<br>23. 369<br>18. 674<br>9. 123<br>22. 221<br>15. 659           | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583<br>4. 487<br>3.008<br>4. 162<br>2.095 |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root<br>Abovegrd | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325<br>23. 369<br>18. 674<br>9. 123<br>22. 221<br>15. 659<br>18.948 | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583<br>4. 487<br>3.008<br>4. 162          |
| 03/29/94      | NC- 7              | Root<br>Abovegrd<br>Root<br>Abovegrd | 2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18263<br>10. 178<br>31.409<br>11. 429<br>17. 492<br>17. 023<br>15. 984<br>13. 228<br>23. 112<br>21. 312<br>17. 329<br>10. 879<br>14. 688<br>12.55<br>13. 108<br>9. 978<br>17. 325<br>23. 369<br>18. 674<br>9. 123<br>22. 221<br>15. 659           | 2. 159<br>1 . 4 9 5<br>6.293<br>1. 343<br>1. 1954<br>0. 668<br>3. 853<br>3. 286<br>2. 031<br>1. 486<br>0. 81<br>0. 989<br>2. 583<br>4. 487<br>3.008<br>4. 162<br>2.095 |

Table C. Continued

| Sampling D  | ate Cultivar                       | Residue                                    | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCI                                                                                                                                                                                                                                              | CO2 evolved                                                                                                                                                       |
|-------------|------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01/07/94    | Triumph-266                        | Aboveground                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(ml)</b><br>30.163                                                                                                                                                                                                                                   | (%)                                                                                                                                                               |
| 0           | 110111011200                       | , loovogi ouria                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.103<br>30.702                                                                                                                                                                                                                                        | 7. 194<br>7. 364                                                                                                                                                  |
|             |                                    |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>39. 189</b>                                                                                                                                                                                                                                          | 7. 304<br>10. 037                                                                                                                                                 |
|             |                                    |                                            | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7. 322                                                                                                                                                                                                                                                  | 10.037                                                                                                                                                            |
|             |                                    | Root                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.159                                                                                                                                                                                                                                                  | 6.229                                                                                                                                                             |
|             |                                    |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28. 422                                                                                                                                                                                                                                                 | 6. 942                                                                                                                                                            |
|             |                                    |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26. 517                                                                                                                                                                                                                                                 | 6. 342                                                                                                                                                            |
|             |                                    |                                            | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.362.                                                                                                                                                                                                                                                  |                                                                                                                                                                   |
|             | GW-744BR                           | Aboveground                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43. 466                                                                                                                                                                                                                                                 | 11.011                                                                                                                                                            |
|             |                                    |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>46.</b> 74                                                                                                                                                                                                                                           | 12.042                                                                                                                                                            |
|             |                                    |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.942                                                                                                                                                                                                                                                  | 15.571                                                                                                                                                            |
|             |                                    |                                            | lontnoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.509                                                                                                                                                                                                                                                   |                                                                                                                                                                   |
|             |                                    | Root                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.661                                                                                                                                                                                                                                                  | 9. 231                                                                                                                                                            |
|             |                                    |                                            | 2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44. 567                                                                                                                                                                                                                                                 | 8.817                                                                                                                                                             |
|             |                                    |                                            | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42. 852<br>18. 575                                                                                                                                                                                                                                      | a. 277                                                                                                                                                            |
|             | NKing-300                          | Aboveground                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18. 575<br>37. 762                                                                                                                                                                                                                                      | 9.962                                                                                                                                                             |
|             | rating 000                         | , ibbr og i oana                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42. 892                                                                                                                                                                                                                                                 | 11. 578                                                                                                                                                           |
|             |                                    |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>37.676</b>                                                                                                                                                                                                                                           | 16.235                                                                                                                                                            |
|             |                                    |                                            | lortnoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6. 135                                                                                                                                                                                                                                                  | 10.200                                                                                                                                                            |
|             |                                    | Root                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.61                                                                                                                                                                                                                                                   | 12.973                                                                                                                                                            |
|             |                                    |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47. 412                                                                                                                                                                                                                                                 | 12. 596                                                                                                                                                           |
|             |                                    |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.314                                                                                                                                                                                                                                                  | 14. 1407                                                                                                                                                          |
|             |                                    |                                            | lortnoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7. 422                                                                                                                                                                                                                                                  |                                                                                                                                                                   |
|             |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                   |
| Sampling Da | te Cultivar                        | Residue                                    | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCI                                                                                                                                                                                                                                              | CO2 evolved                                                                                                                                                       |
|             |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume HCI<br>(mi)                                                                                                                                                                                                                                      | (%)                                                                                                                                                               |
| Sampling Da | ite <b>Cultivar</b><br>Triumph-266 |                                            | nd 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCI<br>(ml)<br>42. 291                                                                                                                                                                                                                           | (%)<br>11.089                                                                                                                                                     |
|             |                                    |                                            | nd <b>1</b><br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Volume</b> HCI<br>(ml)<br>42. 291<br>41. 432                                                                                                                                                                                                         | (%)<br>11.089<br>4. 518                                                                                                                                           |
|             |                                    |                                            | nd 1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849                                                                                                                                                                                                     | (%)<br>11.089                                                                                                                                                     |
|             |                                    | 6 Abovegrou                                | nd 1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086                                                                                                                                                                                            | (%)<br>11.089<br>4.518<br>11.58                                                                                                                                   |
|             |                                    |                                            | nd 1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632                                                                                                                                                                                  | (%)<br>11.089<br>4. 518<br>11.58<br>4. 228                                                                                                                        |
|             |                                    | 6 Abovegrou                                | nd 1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263                                                                                                                                                                       | (%)<br>11.089<br>4. 518<br>11.58<br>4. 228<br>4. 427                                                                                                              |
|             |                                    | 6 Abovegrou                                | nd 1<br>2<br>3<br><b>control</b><br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385                                                                                                                                                             | (%)<br>11.089<br>4. 518<br>11.58<br>4. 228                                                                                                                        |
|             | Triumph-266                        | 6 Abovegrou<br><b>Root</b>                 | nd <b>1</b><br>2<br>3<br><b>control</b><br>1<br>2<br>3<br><b>control</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208                                                                                                                                                    | (%)<br>11.089<br>4. 518<br>11.58<br>4. 228<br>4. 427<br>5. 725                                                                                                    |
|             | Triumph-266                        | 6 Abovegrou                                | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661                                                                                                                                         | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075                                                                                              |
|             | Triumph-266                        | 6 Abovegrou<br><b>Root</b>                 | nd <b>1</b><br>2<br>3<br><b>control</b><br>1<br>2<br>3<br><b>control</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208                                                                                                                                                    | (%)<br>11.089<br>4. 518<br>11.58<br>4. 228<br>4. 427<br>5. 725                                                                                                    |
|             | Triumph-266                        | 6 Abovegrou<br><b>Root</b>                 | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148                                                                                                                              | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536                                                                                    |
|             | Triumph-266                        | 6 Abovegrou<br><b>Root</b>                 | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967                                                                                                                    | (%)<br>11.089<br>4. 518<br>11.58<br>4. 228<br>4. 427<br>5. 725<br>21. 075<br>20. 536<br>10. 714<br>5. 703                                                         |
|             | Triumph-266                        | 6 Abovegrou<br>Root<br>Aboveground         | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967<br>4. 953<br>23. 372<br>23. 845                                                                                    | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152                                                       |
|             | Triumph-266                        | 6 Abovegrou<br>Root<br>Aboveground         | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>3<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCl<br>(ml)<br>42, 291<br>41, 432<br>43, 849<br>7,086<br>18,632<br>19, 263<br>23,385<br>5,208<br>71, 661<br>70, 148<br>68,967<br>4, 953<br>23, 372<br>23, 845<br>25, 322                                                                         | (%)<br>11.089<br>4. 518<br>11.58<br>4. 228<br>4. 427<br>5. 725<br>21. 075<br>20. 536<br>10. 714<br>5. 703                                                         |
|             | Triumph-266<br>GW-744BR            | Root<br>Root<br>Aboveground<br>Root        | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967<br>4. 953<br>23. 372<br>23. 845<br>25. 322<br>5. 266                                                               | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317                                              |
|             | Triumph-266<br>GW-744BR            | 6 Abovegrou<br>Root<br>Aboveground         | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967<br>4. 953<br>23. 372<br>23. 845<br>25. 322<br>5. 266<br>32. 136                                                    | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317<br>a.705                                     |
|             | Triumph-266<br>GW-744BR            | Root<br>Root<br>Aboveground<br>Root        | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967<br>4. 953<br>23. 372<br>23. 845<br>25. 322<br>5. 266<br>32. 136<br>37. 58                                          | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317<br>a.705<br>10.42                            |
|             | Triumph-266<br>GW-744BR            | Root<br>Root<br>Aboveground<br>Root        | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967<br>4. 953<br>23. 372<br>23. 845<br>25. 322<br>5. 266<br>32. 136<br>37. 58<br>4Q. 52                                | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317<br>a.705                                     |
|             | Triumph-266<br>GW-744BR            | Root<br>Root<br>Root<br>Root<br>boveground | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967<br>4. 953<br>23. 372<br>23. 845<br>25. 322<br>5. 266<br>32. 136<br>37. 58<br>40. 52<br>4.499                       | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317<br>a.705<br>10.42<br>14.496                  |
|             | Triumph-266<br>GW-744BR            | Root<br>Root<br>Aboveground<br>Root        | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCl<br>(ml)<br>42, 291<br>41, 432<br>43, 849<br>7,086<br>18,632<br>19, 263<br>23,385<br>5,208<br>71, 661<br>70, 148<br>68,967<br>4, 953<br>23, 372<br>23, 845<br>25, 322<br>5, 266<br>32, 136<br>37, 58<br>40, 52<br>4,499<br>37, 572            | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317<br>a.705<br>10.42<br>14.496<br>9.97          |
|             | Triumph-266<br>GW-744BR            | Root<br>Root<br>Root<br>Root<br>boveground | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>2<br>5<br>control<br>1<br>5<br>5<br>control<br>1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Volume HCl<br>(ml)<br>42. 291<br>41. 432<br>43. 849<br>7.086<br>18.632<br>19. 263<br>23.385<br>5.208<br>71. 661<br>70. 148<br>68.967<br>4. 953<br>23. 372<br>23. 845<br>25. 322<br>5. 266<br>32. 136<br>37. 58<br>40. 52<br>4.499<br>37. 572<br>45. 316 | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317<br>a.705<br>10.42<br>14.496<br>9.97<br>12.41 |
|             | Triumph-266<br>GW-744BR            | Root<br>Root<br>Root<br>Root<br>boveground | nd 1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCl<br>(ml)<br>42, 291<br>41, 432<br>43, 849<br>7,086<br>18,632<br>19, 263<br>23,385<br>5,208<br>71, 661<br>70, 148<br>68,967<br>4, 953<br>23, 372<br>23, 845<br>25, 322<br>5, 266<br>32, 136<br>37, 58<br>40, 52<br>4,499<br>37, 572            | (%)<br>11.089<br>4.518<br>11.58<br>4.228<br>4.427<br>5.725<br>21.075<br>20.536<br>10.714<br>5.703<br>12.152<br>6.317<br>a.705<br>10.42<br>14.496<br>9.97          |

Table D. CO2 evolution from soil amended with sorghum residues.

| Sampling Da               | te Cultivar           | Residue                                    | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCI                                                                                                                                                                                                                                                    | CO2 evolved                                                                                                                                                       |
|---------------------------|-----------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ml)                                                                                                                                                                                                                                                          | (%)                                                                                                                                                               |
| 01/18/94                  | Triumph-268           | Aboveground                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.29                                                                                                                                                                                                                                                         | 4. 137                                                                                                                                                            |
|                           |                       |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.511                                                                                                                                                                                                                                                        | 4.836                                                                                                                                                             |
|                           |                       |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22. 933                                                                                                                                                                                                                                                       | 10.63                                                                                                                                                             |
|                           |                       |                                            | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9. 155                                                                                                                                                                                                                                                        |                                                                                                                                                                   |
|                           |                       | Root                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27. 526                                                                                                                                                                                                                                                       | 4. 901                                                                                                                                                            |
|                           |                       |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30. 892                                                                                                                                                                                                                                                       | 9. 112                                                                                                                                                            |
|                           |                       |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37. 551                                                                                                                                                                                                                                                       | 8.059                                                                                                                                                             |
|                           |                       |                                            | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.965                                                                                                                                                                                                                                                        |                                                                                                                                                                   |
|                           | GW-744BR              | Aboveground                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56.014                                                                                                                                                                                                                                                        | <b>13.856</b>                                                                                                                                                     |
|                           | OTFICIENCE            | Aboveground                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45. 871                                                                                                                                                                                                                                                       | 10.661                                                                                                                                                            |
|                           |                       |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>53.869</b>                                                                                                                                                                                                                                                 | 19.48                                                                                                                                                             |
|                           |                       |                                            | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12. 025                                                                                                                                                                                                                                                       | 15.40                                                                                                                                                             |
|                           |                       | Root                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>59.883</b>                                                                                                                                                                                                                                                 | 17.142                                                                                                                                                            |
|                           |                       | 11001                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60.2 <b>84</b>                                                                                                                                                                                                                                                | 17.268                                                                                                                                                            |
|                           |                       |                                            | 2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                   |
|                           |                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>84. 588</b>                                                                                                                                                                                                                                                | 18.624                                                                                                                                                            |
|                           |                       |                                            | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. 461                                                                                                                                                                                                                                                        | 10 090                                                                                                                                                            |
|                           | NK-300                | Aboveground                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.046                                                                                                                                                                                                                                                        | 10.839                                                                                                                                                            |
|                           |                       |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.693                                                                                                                                                                                                                                                        | 10.097                                                                                                                                                            |
|                           |                       |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41. 149                                                                                                                                                                                                                                                       | a. 461                                                                                                                                                            |
|                           |                       | <b>.</b> .                                 | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.637                                                                                                                                                                                                                                                        | 4                                                                                                                                                                 |
|                           |                       | Root                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78. 258                                                                                                                                                                                                                                                       | 15. 478                                                                                                                                                           |
|                           |                       |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84.137                                                                                                                                                                                                                                                        | 23.63                                                                                                                                                             |
|                           |                       |                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78.099                                                                                                                                                                                                                                                        | 5. 978                                                                                                                                                            |
|                           |                       |                                            | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9. 118                                                                                                                                                                                                                                                        |                                                                                                                                                                   |
|                           |                       | <b>—</b>                                   | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                                                                   |
| Sampling Date             | Cultivar              | Residue                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volume HCI                                                                                                                                                                                                                                                    | CO2 evolved                                                                                                                                                       |
|                           |                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volume HCI<br>(mî)                                                                                                                                                                                                                                            | (%)                                                                                                                                                               |
| Sampling Date<br>02/01/94 |                       | <b>Residue</b><br>Aboveground              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volume <b>HCi</b><br>(mi)<br>32.78                                                                                                                                                                                                                            |                                                                                                                                                                   |
|                           |                       |                                            | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCI<br>(mî)                                                                                                                                                                                                                                            | (%)                                                                                                                                                               |
|                           |                       |                                            | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume <b>HCi</b><br>(mi)<br>32.78                                                                                                                                                                                                                            | (%)<br>8.067                                                                                                                                                      |
|                           |                       |                                            | Replicate 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume <b>HCi</b><br>(mi)<br>32. 78<br>36. 843                                                                                                                                                                                                                | (%)<br>8.067<br>3.046                                                                                                                                             |
|                           |                       |                                            | Replicate 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volume <b>HCi</b><br>(ml)<br>32. 78<br>36. 843<br>37. 233                                                                                                                                                                                                     | (%)<br>8.067<br>3.046                                                                                                                                             |
|                           |                       | Aboveground                                | Replicate<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume <b>HCi</b><br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703                                                                                                                                                                                          | (%)<br>8.067<br>3.046<br>9.469                                                                                                                                    |
|                           |                       | Aboveground                                | Replicate<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume <b>HCi</b><br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93                                                                                                                                                                                | (%)<br>8.067<br>3.046<br>9.469<br>420Q                                                                                                                            |
|                           |                       | Aboveground                                | Replicate<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume <b>HCi</b><br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195                                                                                                                                                                     | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821                                                                                                         |
|                           | Triumph-M             | Aboveground<br>Root                        | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume <b>HCi</b><br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047                                                                                                                                                          | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907                                                                                                                  |
|                           | Triumph-M             | Aboveground                                | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume HCi<br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567                                                                                                                                                      | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821                                                                                                         |
|                           | Triumph-M             | Aboveground<br>Root                        | Replicate 1 2 3 control 1 2 3 control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCi<br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528                                                                                                                                           | (%)<br>8.067<br>3.046<br>9.469<br>4200<br>10.907<br>5.821<br>9.598                                                                                                |
|                           | Triumph-M             | Aboveground<br>Root                        | Replicate 1 2 3 control 1 2 3 control 1 2 3 control 1 2 3 control 3 control 1 2 2 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038                                                                                                                                | (%)<br>8.067<br>3.046<br>9.469<br>4200<br>10.907<br>5.821<br>9.598<br>a.499                                                                                       |
|                           | Triumph-M             | Aboveground<br>Root                        | Replicate 1 2 3 control 1 2 3 control 1 2 3 control 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume HCi<br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561                                                                                                         | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359                                                                             |
|                           | Triumph-M             | Aboveground<br>Root                        | Replicate 1 2 3 control 1 2 3 control 1 2 3 control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCi<br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488                                                                                               | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94                                                                    |
|                           | Triumph-M             | Aboveground<br>Root                        | Replicate 1 2 3 control 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546                                                                                     | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076                                                          |
|                           | Triumph-M             | Aboveground<br>Root                        | Replicate 1 2 3 control 1 2 2 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCi<br>(mi)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188                                                                           | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94                                                                    |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root<br>Aboveground<br>Root | Replicate 1 2 3 control 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188<br>10.386                                                                 | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647                                                |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root                        | Replicate 1 2 3 control 1 2 3 control 1 2 3 control 1 2 3 control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188<br>10.386<br>45.148                                                       | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647<br>10.563                                      |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root<br>Aboveground<br>Root | Replicate 1 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188<br>10.386<br>45.148<br>43. 64                                             | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647<br>10.563<br>10.088                            |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root<br>Aboveground<br>Root | Replicate 1 2 3 control 1 2 2 2 3 control 1 2 2 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volume HCi<br>(ml)<br>32.78<br>36.843<br>37.233<br>7.1703<br>34.93<br>46.195<br>30.047<br>11.567<br>42.528<br>39.038<br>37.642<br>12.0561<br>51.488<br>45.546<br>44.188<br>10.386<br>45.148<br>43.64<br>42.536                                                | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647<br>10.563                                      |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root<br>Root<br>Aboveground | Replicate 1 2 3 control 1 2 2 3 control 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188<br>10.386<br>45.148<br>43. 64<br>42. 536<br>11. 614                       | (%)<br>8.067<br>3.046<br>9.469<br>420Q<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647<br>10.563<br>10.088<br>9.741                   |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root<br>Aboveground<br>Root | Replicate 1 2 3 control 1 2 2 3 control 1 2 3 control 1 2 3 control 1 2 | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188<br>10.386<br>45.148<br>43. 64<br>42. 536<br>11. 614<br>31. 526            | (%)<br>8.067<br>3.046<br>9.469<br>4200<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647<br>10.563<br>10.088<br>9.741<br>8.726          |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root<br>Root<br>Aboveground | Replicate 1 2 3 control 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188<br>10.386<br>45.148<br>43. 64<br>42. 536<br>11. 614<br>31. 526<br>32. 775 | (%)<br>8.067<br>3.046<br>9.469<br>4200<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647<br>10.563<br>10.088<br>9.741<br>8.726<br>7.119 |
|                           | Triumph-M<br>GW-744BR | Aboveground<br>Root<br>Root<br>Aboveground | Replicate 1 2 3 control 1 2 2 3 control 1 2 3 control 1 2 3 control 1 2 | Volume HCi<br>(ml)<br>32. 78<br>36. 843<br>37. 233<br>7. 1703<br>34. 93<br>46. 195<br>30. 047<br>11. 567<br>42. 528<br>39. 038<br>37. 642<br>12. 0561<br>51.488<br>45.546<br>44.188<br>10.386<br>45.148<br>43. 64<br>42. 536<br>11. 614<br>31. 526            | (%)<br>8.067<br>3.046<br>9.469<br>4200<br>10.907<br>5.821<br>9.598<br>a.499<br>14.359<br>12.94<br>11.076<br>10.647<br>10.563<br>10.088<br>9.741<br>8.726          |

Table D. Continued

.

| Sampling (              | Date Cultivar      | Residue                                           | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCI                                                                                                                                                                                                                                              | CO2 evolved                                                                                                                                                                      |
|-------------------------|--------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000000                  | <b>T</b> : 1 000   |                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ml)                                                                                                                                                                                                                                                    | (%)                                                                                                                                                                              |
| 03/01/94                | Triumph-266        | 6 Aboveground                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81.446                                                                                                                                                                                                                                                  | 10.811                                                                                                                                                                           |
|                         |                    |                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51. <b>582</b>                                                                                                                                                                                                                                          | 13.704                                                                                                                                                                           |
|                         |                    |                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>57.166</b>                                                                                                                                                                                                                                           | 9. 169                                                                                                                                                                           |
|                         |                    |                                                   | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.0766                                                                                                                                                                                                                                                  |                                                                                                                                                                                  |
|                         |                    | Root                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24. 567                                                                                                                                                                                                                                                 | 2.979                                                                                                                                                                            |
|                         |                    |                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34. 39                                                                                                                                                                                                                                                  | 6.074                                                                                                                                                                            |
|                         |                    |                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35. 362                                                                                                                                                                                                                                                 | 9. 5303                                                                                                                                                                          |
|                         |                    |                                                   | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.107                                                                                                                                                                                                                                                  | 010000                                                                                                                                                                           |
|                         | GW-744BR           | Aboveground                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.492                                                                                                                                                                                                                                                  | 4. 947                                                                                                                                                                           |
|                         | ••••••             | riberegieuna                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>38. 695</b>                                                                                                                                                                                                                                          | 10. 366                                                                                                                                                                          |
|                         |                    |                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43. 645                                                                                                                                                                                                                                                 | 8. 775                                                                                                                                                                           |
|                         |                    |                                                   | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15. 766                                                                                                                                                                                                                                                 | 0. 770                                                                                                                                                                           |
|                         |                    | Root                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40. 399                                                                                                                                                                                                                                                 | 10.011                                                                                                                                                                           |
|                         |                    | 11001                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>37.0</b>                                                                                                                                                                                                                                             | 9. 159                                                                                                                                                                           |
|                         |                    |                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |
|                         |                    |                                                   | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33. 779<br>8. 5226                                                                                                                                                                                                                                      | 7.955                                                                                                                                                                            |
|                         | NK 200             | Aboveground                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8. 3220<br>45. 086                                                                                                                                                                                                                                      | 9.9                                                                                                                                                                              |
|                         | NK-300             | VIDA GRIONIN                                      | 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45. 699                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |
|                         |                    |                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>38.03</b>                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                             |
|                         |                    |                                                   | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.612                                                                                                                                                                                                                                                  | 7.69                                                                                                                                                                             |
|                         |                    | Deet                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         | 5 604                                                                                                                                                                            |
|                         |                    | Root                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.529                                                                                                                                                                                                                                                  | 5. 694                                                                                                                                                                           |
|                         |                    |                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.847                                                                                                                                                                                                                                                  | 8.944                                                                                                                                                                            |
|                         |                    |                                                   | 3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42. 851<br>12. 452                                                                                                                                                                                                                                      | 9. 575                                                                                                                                                                           |
|                         |                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |
| Samoling Do             | to Cultivor        | Residue                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         | CO2 evolved                                                                                                                                                                      |
| Sampling Da             | te <b>Cultivar</b> | Residue                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volume HCI                                                                                                                                                                                                                                              | CO2 evolved                                                                                                                                                                      |
| _                       |                    |                                                   | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCI<br>(ml)                                                                                                                                                                                                                                      | (%)                                                                                                                                                                              |
| Sampling Da<br>03/29/94 |                    | Residue<br>Aboveground                            | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCI<br>(ml)<br>23.184                                                                                                                                                                                                                            | <b>(%)</b><br>4. 921                                                                                                                                                             |
| _                       |                    |                                                   | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCI<br>(ml)<br>23.184<br>29.321                                                                                                                                                                                                                  | (%)<br>4. 921<br>6. 854                                                                                                                                                          |
| _                       |                    |                                                   | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30. 275                                                                                                                                                                                                       | <b>(%)</b><br>4. 921                                                                                                                                                             |
| _                       |                    | Aboveground                                       | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591                                                                                                                                                                                              | (%)<br>4. 921<br>6. 854<br>7. 155                                                                                                                                                |
| _                       |                    |                                                   | Replicate<br>1<br>2<br>3<br>control<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514                                                                                                                                                                                    | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856                                                                                                                                      |
| _                       |                    | Aboveground                                       | Replicate<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359                                                                                                                                                                          | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382                                                                                                                            |
| _                       |                    | Aboveground                                       | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454                                                                                                                                                                | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856                                                                                                                                      |
| _                       | Triumph-265        | Aboveground<br>Root                               | Replicate<br>1<br>2<br>3<br>control<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225                                                                                                                                                      | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837                                                                                                                  |
| _                       | Triumph-265        | Aboveground                                       | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885                                                                                                                                            | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562                                                                                                        |
| _                       | Triumph-265        | Aboveground<br>Root                               | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475                                                                                                                                  | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178                                                                                              |
| _                       | Triumph-265        | Aboveground<br>Root                               | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5                                                                             | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749                                                                                                                        | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562                                                                                                        |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground                | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86                                                                                                               | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69                                                                                     |
| _                       | Triumph-265        | Aboveground<br>Root                               | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653                                                                                                     | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521                                                                           |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground                | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256                                                                                           | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451                                                                 |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground                | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>3<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5<br>control<br>5                                                     | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657                                                                                 | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521                                                                           |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Root        | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492                                                                       | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957                                                    |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground                | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508                                                             | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451                                          |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Root        | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508<br>25.596                                                   | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451<br>3. 754                                |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Root        | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>3<br>control<br>2<br>2<br>3<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>cont           | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508<br>25.596<br>38.26                                          | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451                                          |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Aboveground | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508<br>25.596<br>38.26<br>1 3.678                               | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451<br>3. 754<br>13. 098                     |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Root        | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>3<br>control<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508<br>25.596<br>38.26<br>1 3.678<br>25.317                     | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451<br>3. 754<br>13. 098<br>3. 836           |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Aboveground | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>cont   | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508<br>25.596<br>38.26<br>1 3.678<br>25.317<br>25.528           | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451<br>3. 754<br>13. 098<br>3. 836<br>3. 902 |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Aboveground | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2 | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508<br>25.596<br>38.26<br>1 3.678<br>25.317<br>25.528<br>32.813 | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451<br>3. 754<br>13. 098<br>3. 836           |
| _                       | Triumph-265        | Aboveground<br>Root<br>Aboveground<br>Aboveground | Replicate<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>1<br>2<br>3<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>control<br>2<br>cont   | Volume HCl<br>(ml)<br>23.184<br>29.321<br>30.275<br>7.5591<br>28.514<br>33.359<br>28.454<br>9.9225<br>22.885<br>37.475<br>32.749<br>17.86<br>29.653<br>26.256<br>16.657<br>8.9492<br>40.508<br>25.596<br>38.26<br>1 3.678<br>25.317<br>25.528           | (%)<br>4. 921<br>6. 854<br>7. 155<br>5. 856<br>7. 382<br>5. 837<br>1. 562<br>8. 178<br>4. 69<br>8. 521<br>5. 451<br>2. 427957<br>8. 451<br>3. 754<br>13. 098<br>3. 836<br>3. 902 |

Table 0. Conlinued

Table E. Mass loss of cotton residue.

| Sampling Da  | te Cultivar      | Residue | Replicale | Initial weight | Final weight | Ash   | mass loss        |
|--------------|------------------|---------|-----------|----------------|--------------|-------|------------------|
|              |                  |         |           | (g)            | (g)          | (g)   | (%)              |
| 01/07/94     | <b>OLP- 5690</b> | Leaves  | 1         | 0.9            | 0.62         | 0.17  | 16. 191          |
|              |                  | Leaves  | 2         | 0.9            | 0.64         | 0.17  | 15. 471          |
|              |                  | Leaves  | 3         | 0.9            | 0.63         | 0.17  | 15. <b>8</b> 31  |
|              |                  | Stens   | 1         | 1.1            | 0. 95        | 0.06  | 7. <b>94</b> 7   |
|              |                  | Stens   | 2         | 1.1            | 0. 99        | 0.06  | 6. 433           |
|              |                  | Stens   | 3         | 1.1            | 0. 91        | 0.06  | 9.461            |
|              |                  | Roots   | 1         | 2              | 1.8          | 0.44  | 4.616            |
|              |                  | Roots   | 2         | 2              | 1.88         | 0.44  | 4.039            |
|              |                  | Roots   | 3         | 2              | 1.75         | 0.44  | 4.977            |
|              | <b>DP</b> - 5215 | Leaves  | 1         | 0. 9           | 0. 83        | 0.16  | 4.464            |
|              |                  | Leaves  | 2         | 0.9            | 0.63         | 0. 16 | 13. 954          |
|              |                  | Leaves  | 3         | 0. 9           | 0.65         | 0.16  | 13. 305          |
|              |                  | Stens   | 1         | 1.1            | 0. 98        | 0.02  | 6. 137           |
|              |                  | Stems   | 2         | 1.1            | 0. 95        | 0. 02 | 7.452            |
|              |                  | Stens   | 3         | 1.1            | 0.98         | 0.02  | 6. 137           |
|              |                  | Roots   | 1         | 2              | 1.82         | 0.1   | 22               |
|              |                  | Roots   | 2         | 2              | 1.91         | 0.1   | 1.492            |
|              |                  | Roots   | 3         | 2              | 1.85         | 0.1   | 1.964            |
|              | t- E- 46         | Leaves  | 1         | 0. 9           | 0. 74        | 0.11  | 10.806           |
|              |                  | Leaves  | 2         | 0. 9           | 0.65         | 0. 11 | 14.542           |
|              |                  | Leaves  | 3         | 0. 9           | 0.6          | 0.11  | <b>16. 582</b>   |
|              |                  | Stens   | 1         | 1.1            | 0.8          | 0.16  | 16. 757          |
|              |                  | Stems   | 2         | 1.1            | 0. 92        | 0.16  | 12385            |
|              |                  | Stens   | 3         | 1.1            | 0.94         | 0.16  | 11.857           |
|              |                  | Roots   | 1         | 2              | 1.72         | 0.1   | 2.406            |
|              |                  | Roots   | 2         | 2              | 1.71         | 0.1   | 2.47             |
|              |                  | Roots   | 3         | 2              | 1.66         | 0.1   | <b>2.786</b>     |
| Sampling Dat | e Cultivar       | Residue | Replicate | Initial weight | Final weight | Ash   | mass <b>loss</b> |
|              |                  |         |           | (g)            | (g)          | (g)   | (%)              |
| 01/11/94     | <b>OLP- 5690</b> | Leaves  | 1         | 0.9            | 0.66         | 0.17  | 14. 752          |
|              |                  | Leaves  | 2         | 0.9            | 0.6          | 0.17  | 16. 911          |
|              |                  | Leaves  | 3         | 0.9            | 0. 61        | 0.17  | 16. 551          |
|              |                  | Stens   | 1         | 1.1            | 0.06         | 0.06  | 7.568            |
|              |                  | Stens   | 2         | 1.1            | 0. 93        | 0.06  | 8.704            |
|              |                  | Slens   | 3         | 1.1            | 0. 91        | 0.06  | 9. 481           |
|              |                  | Roots   | 1         | 2              | 1.7          | 0.44  | 5. 337           |
|              |                  | Roots   | 2         | 2              | 1.83         | 0.44  |                  |
|              |                  | Roots   | 3         | 2              | 1.75         | 0.44  | 4.977            |
|              | <b>DP</b> - 5215 | Leaves  | 1         | 0.9            | 0.66         | 0.16  | 12. 981          |
|              |                  | Leaves  | 2         | 0.9            | 0.56         | 0. 16 | 16. 228          |
|              |                  | Leaves  | 3         | 0.9            | 0.63         | 0.16  | 13.954           |
|              |                  | Stens   | 1         | 1.1            | 0.97         | 0. 02 | 6. 575           |
|              |                  | Stens   | 2         | 1.1            | 0. 98        | 0. 02 | 6. 137           |
|              |                  | Stens   | 3         | 1.1            | 0.96         | 0. 02 | 7.014            |
|              |                  | Roots   | 1         | 2              | 1.71         | 0.1   | 3.064            |
|              |                  | Roots   | 2         | 2              | 1.68         | 0.1   | 3.3              |
|              |                  | Roots   | 3         | 2              | 1.74         | 0.1   | 2.628            |

|               |                  | -                       |           |                    | 0.00           |                | 45.65             |
|---------------|------------------|-------------------------|-----------|--------------------|----------------|----------------|-------------------|
|               | HS-46            | Leaves                  | 1         | 0.9                | 0. 63          | 0.11           | 15.35             |
|               |                  | Leaves                  |           | 0.9                | 0.61           | 0.11           | 16.1 58           |
|               |                  | Leaves                  |           | 0.9                | 0.6            | 0.11           | 16.582            |
|               |                  | Sterns                  | 1         | 1.1                | 0. 78          | 0.16           | 17.485            |
|               |                  | Stens                   | 2         | 1.1                | 0.84           | 0.16           | 15.3              |
|               |                  | Stens                   | 3         | 1.1                | 0.89           | 0.16           | 13. 478           |
|               |                  | Roots                   | 1         | 2                  | 1.7            | 0.1            | 2. 533            |
|               |                  | Roots                   | 2         | 2                  | 1.56           | 0.1            | 3. 42             |
|               | - ···            | Roots                   | 3         | 2                  | 1.56           | 0.1            | 3. 42             |
| Sampling Date | Cultivar         | <b>R</b> esi due        | Replicate | Initial weight     | •              |                | rnass loss        |
|               |                  |                         |           | (g)                | (g)            | (g)            | (%)               |
| 01/18/94      | DLP-5690         |                         | 1         | 0.9                | 0. 59          |                | 17271             |
|               |                  | Leaves                  | 2         | 0.9                | 0. 63          | 0.17           | 15.631            |
|               |                  | Leaves                  | 3         | 0.9                | 0. 58          | 0.17           | 1' 7.63           |
|               |                  | Stems                   | 1         | 1.1                | 0. 93          | 0.06           | 8.704             |
|               |                  | Stems                   | 2         | 1.1                | 0.89           | 0.06           | 10.218            |
|               |                  | Stens                   | 3         | 1.1                | 0. 94          | 0. 08          | 8. 325            |
|               |                  | Roots                   | 1         | 2                  | 1.79           | 0.44           | 4.666             |
|               |                  | Roots                   | 2         | 2                  | 1.73           | 0.44           | 5.121             |
|               |                  | Roots                   | 3         | 2                  | 1.68           | 0.44           | 5.481             |
|               | <b>DP</b> - 5215 | Leaves                  | 1         | 0.9                | 0.61           | 0.16           | 14.603            |
|               | L                | eaves                   | 2         | 0.9                | 0. 62          | 0.16           | 14279             |
|               |                  | Leaves                  | 3         | 0.9                | 0. 52          | 0. 18          | 17. 524           |
|               |                  | Stens                   | 1         | 1.1                | 0. 92          | 0. 02          | 8.767             |
|               |                  | Stens                   | 2         | 1.1                | 0. 93          | 0. 02          | 8. 329            |
|               |                  | Stens                   | 3         | 1.1                | 0. 91          | 0. 02          | 9.206             |
|               |                  | Roots                   | 1         | 2                  | 1.7            | 0.1            | 3. 142            |
|               |                  | Roots                   | 2         | 2                  | 1.89           | 0.1            | 1.85              |
|               |                  | Roots                   | 3         | 2                  | 1.7            | 0.1            | 3. 142            |
|               | <b>HS-46</b>     |                         | 1         | 0. 9               | 0.58           | 0.11           | 17.37             |
|               |                  | Leaves                  | 2         | 0. 9               | 0.6            | 0.11           |                   |
|               |                  | Laaves                  | 3         | 0.9                | 0.5            |                | 20. 601           |
|               |                  | Stens                   | 1         | 1.1                | 0. 92          |                | 12.385            |
|               |                  | Stens                   | 2         | 1.1                | 0. 9 <b>2</b>  | 0.16           | 11.657            |
|               |                  | Stens                   | 3         | 1.1                | 0. 95          | 0.16           | 11.292            |
|               |                  | Roots                   | 1         | 2                  | 1.53           | 0.1            | 3.61              |
|               |                  | Roots                   | 2         | ~<br>2             | 1.47           | 0.1            | 3.99              |
|               |                  | Roots                   | 3         | 2                  | 1.6            | 0.1            | 3. 166            |
| Sampling Date | Cultivar         |                         |           | ~<br>Initialweight |                |                | mass bss          |
| Sampring Date | Quilivai         | Ne91 uuc                | replicate | (g)                | (g)            | (g)            | (%)               |
| 02/01/94      | <b>OLP- 5690</b> | Leaves                  | 1         | 0.9                | 0.47           | 0.17           | 21.588            |
| 0201154       | 0L1 - 3030       | Leaves                  | 2         | 0.9                | 0.55           | 0.17           | 16.71             |
|               |                  |                         | 23        |                    | 0.55           | 0. 17<br>0. 17 | 20.149            |
|               |                  | Laaves<br>Ste <b>ns</b> | 3<br>1    | 0. 9<br>1. 1       | 0.51           | 0.17           | 18. 543           |
|               |                  |                         | 1<br>2    |                    |                | 0. 00<br>0. 08 |                   |
|               |                  | Stems                   |           | 1.1                | 0.81<br>0.78   |                | 13.245            |
|               |                  | Stems                   | 3         | 1.1                | 0. 78<br>1. 50 | 0.06           | 14. 381<br>c. 121 |
|               |                  | Roots                   | 1         | 2                  | 1.59<br>1.58   | 0.44           | 6. 131<br>8 247   |
|               |                  | Roots                   | 2         | 2                  | 1.58           | 0.44           | 8.347             |
|               |                  | Roots                   | 3         | 2                  | 1.6            | 0.44           | 6. 059            |

# Table E. Continued

|             | DP- 521          | 5 Leaves | 1         | 0.9            | 0.5          | 0. 10         | 18. 173          |
|-------------|------------------|----------|-----------|----------------|--------------|---------------|------------------|
|             |                  | Leaves   | 2         | 0.9            | 0.53         | 0.16          | 17.2             |
|             |                  | Leaves   | 3         | 0.9            | 0. 52        | 0. 16         | 17. 524          |
|             |                  | Stems    | 1         | 1.1            | 0. 91        | 0.02          | 9. 206           |
|             |                  | Stems    | 2         | 1.1            | 0.85         | 0. 02         |                  |
|             |                  | Stems    | 3         | 1.1            | 0. 93        | 0.02          | 8. 329           |
|             |                  | Roots    | 1         | 2              | 1.37         | 0.1           | 5. 735           |
|             |                  | Roots    | 2         | 2              | 1.59         | 0.1           | 4.007            |
|             |                  | Roots    | 23        | 2              | 1.53         | 0.1           | 4. 478           |
|             |                  |          |           | 0.9            | 0. 51        | <b>0</b> . 11 |                  |
|             | ПЗ-40            | Leaves   | 1         |                |              |               |                  |
|             |                  | Leaves   | 2         | 0.9            | 0. 53        |               | <b>19. 391</b>   |
|             |                  | Leaves   | 3         | 0.9            | 0.46         | 0.11          | 22. 217          |
|             |                  | Stems    | 1         | 1.1            | 0.89         | 0.10          | 13. <b>478</b>   |
|             |                  | Stems    | 2         | 1.1            | 0.88         | 0.16          | 13.642           |
|             |                  | Slems    | 3         | 1.1            | 0.89         | 0. 18         | 13. 47 <b>8</b>  |
|             |                  | Roots    | 1         | 2              | 1.39         | 0.1           | 4. 496           |
|             |                  | Roots    | 2         | 2              | 1.43         | 0.1           | 4. 243           |
|             |                  | Roots    | 3         | 2              | 1.37         | 0. 1          | 4.623            |
| Sampling Da | te Cultivar      | Residue  | Replicate | Initiai weight | Final weight | Ash           | mass <b>loss</b> |
|             |                  |          |           | (g)            | (g)          | (g)           | (%)              |
| 03/01/94    | DLP- 5690        | Leaves   | 1         | 0.9            | 0. 41        | 0.17          | 8. 203           |
|             |                  | Leaves   | 2         | 0.9            | 0. 51        | 0.17          | 6. 98            |
|             |                  | Leaves   | 3         | 0. 9           | 0. 49        | 0.17          | 7. 209           |
|             |                  | Stens    | 1         | 1.1            | 0.65         | 0.06          | 5.647            |
|             |                  | Slens    | 2         | 1.1            | 0. 55        | 0.06          | 6. 993           |
|             |                  | Stens    | 3         | 1.1            | 0.8          | 0.06          | 4.127            |
|             |                  | Roots    | 1         | 2              | 1.43         | 0.44          | 5.505            |
|             |                  | Roots    | 2         | 2              | 126          | 0.44          | 6. 431           |
|             |                  | Roots    | 23        | 2              | 1.42         | 0.44          | 6. 431           |
|             |                  | Roota    | 3         | ~              | 1.14         | 0.11          | 5. 559           |
|             | <b>DP</b> - 5215 | Loover   | 1         | 0.9            | 0.47         | 0.16          | 7. <b>402</b>    |
|             | DP- 3213         | Leaves   | 1         |                |              |               |                  |
|             |                  | Leaves   | 2         | 0.9            | 0.49         |               | 7.151            |
|             |                  | Leaves   | 3         | 0.9            | 0. 42        | 0.16          | 8.03             |
|             |                  | Stens    | 1         | 1.1            | 0.59         | 0.02          | 6. 293           |
|             |                  | Stens    | 2         | 1.1            | 0.67         | 0.02          | 5. 343           |
|             |                  | Slens    | 3         | 1.1            | 0.71         | 0.02          | 4.866            |
|             |                  | Roots    | 1         | 2              | 1.36         | 0.1           | 4.56             |
|             |                  | Roots    | 2         | 2              | 1.33         | 0.1           | 4.676            |
|             |                  | Roots    | 3         | 2              | 1.35         | 0.1           | 4.75             |
|             | HS-46            | Leaves   | 1         | 0.9            | 0. 53        | 0.11          | 6. 32            |
|             |                  | Leaves   | 2         | 0.9            | 0.49         | 0. 11         | 6.647            |
|             |                  | Leaves   | 3         | 0.9            | 0. 48        | 0. 11         | 6. 979           |
|             |                  | Stens    | 1         | 1.1            | 0.84         | 0.18          | 4. 433           |
|             |                  | Stens    | 2         | 1.1            | 0.87         | 0.16          | 4. 116           |
|             |                  | Stens    | 3         | 1.1            | 0.81         | 0.16          | 4.75             |
|             |                  | Roots    | 1         | 2              | 1.32         | 0.1           | 4.94             |
|             |                  | Roots    | 2         | 2              | 125          | 0.1           | 5. 363           |
|             |                  | Roots    | 3         | 2              | 1.35         | 0.1           | 4.75             |
|             |                  |          |           | ~              | 2.00         |               |                  |

ž,

ħ

146

# Table E. Continued

| Sampling Date | Cultivar | Residue | Replicate | Initial weight | Final weight | Ash   | mass loss |
|---------------|----------|---------|-----------|----------------|--------------|-------|-----------|
|               |          |         |           | (g)            | (g)          | (g)   | (%)       |
| 03/29/94      | DLP-5690 | Leaves  | 1         | 0.9            | 0.54         | 0.17  | 8.587     |
|               |          | Leaves  | 2         | 0.9            | 0.54         | 0.17  | 6.587     |
|               |          | Leaves  | 3         | 0.9            | 0.67         | 0.17  | 4.1371    |
|               |          | Stems   | 1         | 1.1            | 0. 75        | 0.06  | 4.7       |
|               |          | Stems   | 2         | 1.1            | 0.8          | 0.06  | 4.127     |
|               |          | Stems   | 3         | 1.1            | 0.74         | 0.06  | 4.615     |
|               |          | Roots   | 1         | 2              | 1.62         | 0.44  | 4. 469    |
|               |          | Roots   | 2'        | 2              | 128          | 0.44  | 6. 322    |
|               |          | Roots   | 3         | 2              | 128          | 0.44  | 6. 322    |
|               | DP-521 5 | Leaves  | 1         | 0. 9           | 0. 78        | 0. 16 | 3.513     |
|               |          | Leaves  | 2         | 0.9            | 0.47         | 0. 16 | 7.402     |
|               |          | Leaves  | 3         | 0. 9           | 0.46         | 0.16  | 7.528     |
|               |          | Stems   | 1         | 1.1            | 0.46         | 0. 02 | 7.6       |
|               |          | Stems   | 2         | 1.1            | 0. 42        | 0. 02 | 8. 312    |
|               |          | Stems   | 3         | 1.1            | 0. 38        | 0. 02 | 8. 787    |
|               |          | Roots   | 1         | 2              | 1.06         | 0.1   | 6.586     |
|               |          | Roots   | 2         | 2              | 1.12         | 0.1   | 6.206     |
|               |          | Roots   | 3         | 2              | 1.14         | 0.1   | 6.08      |
|               | HS-46    | Leaves  | 1         | 0. 9           | 0.5          | 0.11  | 6. 715    |
|               |          | Leaves  | 2         | 0. 9           | 0.64         | 0.11  | 4.872     |
|               |          | Leaves  | 3         | 0. 9           | 0.66         | 0.11  | 4.608     |
|               |          | Stems   | 1         | 1.1            | 0.54         | 0.16  | 7.6       |
|               |          | Stetns  | 2         | 1.1            | 0. 63        | 0.16  | 6.65      |
|               |          | Stems   | 3         | 1.1            | 0. 56        | 0.18  | 7. 388    |
|               |          | Roots   | 1         | 2              | 12           | 0.1   | 5.7       |
|               |          | ROMS    | 2         | 2              | 1.14         | 0.1   | 6.08      |
|               |          | Roots   | 3         | 2              | 1.73         | 0.1   | 2.343     |

Table F. Mass loss of peanut residues.

| Sampling Date | e Cultivar  | Residue         | Replicate      | Initial weight      | Final weight         | Ash            | mass loss        |
|---------------|-------------|-----------------|----------------|---------------------|----------------------|----------------|------------------|
|               |             |                 |                | (g)                 | (g)                  | (g)            | (%)              |
| 01/07/94      | Florunne    |                 |                | 0. 57               | 0. 35                | 0.1            | 11.605           |
|               |             | Leaves          | 2              | 0. 57               | 0. 41                | 0.1            | 9.429            |
|               |             | Leaves          | 3              | 0.57                | 0. 37                | 0.1            | 10.88            |
|               |             | Stems           | 1              | 1.43                | 1.33                 | 0. 07          | 7. <b>876</b>    |
|               |             | Stems           | 2              | 1.43                | 1.35                 | 0. 07          | 6. 95            |
|               |             | Stems           | 3              | 1.43                | 1.29                 | 0. 07          | 9. 73            |
|               |             | Roots           | 1              | 2                   | 1.68                 | 023            | 1. 5 <b>8</b> 5  |
|               |             | Roots           | 2              | 2                   | 1.6                  | 023            | 1. 751           |
|               |             | Roots           | 3              | 2                   | 1.58                 | 023            | 1.807′           |
|               | NC- 7       | Leaves          | 1              | 0. 57               | 0.45                 | 0. 09          | 8.845            |
|               |             | Leaves          | 2              | 0. 57               | 0.4                  | 0. 09          | 10.951           |
|               |             | Leaves          | 3              | 0.57                | 0. 39                | 0. 09          | 11. 372          |
|               |             | Stems           | 1.             | 1.43                | 1.35                 | 0. 07          | 6. 75            |
|               |             | Stems           | 2              | 1.43                | 1.33                 | 0. 07          | 7.65             |
|               |             | Stems           | 3              | 1.43                | 1.36                 | 0. 07          | 6.3              |
|               |             | Roots           | 1.             | 2                   | 1.35                 | 024            | 1.867            |
|               |             | Roots           | 2              | 2                   | 1.29                 | 024            | 1.993            |
|               |             | Roots           | 3              | 2                   | 1.37                 | 024            | 1.825            |
|               | NC-I 1      | Leaves          | 1              | 0. 57               | 0. 37                | 0.16           | 14. 498          |
|               |             | Leaves          | 2              | 0. 57               | 0. 41                | 0.18           | <b>12.887</b>    |
|               |             | Leaves          | 3              | 0.57                | 0.47                 | 0.16           | 10. 471          |
|               |             | Stems           | 1              | 1.43                | 1.3                  | 0.04           | 7. 528           |
|               |             | Stems           | 2              | 1.43                | 1.31                 | 0.04           | 7.085            |
|               |             | Slems           | 3              | 1.43                | 1.28                 | 0.04           | 8.414            |
|               |             | Roots           | 1              | 2                   | 1.21                 | 0.44           | 2.772            |
|               |             | Roots           | 2              | 2                   | 1.19                 | 0.44           | 2.817            |
| Compling Data | Cultivor    | Roots           | 3<br>Deplicate | 2<br>Initial waight | 1.22<br>Final woight | 0.44           | 2.75             |
| Sampling Date | Cultival    | Residue         | Replicate      | -                   | -                    |                | mass loss        |
| 01/11/94      | Florunner   | Logvoc          | 1              | (g)                 | (g)                  | <b>(g)</b>     | (%)              |
| 01/11/54      | FIOLUIIIIEI |                 | 1              | 0.57                | 0. 43                | 0.1            | 8. 704           |
|               |             | Leaves          | 2              | 0.57                | 0.4                  | 0.1            | 9. 792<br>7. 070 |
|               |             | Leaves<br>Stems | 3<br>1         | 0.57                | 0.45                 |                | 7.979<br>5.56    |
|               |             | Stems           | 2              | 1.43<br>1.43        | 1.38<br>1.4          | 0. 07<br>0. 07 | 5. 56<br>4. 633  |
|               |             | Stems           | 23             | 1.43                | 1.4                  | 0.07           | 4. 033<br>6. 487 |
|               |             | Roots           | 1              | 2                   | 1.48                 | 023            | 2. 085           |
|               |             | Roots           | 2              | 2                   | 1.48                 | 023            | 2. 085<br>2. 085 |
|               |             | Roots           | 3              | 2                   | 1.5                  | 023            | 2. 029           |
|               | NC 7        | Leaves          | 1              | 0. 57               | 0. 31                | 0.09           | 14. 742          |
|               |             | Leaves          | 2              | 0. 57<br>0. 57      | 0.31                 | 0. 09<br>0. 09 | 13. 057          |
|               |             | Leaves          | 23             | 0. 57               | 0. 33                | 0.09           | 1023             |
|               |             | Stems           | 1              | 1.43                | 1.3                  | 0.07           | 9                |
|               |             | Stems           | 2              | 1.43                | 1. 29                | 0.07           | 9.45             |
|               |             | Stems           | 23             | 1.43                | 1.2                  | 0.07           | 13.5             |
|               |             | Roots           | 1              | 2                   | 122                  | 024            | 2.14             |
|               |             | Roots           | 2              | 2                   | 1.19                 | 024            | 2.203            |
|               |             | Roots           | 3              | 2                   | 123                  | 024            | 2.119            |
|               |             |                 |                |                     |                      |                |                  |

•

Table F. Mass loss of peanut residues.

|               |           | _         |          |                  |       |       |                 |
|---------------|-----------|-----------|----------|------------------|-------|-------|-----------------|
|               | NC - 11   | Leaves    | 1        | 0. 57            | 0. 31 | 0.16  | 113.915         |
|               |           | Leaves    | 2        | 0. 57            | 0.35  | 0.16  | 15.304          |
|               |           | Leaves    | 3        | 0. 57            | 0.4   | 0.16  | 13.29           |
|               |           | Stens     | 1        | 1.43             | 1.28  | 0.04  | 0. 414          |
|               |           | Stens     | 2        | 1.43             | 1.25  | 0.04  | 9. 742          |
|               |           | Stems     | 3        | 1.43             | 1.29  | 0.04  | 7.971           |
|               |           | Roots     | 1        | 2                | 1.12  | 0.44  | 2.975           |
|               |           | Roots     | 2        | 2                | 1.16  | 0.44  | 2.885           |
|               |           | Roots     | 3        | 2                | 1.02  | 0.44  | 3. 2            |
| Sampling Date | Cultivar  | Residue R | eplicate | Initial weight F |       | Ash   | mass loss       |
|               |           |           |          | (g)              | (g)   | (g)   | (%)             |
| 01/18/94      | Florunneı | Leaves    | 1        | 0. 57            | 0.33  | 0.1   | 12.331          |
|               |           | Leawes    | 2        | 0. 57            | 029   | 0.1   | 13. 7 <b>82</b> |
|               |           | L.eaves   | 3        | 0. 57            | 0.37  | 0.1   | <b>10.88</b>    |
|               |           | Stens     | 1        | 1.43             | 1.35  | 0.07  | 6.95            |
|               |           | Stens     | 2        | 1.43             | 1.34  | 0.07  | 7. 413          |
|               |           | Stems     | 3        | 1.43             | 1.32  | 0.07  | 8.34            |
|               |           | Roots     | 1        | 2                | 1.41  | 0.23  | 2. 279          |
|               |           | Roots     | 2        | 2                | 1.45  | 023   | <b>2.168</b>    |
|               |           | Roots     | 3        | 2                | 1.38  | 023   | 2.363           |
|               | NC - 7    | Leaves    | 1        | 0. 57            | 0.28  | 0.09  | 16.006          |
|               |           | Leaves    | 2        | 0. 57            | 0.28  | 0.09  | 18.008          |
|               |           | Leaves    | 3        | 0. 57            | 0.32  | 0.09  | 14.321          |
|               |           | Stems     | 1        | 1.43             | 1.26  | 0.07  | 110.8           |
|               |           | Stens     | 2        | 1.43             | 122   | 0.07  | 12.6            |
|               |           | Stems     | 3        | 1.43             | 121   | 0.07  | 13.05           |
|               |           | Roots     | 1        | 2                | 0. 99 | 0.24  | 2.622           |
|               |           | Roots     | 2        | 2                | 1.1   | 0.24  | 2.391           |
|               |           | Roots     | 3        | 2                | 0.95  | 0. 24 | 2. 7 <b>08</b>  |
|               | NC- 11    | Leawes    | 1        | 0. 57            | 0.36  | 0.16  | 14.901          |
|               |           | Leawes    | 2        | 0. 57            | 0.34  | 0.16  | 15.706          |
|               |           | Leawes    | 3        | 0. 57            | 0. 33 | 0.18  | 16.109          |
|               |           | Stems     | 1        | 1.43             | 126   | 0.04  | 9.3             |
|               |           | Stens     | 2        | 1.43             | 1.22  | 0.04  | 111.071         |
|               |           | Stens     | 3        | 1.43             | 1.25  | 0.04  | 9. 742          |
|               |           | Roots     | 1        | 2                | 0. 95 | 0.44  | <b>3. 358</b>   |
|               |           | Roots     | 2        | 2                | 0.98  | 0.44  | 329             |
|               |           | Roots     | 3        | 2                | 1.02  | 0.44  | 3. 2            |
| Sampling Date | e Cultiva |           |          | e Initial weight |       | Ash   | mass loss       |
| 1 8           |           |           | -        | (g)              | (g)   | (g)   | (%)             |
| 02/01/94      | Florunner | Leaves    | 1        | 0. 57            | 0. 42 | 0.1   | 9.067           |
|               |           | Leawes    | 2        | 0. 57            | 0.48  | 0.1   | 6.891           |
|               |           | Leawes    | 3        | 0.57             | 0.47  | 0.1   | 7253            |
|               |           | Stems     | 1        | 1. 43            | 1.3   | 0.07  | 9.266           |
|               |           | Sterns    | 2        | 1.43             | 1. 31 | 0.07  | a. 803          |
|               |           | Stems     | 3        | 1.43             | 1.35  | 0.07  | <b>6. 95</b>    |
|               |           | Roots     | 1        | 2                | 123   | 0.23  | 2. 78           |
|               |           | Roots     | 2        | 2                | 124   | 023   | 2. 752          |
|               |           | Roots     | 3        | 2                | 12    | 023   | 2.884           |
|               |           | 110VW     |          | ~                |       |       |                 |

#### Table F. Continued

| NC-                   | 7 Leave            | <b>s</b> 1 | 0.57     | 0.21           | 0.09         | 18.954           |
|-----------------------|--------------------|------------|----------|----------------|--------------|------------------|
|                       | Leaves             |            | 0.57     | 0. 3           | 0.09         | 15.163           |
|                       | Leaves             |            | 0.57     | 029            | 0.09         | 15.584           |
|                       | Stems              |            | 1.43     | 1.37           | 0.09<br>0.07 | <b>5.85</b>      |
|                       | Slems              | 2          | 1. 43    | 1.37           | 0.07         | J. 85<br>4. 95   |
|                       | Stems              |            | 1.43     | 1.37           | 0.07         | 4.95<br>5.85     |
|                       | Roots              |            | 2        | 0.85           | 0. 07        |                  |
|                       | Roots              |            | 2        | 0. 85<br>0. 96 | 0.24         | 2. 916<br>2. 665 |
|                       | Roots              |            | 2        | 0.90<br>0.91   | 0.24         | 2. 005<br>2. 79  |
| NC-L                  | 1 Leaves           |            | 0. 57    | 0.91           | 0. 24        | 2. 79<br>8. 66   |
|                       | Leaves             |            | 0.57     | 0. 31          | 0.16         | 9. 665           |
|                       | Leaves             |            | 0. 57    | 0. 49<br>0. 49 | 0.16         | 9. 665           |
|                       | Slems              |            | 1.43     | 0. 45<br>1. 37 | 0.04         | <b>4. 428</b>    |
|                       | Stems              | 2          | 1.43     | 1. 37          | 0.04         | 4. 420<br>3. 542 |
|                       | Stems              |            | 1.43     | 1. 38          | 0.04         | 3. 985           |
|                       | Roots              | 1          | <b>2</b> | 1. 04          | 0.44         | 3. 365<br>3. 155 |
|                       | Roots              | 2          | 2        | 1. 12          | 0.44         | 2. 975           |
|                       | Roots              |            | 2        | 1.09           | 0.44         | 2. 973<br>3. 043 |
| Sampling Date Cuttiva |                    |            |          | Final weight   | Ash          | mass loss        |
| oumphing Dute outtivu | Residue            | riopnouto  | (g)      | (g)            | (g)          | (%)              |
| 03/01/94 Florung      | n <b>er</b> Leaves | 5 1        | 0.57     | 0. 14          | 0.1          | 19.222           |
|                       | Leaves             |            | 0.57     | 6. 13          | 0.1          | 19.565           |
|                       | Leaves             |            | 0.57     | 0. 15<br>0. 16 | 0.1          | 1 a.497          |
|                       | Stems              | 1          | 1.43     | 1.18           | 0.07         | 14.826           |
|                       | Stems              | 2          | 1.43     | 124            | 0.07         | 12.046           |
|                       | Stems              | 3          | 1.43     | 1. 28          | 0.07         | 10.193           |
|                       | Roots              | 1          | 2        | 1. 35          | 0. 23        | 2. 556           |
|                       | Roots              | 2          | 2        | 1. 33          | 023          | 2.502            |
|                       | Roots              | 3          | 2        | 1. 34          | 023          | 2. 474           |
| NC- 7                 | Leaves             | 1          | 0.57     | 0. 49          | 0. 09        | 7.16             |
|                       | Leaves             | 2          | 0.57     | 0. 47          | 0. 09        | 8.003            |
|                       | Leaves             | 3          | 0. 57    | 0.48           | 0.09         | 7. 561           |
|                       | Stems              | 1          | 1. 43    | 123            | 0.07         | 12.15            |
|                       | Stems              | 2          | 1.43     | 1.25           | 0. 07        | 11.25            |
|                       | Slems              | 3          | 1.43     | 129            | 0. 07        | 9.45             |
|                       | Roots              | 1          | 2        | 121            | 024          | 2161             |
|                       | Roots              | 2          | 2        | 1. 39          | 024          | 1. 783           |
|                       | Rwts               | 3          | 2        | 126            | 0. 24        | 2.056            |
| NC-I                  | 1 Leaves           | 1          | 0.57     | 0. 52          | 0. 16        | 8.457            |
|                       | Leaves             | 2          | 0. 57    | 0. 51          | 0. 16        | 8.86             |
|                       | Leaves             | 3          | 0.57     | 0. 53          | 0. 16        | 8.054            |
|                       | Stems              | 1          | 1.43     | 1.33           | 0. 04        | 62               |
|                       | Slems              | 2          | 1.43     | 1.37           | 0. 04        | 4. 428           |
|                       | Slems              | 3          | 1.43     | 1.35           | 0.04         | 5. 314           |
|                       | Roots              | 1          | 2        | 1.73           | 0.44         | 1.6              |
|                       | Roots              | 2          | 2        | 1.65           | 0.44         | 1.78             |
|                       | Roots              | 3          | 2        | 1.67           | 0.44         | 1.735            |
|                       |                    |            |          |                |              |                  |

#### Table F. Continued

| Sampling | Date | Cultivar | Residue   | Replicate | Initial weight | Final weight | Ash   | mass loss |
|----------|------|----------|-----------|-----------|----------------|--------------|-------|-----------|
|          |      |          |           |           | (g)            | (g)          | (g)   | (%)       |
| 03/29/9  | 94   | Florunne | er Leaves | ; 1       | 0.57           | 0.15         | 0.1   | 4.268     |
|          |      |          | Leaves    | 2         | 0.57           | 0.26         | 0.1   | 3.365     |
|          |      |          | Leaves    | 3         | 0.57           | 0. 24        | 0.1   | 3.529     |
|          |      |          | Slems     | 1         | 1.43           | 0.66         | 0. 07 | 3. 08     |
|          |      |          | Stems     | 2         | 1.43           | 0.6          | 0. 07 | 3. 3      |
|          |      |          | Stems     | 3         | 1.43           | 0. 59        | 0. 07 | 3.336     |
|          |      |          | Roots     | 1         | 2              | 1.43         | 0. 23 | ' 1. 973  |
|          |      |          | Roots     | 2         | 2              | 1.6          | 0. 23 | '1.553    |
|          |      |          | Roots     | 3         | 2              | 1.64         | 0. 23 | '1.455    |
|          |      | NC- 7    | Leaves    | 1         | 0.57           | 0.4          | 0. 09 | 2.166     |
|          |      |          | Leaves    | 2         | 0.57           | 0.31         | 0. 09 | 2.916     |
|          |      |          | Leaves    | 3         | 0.57           | 0. 32        | 0. 09 | 2.833     |
|          |      |          | Slems     | 1         | 1.43           | 0.44         | 0. 07 | 3.886     |
|          |      |          | Stems     | 2         | 1.43           | 0. 55        | 0. 07 | 3.483     |
|          |      |          | Slems     | 3         | 1.43           | 0. 54        | 0. 07 | 3. 52     |
|          |      |          | Roots     | 1         | 2              | 0.7          | 0.24  | 3.781     |
|          |      |          | Roots     | 2         | 2              | 0. 73        | 0. 24 | 3.707     |
|          |      |          | Roots     | 3         | 2              | 0. 69        | 0. 24 | 3.805     |
|          |      | NC-1 '   | Leaves    | 1         | 0.57           | 0.3          | 0. 16 | 3. 239    |
|          |      |          | Leaves    | 2         | 0.57           | 0.21         | 0. 16 | 3.917     |
|          |      |          | Leaves    | 3         | 0. 57          | 0. 39        | 0. 16 | 2.561     |
|          |      |          | Stems     | 1         | 1.43           | 0. 56        | 0. 04 | 3.404     |
|          |      |          | Stems     | 2         | 1.43           | 0.61         | 0. 04 | 3.217     |
|          |      |          | Stems     | 3         | 1.43           | 0.65         | 0. 04 | 3.068     |
|          |      |          | Roots     | 1         | 2              | 1.56         | 0.44  | 1.983     |
|          |      |          | Roots     | 2         | 2              | 1.08         | 0.44  | 3.065     |
|          |      |          | Roots     | 3         | 2              | 1.37         | 0.44  | 2.41      |
|          |      |          |           |           |                |              |       |           |

Table G. Mass loss of sorghum residue.

| Sampling Da   | te Cultivar | Residue        | Replicate | Initial weight   | Final weight  | t Ash             | mass <b>loss</b>  |
|---------------|-------------|----------------|-----------|------------------|---------------|-------------------|-------------------|
|               |             |                |           | (g)              | (g)           | (g)               | (%)               |
| 01/07/94      | Triumph-266 | Leaves         | 1         | 0.85             | 0.66          | 0.2               | 13. 705           |
|               | •           | Leaves         | 2         | 0.85             | 0.7           | 0.2               | 12.3              |
|               |             | Leaves         | 3         | 0.85             | 0. 82         | 0.2               | 8. 082            |
|               |             | Stems          | 1         | 1.15             | 0.97          | 0.07              | 9. 118            |
|               |             | Stems          | 2         | 1.15             | 1.05          | 0.07              |                   |
|               |             | Stems          | 3         | 1.15             | 0.81          | 0.07              | 14. 954           |
|               |             | Roots          | 1         | 2                | 1. 72         | 0.34              | 4. 928            |
|               |             | Roots          | 2         | 2                | 1. 72         | 0.34              | <b>5. 166</b>     |
|               |             | Roots          | 23        | 2                |               |                   |                   |
|               | GW-744BR    |                | 1         | 0. 85            | 1.72          | 0. 34<br>0. 11    | 4. 928<br>13. 467 |
|               | Garrandic   |                | 2         |                  | 0.57          |                   |                   |
|               |             | Leaves         |           | 0.85             | 0. 52         | 0.11              | 15.216            |
|               |             | Leaves         | 3         | 0.85             | 0.46          | 0.11              | 17. 291           |
|               |             | Stems          | 1         | 1.15             | 0. 98         | 0.1               | 12.18             |
|               |             | Stens          | 2         | 1.15             | 1.02          | 0.1               | 9.68              |
|               |             | Stens          | 3         | 1.15             | 0.97          | 0.1               | 11.76             |
|               |             | Roots          | 1         | 2                | 1.49          | 0. 3              | 5.036             |
|               |             | Roots          | 2         | 2                | 1.07          | 0. 3              | 3.916             |
|               |             | Roots          | 3         | 2                | 1.64          | 0.3               | 4. 103            |
|               | NKing-300   |                | 1         | 0.85             | 0.8           | 0.14              | 8.047             |
|               |             | Leaves         | 2         | 0.85             | 0. 74         | 0.14              | 9. 141            |
|               |             | Leaves         | 3         | 0.85             | 0. 74         | 0.14              | 9. 141            |
|               |             | Stens          | 1         | 1.15             | 1.05          | 0. 05             | 5. <b>862</b>     |
|               |             | Stems          | 2         | 1.15             | 1.04          | 0. 05             | 6. 253            |
|               |             | Sterns         | 3         | 1.15             | 1.01          | 0. 05             | 7.425             |
|               |             | Roots          | 1         | 2                | 1.7           | 0.2               | <b>3. 84</b>      |
|               |             | Roots          | 2         | 2                | 1.71          | 02                | 3. 764            |
|               |             | Roots          | 3         | 2                | 1.5           | 02                | 5.377             |
| Sampling Date | Cultivar    |                | Replicate | Initial weight   |               | Ash               | mass <b>loss</b>  |
|               |             |                | •         | (g) <sup>¯</sup> | (g)           | (g)               | (%)               |
| 01/11/94      | Triumph-266 | Leaves         | 1         | 0.85             | 0.6           | 02                | 15.814            |
|               |             | Leaves         | 2         | 0.85             | 0.61          | 02                | 15.462            |
|               |             | Leaves         | 3         | 0.85             | 0.6           | 02                | 15.814            |
|               |             | Stems          | 1         | 1.15             | 1.08          | 0.07              | 5.146             |
|               |             | Stens          | 2         | 1.15             | 0. 0          | 0.07              | 11.672            |
|               |             | Stens          | 3         | 1.15             | 0. 91         | 0.07              | 11.307            |
|               |             | Roots          | 1         | 2                | 1.54          | 0.34              | 8. 358            |
|               |             | Roots          | 2         | 2                | 1.61          | 0.34              | 5.802             |
|               |             | Roots          | 3         | 2                | 1.71          | 0.34              | 5.007             |
|               | GW-744BR    | Leaves         | 1         | ~<br>0. 85       | 0.51          | 0.11              | 15. 562           |
|               |             | Leaves         | 2         | 0.85             | 0. 43         |                   | 18.329            |
|               |             | Leaves         | 23        | 0.85             | 0. 45         | 0.11              | 17.637            |
|               |             | Stens          | 3<br>1    | 0. 85<br>1. 15   | 0.43          | 0.1               | 20.16             |
|               |             | Stens          | 2         | 1. 15            | 0.88          | 0.1               | 20. 10<br>15. 51  |
|               |             | Stens<br>Stens | 2<br>3    | 1. 15            |               | 0.1<br><b>0.1</b> | 22.26             |
|               |             |                | 3<br>1    |                  | 0. 72<br>1 52 |                   |                   |
|               |             | Roots          |           | 2                | 1.53          | 0.3               | 4. 787            |
|               |             | Roots          | 2         | 2                | 1.03          | 0.3               | 4. 165            |
|               |             | Roots          | 3         | 2                | 1.65          | 0. 3              | 4.041             |

Table G. Continued

| ٨             | NKing-300        | Leaves | 1        | 0. 85        | 0. 68            | 0.14        | il. 335   |
|---------------|------------------|--------|----------|--------------|------------------|-------------|-----------|
|               |                  | Leaves | 2        | 0.85         | 0.6              | 0.14        | 14. 26    |
|               |                  | Leaves | 3        | 0.85         | 0.6              | 0.14        | 14. 26    |
|               |                  | Stens  | 1        | 1.15         | 1.04             | 0. 05       | 6. 253    |
|               |                  | Stems  | 2        | 1.15         | 0.86             | 0.05        | 13. 253   |
|               |                  | Stems  | 3        | 1.15         | 1                | 0.05        | 7.816     |
|               |                  | Roots  | 1        | 2            | 1. 47            | 02          | 5.607     |
|               |                  | Rools  | 2        | 2            | 1.49             | 0.2         | 5. 454    |
|               |                  | Roots  | 3        | 2            | 1. 56            | 02          | 4. 916    |
| Sampling Date | Cultivar         |        |          |              | Final weight     |             | mass loss |
|               | • uu.            |        |          | ( <u>0</u> ) | (g) <sup>~</sup> | <b>(0</b> ) | (%)       |
| 01/1 MU Tri   | iumph-266        | Leaves | 1        | 0. 85        | 0. 62            | 0.2         | 15.111    |
| •••••••       | ampii 200        | Leaves | 2        | 0.85         | 0. 58            | 0. 2        | 16. 517   |
|               |                  | Leaves | 3        | 0.85         | 0.51             | 02          | 18.977    |
|               |                  | Stens  | 1        | 1.15         | 0.84             | 0. 07       | 13.86     |
|               |                  | Slens  | 2        | 1.15         | 0. 69            | 0.07        |           |
|               |                  | Stens  | 3        | 1.15         | 0.83             | 0.07        | 14. 225   |
|               |                  | Roots  | 1        | 2            | 1. 41            | 0.34        | 7. 392    |
|               |                  | Roots  | 2        | 2            | 1.65             | 0.34        | 5. 484    |
|               |                  | Roots  | 3        | 2            | 1. 53            | 0.34        | 6. 438    |
| G             | ₩ 744BR          |        | 1        | 0. 85        | 0.44             | 0.11        | 17.983    |
| ų             |                  | Leaves | 2        | 0.85         | 0. 42            | 0.11        | 18.875    |
|               |                  | Leaves | 3        | 0.85         | 0. 35            | 0.11        | 21.095    |
|               |                  | Stens  | 1        | 1.15         | 0.8              | 0.1         | 18.9      |
|               |                  | Stens  | a        | 1. 15        | 0.74             | 0.1         | 21.42     |
|               |                  | Stens  | 3        | 1.15         | 0.64             | 0.1         | 25.62     |
|               |                  | Roots  | 1        | 2            | 1. 56            | 0.3         | 4. 478    |
|               |                  | Roots  | 2        | 2            | 1.65             | 0.3         | 4. 041    |
|               |                  | Roots  | 3        | 2            | 1.46             | 0.3         | 5. 222    |
| N             | King-300         | Leaves | 1        | ~<br>0. 85   | 0. 53            | 0.14        | 16. 82    |
|               | in ang tot       | Leaves | 2        | 0.85         | 0. 73            | 0.14        | 9. 507    |
|               |                  | Leaves | 3        | 0.85         | 0. 55            | 0.14        | 16.068    |
|               |                  | Stens  | 1        | 1.15         | 0.37             | 0.05        | 8. 989    |
|               |                  | Stens  | 2        | 1.15         | 0. 83            | 0. 05       | 14. 48    |
|               |                  | Stens  | 3        | 1.15         | 0.88             | 0.05        | 12.508    |
|               |                  | Roots  | 1        | 2            | 1. 53            | 02          | 5. 140    |
|               |                  | Roots  | a        | 2            | 1.44             | 02          | 5.638     |
|               |                  | Roots  | 3        | 2            | 1.43             | 02          | 5. 915    |
| Sampling Date | Cultivar         |        |          |              | Fïnal weight     |             |           |
|               | <b>V</b> ultirui |        | topno-to | (Q)          | (g)              | (g)         | (%)       |
| 02/01/94 Triu | umph-266         | Leaves | 1        | 0.85         | 0.44             | 02          | 21. 437   |
|               |                  | Leaves | 2        | 0. 85        | 0. 44            | 02          | 21.437    |
|               |                  | Leaves | 3        | 0.85         | 0. 41            | 02          | 22. 491   |
|               |                  | Stens  | 1        | 1.15         | 0. 74            | 0. 07       | 17. 508   |
|               |                  | Stens  | 2        | 1.15         | 0.58             | 0.07        | 23. 344   |
|               |                  | Stens  | 3        | 1. 15        | 0. 30<br>0. 74   | 0.07        | 17. 508   |
|               |                  | Roots  | 1        | 2            | 1.34             | 0.34        | 7.948     |
|               |                  | Roots  | 2        | ĩ            | 1.4              | 0.34        | 7. 471    |
|               |                  | Roots  |          | 2            | 1. 55            | 0.34        | 6279      |
|               |                  | 1.000  |          | 49           | 2,00             |             | vv        |

# Table G. Continued

| GW-744BR Leaves                | 1             | 0. 85               | 0.32                  | 0. 11             | 22. 133          |
|--------------------------------|---------------|---------------------|-----------------------|-------------------|------------------|
| Leaves                         |               | 0.85                | 0. 32                 | 0.11              | 22. <b>8</b> 25  |
| Leaves                         |               | 0.85                | 0. 3                  | 0.11              | 22. 825          |
| Stems                          | 1             | 1.15                | 0.6                   | 0.1               | 27.3             |
| Stems                          | 2             | 1.15                | 0.63                  | 0.1               | 26.04            |
| Stems                          | 3             | 1.15                | 0.72                  | 0.1               | 2226             |
| Roots                          | 1             | 2                   | 1.3                   | 0. 3              | 6. 217           |
| Roots                          | 2             | 2                   | 1.26                  | 0. 3              | 6.499            |
| Roots                          | 3             | 2                   | 1. 31                 | 0.3               | 6. 155           |
| NKing-300 Leaves               | 1             | 0.85                | 0.37                  | 0.14              | 22.67            |
| Leaves                         | 2             | 0.85                | 0.4                   | 0.14              | 21. 573          |
| Leaves                         | 3             | 0.85                | 0.52                  | 0.14              | 17.185           |
| Slens                          | 1             | 1.15                | 0. 81                 | 0.05              | 15242            |
| Stens                          | 2             | 1.15                | 0.68                  | 0.05              | 20. 323          |
| Stens                          | 3             | 1.15                | 0. 81                 | 0.05              | 15.242           |
| Roots                          | 1             | 2                   | 1.71                  | 0. 2              | 3. 764           |
| Roots                          | 2             | 2                   | 1.43                  | 0. 2              | 5.915            |
| Roots                          | 3             | 2                   | 1.21                  | 0.2               | 7.605            |
| Sampling Date Cultivar Residue | Replicate     | Initial weight      |                       |                   | mass loss        |
| 03/01/94 Triumph-266 Leaves    | 1             | <b>(g)</b>          | (g)                   | (g)               | (%)              |
| •                              | 1<br>2        | 0.85                | 0.48                  | 0.2               | 9. 174<br>7. 081 |
| Leaves                         | 2<br>3        | 0.85<br><b>0.85</b> | 0. 61<br><b>0. 48</b> | 0. 2<br><b>02</b> | 7. 081<br>9. 174 |
| Leaves<br>Stens                | 3<br>1        | 0. aj<br>1. 15      | 0. 48<br>0. 69        | 02<br>0. 07       | 9.174<br>7.351   |
| Stens                          | 2             | 1. 15               | 0. 84                 | 0.07              | 8. 034           |
| Stens                          | 3             | 1.15                | 0. 75                 | 0.07              | 6. 51            |
| Roots                          | 1             | 2                   | 1.33                  | 0.34              | 7. 204           |
| Roots                          | 2             | 2                   | 1.1                   | 0.34              | 8.955            |
| Roots                          | 3             | 2                   | 1.25                  | 0.34              | 7.872            |
| GW-744BR Leaves                | 1             | 0.85                | 0.44                  | 0. 11             | 9. 154           |
| Leaves                         | 2             | 0.85                | 0.5                   | 0. 11             | 8.097            |
| Leaves                         | 3             | 0.85                | 0.88                  | 0. 11             | 5.281            |
| Stens                          | 1             | 1.15                | 0. 56                 | 0.1               | 9. 328           |
| Stens                          | 2             | 1.15                | 0. 41                 | 0.1               | 11. 356          |
| Stens                          | 3             | 1.15                | 0.47                  | 0.1               | 10. 545          |
| Roots                          | 1             | 2                   | 1.06                  | 0. 3              | 9. 111           |
| Roots                          | 2             | 2                   | 1.08                  | 0.3               | 8. 984           |
| Roots                          | 3             | 2                   | 1.25                  | 0.3               | 7.715            |
| NKing-300 Leaves               | 1             | 0.85                | 0.68                  | 0.14              | 5.633            |
| Leaves                         | 2             | 0.85                | 0.56                  | 0.14              | 7.34             |
| Leaves                         | 3<br>⊀        | 0.85                | 0.57                  | 0.14              | 7. 109           |
| Sl ens<br>St out               | 1             | 1.15                | 0. 58                 | 0.05              | 8. 731<br>7.605  |
| Stens<br>Stors                 | 2<br>3        | 1. 15<br>1. 15      | 0. 68<br>0. 58        | 0.05              | 7.005<br>8.731   |
| Stens<br>Roots                 | 3<br>1        | 1. 15<br>2          | 0.58<br>127           | 0. 05<br>0. 2     | 8. 731<br>7. 144 |
| Roots                          | 1<br><b>2</b> | 2<br>2              | 1.22                  | 0. 2<br>0. 2      | 7. 144<br>7. 528 |
| Roots                          | 2<br>3        | 2                   | 0. 95                 | 0. 2<br>02        | 7.528<br>9.602   |
| 1000                           | 3             | 4                   | V, JJ                 | 5                 | 0.004            |

#### Table G. Continued

| Sampling Date Cultivar | Residue   | Replicate | Initial weight | Final weight | Ash   | mass loss      |
|------------------------|-----------|-----------|----------------|--------------|-------|----------------|
|                        |           |           | <b>(0</b> )    | (g)          | (g)   | (%)            |
| 03/29/94 Triumph-2     | 66 Leaves | 1         | 0.85           | 0.54         | 0.2   | 8.208          |
|                        | Leaves    | 2         | 0.85           | 0.54         | 0. 2  | 8.028          |
|                        | Leaves    | 3         | 0.85           | 0.67         | 0.2   | 6. 118         |
|                        | Stems     | 1         | 1.15           | 0.75         | 0. 07 | 6. 51          |
|                        | Stems     | 2         | 1.15           | 0.8          | 0.07  | 5. <b>8</b> 10 |
|                        | Stems     | 3         | 1.15           | 0.74         | 0.07  | 6. 649         |
|                        | Roots     | 1         | 2              | 1.62         | 0.34  | 52             |
|                        | Roots     | 2         | 2              | 1.26         | 0.34  | 7.655          |
|                        | Roots     | 3         | 2              | 128          | 0.34  | 7.655          |
| GW-744BF               | Leaves    | 1         | 0.85           | 0.78         | 0.11  | 3. 166         |
|                        | Leaves    | 2         | 0.85           | 0.47         | 0.11  | 8.626          |
|                        | Leaves    | 3         | 0.85           | 0.46         | 0.11  | 8.802          |
|                        | Stems     | 1         | 1.15           | 0.46         | 0.1   | 10. 41         |
|                        | Stems     | 2         | 1.15           | 0.42         | 0.1   | 11221          |
|                        | Stems     | 3         | 1.15           | 0. 38        | 0.1   | 11.762         |
|                        | Roots     | 1         | 2              | 1.06         | 0. 3  | 9.111          |
|                        | Roots     | 2         | 2              | 1.12         | 0. 3  | 8.07           |
|                        | Roots     | 3         | 2              | 1.14         | 0.3   | 8. 523         |
| NKing-300              | Leaves    | 1         | 0.85           | 0.5          | 0.14  | 8.364          |
| _                      | Leaves    | 2         | 0.85           | 0.84         | 0.14  | 5.974          |
|                        | Leaves    | 3         | 0.85           | 0.86         | 0.14  | 5.633          |
|                        | Stetns    | 1         | 1.15           | 0.54         | 0. 05 | 9295           |
|                        | Stens     | 2         | 1.15           | 0.83         | 0. 05 | 8.027          |
|                        | Stems     | 3         | 1.15           | 0.56         | 0. 05 | 9.013          |
|                        | Roots     | 1         | 2              | 1.2          | 02    | 7.581          |
|                        | Roots     | 2         | 2              | 1.14         | 02    | 8.142          |
|                        | Roots     | 3         | 2              | 1.73         | 02    | 3.61           |

| Table H. Chage in specific surface area of cotton resid |
|---------------------------------------------------------|
|---------------------------------------------------------|

| Sampling Oak  | Cultivar R | esidue Rep     | olicate | Specific surface<br>(mm^2) | Area  |
|---------------|------------|----------------|---------|----------------------------|-------|
| 01/07/94      | OLP-5690   | Leaves         | 1       | 1783.964                   |       |
|               | 0 0000     | Leaves         | 2       | 1688.235                   |       |
|               |            | Leaves         | 3       | 1723.844                   |       |
|               |            | Stems          | 1       | 1031.305                   |       |
|               |            | Stems          | 2       | 1035.622                   |       |
|               |            | Sterns         | 3       | 940.264                    |       |
|               | OP-5215    | Leaves         | 1       | 1812.851                   |       |
|               |            | Leaves         | 2       | 1796.842                   |       |
|               |            | Leaves         | 3       | 1842.36s                   |       |
|               |            | Stems<br>Stems | 1       | 853.434<br>938.412         |       |
|               |            | Stems          | 2<br>3  | 852.915                    |       |
|               | HS-46      | Leaves         | 1       | 1771.404                   |       |
|               |            | Leaves         | 2       | 1695.231                   |       |
|               |            | Leaves         | 3       | 1668.254                   |       |
|               |            | Stems          | 1       | 775.698                    |       |
|               |            | Sterns         | 2       | 814.905                    |       |
|               |            | Sterns         | 3       | 689.361                    |       |
| Sampling Date | Cuttivar R | esidue Rep     | licate  |                            | Агеа  |
|               |            |                |         | (m <b>m^2)</b>             |       |
| 01/11/94      | OLP-5690   | Leaves         | 1       | 1669.529                   |       |
|               |            | Leaves         | 2       | 1685.623                   |       |
|               |            | Leaves         | 3       | 1704.653                   |       |
|               |            | Stems<br>Stems | 1<br>2  | 914.833<br>912304          |       |
|               |            | Slems          | 2       | 898.732                    |       |
|               | OP-5215    | Leaves         | 1       | 1653,623                   |       |
|               | 01 0210    | Leaves         | 2       | 1689.874                   |       |
|               |            | Leaves         | 3       | 1656.231                   |       |
|               |            | Sterns         | 1       | 826.172                    |       |
|               |            | Stems          | 2       | 850.168                    |       |
|               |            | Stems          | 3       | 812.426                    |       |
|               | HS-46      | Leaves         | 1       | 1599.632                   |       |
|               |            | Leaves         | 2       | 1687231                    |       |
|               |            | Leaves         | 3       | 1653.966                   |       |
|               |            | Stems          | 1       | 794.396                    |       |
|               |            | Stems<br>Stems | 2<br>3  | 731.05<br>742.116          |       |
| Sampling Date | Cuttivar R | esidue Rep     |         |                            | Area  |
|               |            | esique rrep    | licate  | (mm^2)                     | 70.00 |
| 01/18/94      | OLP-6690   | Leaves         | 1       | 1564.326                   |       |
|               |            | Leaves         | 2       | 1661258                    |       |
|               |            | Leaves         | 3       | 1612258                    |       |
|               |            | Stems          | 1       | 930.92                     |       |
|               |            | Stems          | 2       | 802.536                    |       |
|               | <b></b>    | Stems          | 3       | 759.599                    |       |
|               | OP-5215    | Leaves         | 1       | 1563.258                   |       |
|               |            | Leaves         | 2       | 1602.365                   |       |
|               |            | Leaves         | 3       | 1699.532                   |       |

Table H. Continued.

|                         |                             | Stems                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 850.764                                                                                                                                                                                                                          |
|-------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                             | Stems                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 756.851                                                                                                                                                                                                                          |
|                         |                             | Stems                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 730.421                                                                                                                                                                                                                          |
|                         | HS-46                       | Leaves                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1498.632                                                                                                                                                                                                                         |
|                         |                             | Leaves                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1562.358                                                                                                                                                                                                                         |
|                         |                             | Ceaves                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1586.652                                                                                                                                                                                                                         |
|                         |                             | Stems                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 786.572                                                                                                                                                                                                                          |
|                         |                             | Stems                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 702.305                                                                                                                                                                                                                          |
|                         |                             | Stems                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 728.235                                                                                                                                                                                                                          |
| Sampling D              | ate Cultivar                | Residue                                                                                                                                                          | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific surface Area                                                                                                                                                                                                            |
| 00/01/04                |                             |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (mm^2)                                                                                                                                                                                                                           |
| 02/01/94                | OLP-5690                    | Leaves                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1532.698                                                                                                                                                                                                                         |
|                         |                             | Leaves                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1524.832                                                                                                                                                                                                                         |
|                         |                             | Leaves                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1499.362                                                                                                                                                                                                                         |
|                         |                             | Stems                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 871.182                                                                                                                                                                                                                          |
|                         |                             | Stems                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 805.519                                                                                                                                                                                                                          |
|                         |                             | Stems                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 825.423                                                                                                                                                                                                                          |
|                         | DP-521 <b>5</b>             | Leaves                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1542.632                                                                                                                                                                                                                         |
|                         |                             | Leaves                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1488.632                                                                                                                                                                                                                         |
|                         |                             | Leaves                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1586.382                                                                                                                                                                                                                         |
|                         |                             | Stems                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 719.324                                                                                                                                                                                                                          |
|                         |                             | Stems                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 798.262                                                                                                                                                                                                                          |
|                         |                             | Stems                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 711.258                                                                                                                                                                                                                          |
|                         | HS-46                       | Leaves                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1423.632                                                                                                                                                                                                                         |
|                         |                             | Leaves                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1399.865                                                                                                                                                                                                                         |
|                         |                             | Leaves                                                                                                                                                           | 3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1402.362                                                                                                                                                                                                                         |
|                         |                             | Stems<br>Stems                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 752.282                                                                                                                                                                                                                          |
|                         |                             |                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 663.487                                                                                                                                                                                                                          |
|                         |                             | Storn c                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 701 500                                                                                                                                                                                                                          |
| Sampling Da             | te Cultivar                 | Stern-s                                                                                                                                                          | 3<br>Declicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 701.589                                                                                                                                                                                                                          |
| Sampling Da             | ite Cultivar                | Stern-s<br>Residue                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Specific surface Area                                                                                                                                                                                                            |
|                         |                             | Residue                                                                                                                                                          | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific surface Area (mm <sup>4</sup> 2)                                                                                                                                                                                        |
| Sampling Da<br>03/01/94 | ite Cultivar<br>OLP-5690    | Residue<br>Leaves                                                                                                                                                | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific surface Area<br>(mm <sup>4</sup> 2)<br>1399.851                                                                                                                                                                         |
|                         |                             | Residue<br>Leaves<br>Leaves                                                                                                                                      | Replicate<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specific surface Area<br>(mm <sup>2</sup> )<br>1399.851<br>1465.654                                                                                                                                                              |
|                         |                             | Residue<br>Leaves<br>Leaves<br>Leaves                                                                                                                            | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific surface Area<br>(mm <sup>2</sup> )<br>1399.851<br>1465.654<br>1423.656                                                                                                                                                  |
|                         |                             | Residue<br>Leaves<br>Leaves<br>Stems                                                                                                                             | <b>Replicate</b><br>1<br>2<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Specific surface Area<br>(mm <sup>2</sup> )<br>1399.851<br>1465.654<br>1423.656<br>720.97                                                                                                                                        |
|                         |                             | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems                                                                                                                    | Replicate<br>1<br>2<br>3<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329                                                                                                                            |
|                         | OLP-5690                    | Residue<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems                                                                                                 | <b>Replicate</b><br>1<br>2<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654                                                                                                                 |
|                         |                             | Residue<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Leaves                                                                                       | Replicate<br>1<br>2<br>3<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329                                                                                                                            |
|                         | OLP-5690                    | Residue<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems                                                                                                 | Replicate 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632                                                                                                     |
|                         | OLP-5690                    | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Leaves<br>Leaves                                                                                       | Replicate 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987                                                                                         |
|                         | OLP-5690                    | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Leaves                                                                   | Replicate 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52                                                                              |
|                         | OLP-5690                    | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Leaves<br>Stems                                                                   | Replicate  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  2  3  1  2  2  2  2  2  2  2  2  2  2  2  2 | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52<br>775.231                                                                   |
|                         | OLP-5690                    | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems                                                           | Replicate  1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2                                                                                                                                                                                                                                                                                                                               | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52<br>775.231<br>683.739                                                        |
|                         | OLP-5690<br>DP-521 <b>5</b> | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems                                                  | Replicate  1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52<br>775.231<br>683.739<br>702.532                                             |
|                         | OLP-5690<br>DP-521 <b>5</b> | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Stems                                         | Replicate  1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Specific surface Area<br>(mm <sup>A</sup> 2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52<br>775.231<br>683.739<br>702.532<br>1399.12                                  |
|                         | OLP-5690<br>DP-521 <b>5</b> | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Stems<br>Leaves<br>Leaves                              | Replicate 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Specific surface Area<br>(mm^2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52<br>775.231<br>683.739<br>702.532<br>1399.12<br>1289.365                                   |
|                         | OLP-5690<br>DP-521 <b>5</b> | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Leaves<br>Stems | Replicate  1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2                                                                                                                                                                                                                                                                                                                   | Specific surface Area<br>(mm^2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52<br>775.231<br>683.739<br>702.532<br>1399.12<br>1289.365<br>1352.654<br>666.539<br>688.379 |
|                         | OLP-5690<br>DP-521 <b>5</b> | Residue<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems<br>Stems<br>Stems<br>Stems<br>Stems<br>Stems<br>Stems     | Replicate  1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2                                                                                                                                                                                                                                                                                                                   | Specific surface Area<br>(mm^2)<br>1399.851<br>1465.654<br>1423.656<br>720.97<br>772.329<br>805.654<br>1265.632<br>1356.987<br>1363.52<br>775.231<br>683.739<br>702.532<br>1399.12<br>1289.365<br>1352.654<br>666.539            |

# Table H. Continued.

| Sampling Da | te Cultivar | Residue | Replicate | Specific surface Area<br>(mm <sup>2</sup> ) |
|-------------|-------------|---------|-----------|---------------------------------------------|
| 03/29/94    | OLP-5690    | Leaves  | 1         | 1285.657                                    |
|             |             | Leaves  | 2         | 1301.562                                    |
|             |             | Leaves  | 3         | 1289.365                                    |
|             |             | Stems   | 1         | 688.201                                     |
|             |             | Stems   | 2         | 650.816                                     |
|             |             | Stems   | 3         | 683.338                                     |
|             | DP-5215     | Leaves  | 1         | 1288.741                                    |
|             |             | Leaves  | 2         | 1286.365                                    |
|             |             | Leaves  | 3         | 1198.562                                    |
|             |             | Stems   | 1         | 657.293                                     |
|             |             | Stems   | 2         | 728.534                                     |
|             |             | Slems   | 3         | 709.445                                     |
|             | HS-46       | Leaves  | 1         | 1285.632                                    |
|             |             | Leaves  | 2         | 1186.235                                    |
|             |             | Leaves  | 3         | 1254.238                                    |
|             |             | Stems   | 1         | 629.381                                     |
|             |             | Stems   | 2         | 640.825                                     |
|             |             | Stems   | 3         | 659.024                                     |

| Table I. | Change in | specific surface | area | of | peanut | residue. |
|----------|-----------|------------------|------|----|--------|----------|
|          |           |                  |      |    |        |          |

| Sampling Date  | Cultivar | Residue                 | Replicate | Specific surface            | Area |
|----------------|----------|-------------------------|-----------|-----------------------------|------|
|                |          | _                       |           | (m <b>m^2</b> )             |      |
| 01/07/94       | Florunne |                         | 1         | 2250.229                    |      |
|                |          | Leaves                  | 2         | 2250.942                    |      |
|                |          | Leaves                  | 3         | 2394.624<br>1500.112        |      |
|                |          | Stems                   | 1         | 1500.628                    |      |
|                |          | Slems                   | 2         | 1596.416                    |      |
|                |          | Stems                   | 3<br>1    | 1603.049                    |      |
|                | NC-7     | Leaves                  | 2         | 1590.483                    |      |
|                |          | Leaves                  | 2         | 1481.607                    |      |
|                |          | Leaves<br>Stems         | 5<br>1    | 1068.699                    |      |
|                |          | Slems                   | 2         | 1060.322                    |      |
|                |          | Stems                   | 3         | 987.738                     |      |
|                | NC-I 1   | Leaves                  | 1         | 2094.639                    |      |
|                |          | Leaves                  | 2         | 2161.695                    |      |
|                |          | Leaves                  | 3         | 2116.055                    |      |
|                |          | Stems                   | 1         | 1396.426                    |      |
|                |          | Slems                   | 2         | 1441.13                     |      |
|                |          | Slems                   | 3         | 1410.704                    |      |
| Sampling Date  | Cultivar |                         | Replicate | Specific surface            | Area |
|                |          |                         |           | (mm^2)                      |      |
| 01/11/94       | Florunne | er Leaves               | 1         | 1691.45                     |      |
|                |          | Leaves                  | 2         | 1633.52                     |      |
|                |          | Leaves                  | 3         | 1887.548                    |      |
|                |          | Stems                   | 1         | 1127.833                    |      |
|                |          | Stems                   | 2         | 1089.013                    |      |
|                |          | Stems                   | 3         | 1258.365                    |      |
|                | NC-7     | Leaves                  | 1         | 1501.869                    |      |
|                |          | Leaves                  | 2         | 1500.912                    |      |
|                |          | Leaves                  | 3         | 1481.343                    |      |
|                |          | Slems                   | 1         | 1001248                     |      |
|                |          | Stems                   | 2         | 1000.608                    |      |
|                | NC 11    | Stems                   | 3         | 987.562                     |      |
|                | NC-11    | Leaves                  | 1<br>2    | <b>2024.577</b><br>2133.938 |      |
|                |          | <b>Leaves</b><br>Leaves | 2         | 2035.256                    |      |
|                |          | Stems                   | 1         | 1349.718                    |      |
|                |          | Stems                   | 2         | 1422.825                    |      |
|                |          | Stems                   | 3         | 1356.837                    |      |
| Sampling Date  | Cultivar |                         |           | Specific surface            | Area |
| oumphing _ all | • =      |                         |           | (mm^2)                      |      |
| 01/18/94       | Florunne | er Leaves               | 1         | 1432.442                    |      |
|                |          | Leaves                  | 2         | 1507.52                     |      |
|                |          | Leaves                  | 3         | 2110.135                    |      |
|                |          | Stems                   | 1         | 954.981                     |      |
|                |          | Stems                   | 2         | 1005.013                    |      |
|                |          | Stems                   | 3         | 1406.757                    |      |
|                | NC-7     | Leaves                  | 1         | 1450.69                     |      |
|                |          | Leaves                  | 2         | 1343.436                    |      |
|                |          | Leaves                  | 3         | 1428.367                    |      |
|                |          |                         |           |                             |      |

.

Table 1. Continued.

| Compling Do    | NC-11         | Stems<br>Stems<br>Leaves<br>Leaves<br>Leaves<br>Stems<br>Stems<br>Stems | 1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3 | 967.120<br><b>895.623</b><br><b>952.258</b><br><b>1929.202</b><br><b>1489.548</b><br><b>1538.488</b><br><b>1286.135</b><br>993.03 1<br>1025.659 |
|----------------|---------------|-------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Da    |               | Residue                                                                 | Replicate                                 | Specific surface Area<br>(mm <sup>2</sup> )                                                                                                     |
| 02/01/94       | Florunner     | Leaves                                                                  | 1                                         | 1297.958                                                                                                                                        |
|                | , lorannoi    | Leaves                                                                  | 2                                         | 1368.958                                                                                                                                        |
|                |               | Leaves                                                                  | 3                                         | 1414. 867                                                                                                                                       |
|                |               | Stems                                                                   | 1                                         | 865, 305                                                                                                                                        |
|                |               | Stems                                                                   | 2                                         | 912.6384                                                                                                                                        |
|                |               | Stems                                                                   | 3                                         | 943. 256                                                                                                                                        |
|                | NC 7          | leaves                                                                  | 1                                         | 1405.664                                                                                                                                        |
|                |               | Leaves                                                                  | 2                                         | <b>1369. 728</b>                                                                                                                                |
|                |               | Leaves                                                                  | 3                                         | 1405.668                                                                                                                                        |
|                |               | Stems                                                                   | 1                                         | 937. 122                                                                                                                                        |
|                |               | Stems                                                                   | 2                                         | <b>926. 46</b> 5                                                                                                                                |
|                |               | Stems                                                                   | 3                                         | 937.125                                                                                                                                         |
|                | NC-1 1        | Leaves                                                                  | 1                                         | 1629. 843                                                                                                                                       |
|                |               | Leaves                                                                  | 2                                         | 1478. 431                                                                                                                                       |
|                |               | Leaves                                                                  | 3                                         | 1501.684                                                                                                                                        |
|                |               | Stems                                                                   | 1                                         | 1066. 562                                                                                                                                       |
|                |               | Stems                                                                   | 2                                         | <b>985. 621</b>                                                                                                                                 |
| Sampling D a t | o Cuttivor    | Stems                                                                   | 3<br>Realizate                            | 1001. 123                                                                                                                                       |
| Camping Dat    |               | Residue                                                                 | Replicate                                 | Specific surface Area (mm <sup>4</sup> 2)                                                                                                       |
| 03/01/94       | Florunner     | عميدما                                                                  | 1                                         | 1297. 957                                                                                                                                       |
| 00101134       | r ioi diffici | Leaves                                                                  | 2                                         | 1368.957                                                                                                                                        |
|                |               | Leaves                                                                  | 3                                         | 1414. 867                                                                                                                                       |
|                |               | Stems                                                                   | 1                                         | 665. 305                                                                                                                                        |
|                |               | Stems                                                                   | 2                                         | 912.638                                                                                                                                         |
|                |               | Stems                                                                   | 3                                         | 943. 258                                                                                                                                        |
|                | NC- 7         | Leaves                                                                  | 1                                         | 1377. 768                                                                                                                                       |
|                |               | Leaves                                                                  | 2                                         | 1349.848                                                                                                                                        |
|                |               | Leaves                                                                  | 3                                         | 1216. 284                                                                                                                                       |
|                |               | Stems                                                                   | 1                                         | 918. 511                                                                                                                                        |
|                |               | Stems                                                                   | 2                                         | <b>899. 898</b>                                                                                                                                 |
|                |               | Stems                                                                   | 3                                         | 810. 856                                                                                                                                        |
|                | NC-11         | Leaves                                                                  | 1                                         | 1 <b>624</b> . 731                                                                                                                              |
|                |               | Leaves                                                                  | 2                                         | 1479. 354                                                                                                                                       |
|                |               | Leaves                                                                  | 3                                         | <b>1494. 387</b>                                                                                                                                |
|                |               | Stems                                                                   | 1                                         | 1063.154                                                                                                                                        |
|                |               | Stems                                                                   | 2                                         | 986. 236                                                                                                                                        |
|                |               | Stems                                                                   | 3                                         | 996. 256                                                                                                                                        |

#### Table 1. Continued.

| Sampling ; Da | te Cullivar | Rasi due | Replicate | Specific surface Area<br>(mm^2) |
|---------------|-------------|----------|-----------|---------------------------------|
| 0329194       | Florunner   | Leaves   | 1         | 1254. 329                       |
|               |             | Leaves   | 2         | 1287.852                        |
|               |             | Leaves   | 3         | 1297. 987                       |
|               |             | Stens    | 1         | 838.219                         |
|               |             | Stens    | 2         | 845.235                         |
|               |             | Stems    | 3         | B65.125                         |
|               | NC- 7       | Leaves   | 1         | 1254. 32                        |
|               |             | Leaves   | 2         | 1281.192                        |
|               |             | L. eaves | 3         | 1216.537                        |
|               |             | Stems    | 1         | 836.213                         |
|               |             | Stems    | 2         | 854.128                         |
|               |             | Stens    | 3         | 811.025                         |
|               | NC-11       | Leaves   | 1         | 1591.717                        |
|               |             | Leaves   | 2         | 1437. 391                       |
|               |             | Leaves   | 3         | 1494.048                        |
|               |             | Stems    | 1         | 1061.145                        |
|               |             | Stems    | 2         | 958. 261                        |
|               |             | Stems    | 3         | 996.031                         |

| Table J. Change | in specific sur | face area (     | of sorghum    | residue.                                    |
|-----------------|-----------------|-----------------|---------------|---------------------------------------------|
| Sampling Date   | Cultivar        | Residue         | Replicate     | Specific surface Area<br>(mm <sup>2</sup> ) |
| 01107194        | Triumph-266     | Leaves          | 1             | 2371. 251                                   |
| 01107134        | mumpii-200      | Leaves          | 2             | 1294. 83                                    |
|                 |                 | Leaves          | 3             | 1306. 202                                   |
|                 |                 | Stems           | 1             | 1580. 634                                   |
|                 |                 | Stems           | 2             | 836. 219                                    |
|                 |                 | Stems           | 3             | 870. 801                                    |
|                 | GW-7448R        |                 | 1             | 1628.68                                     |
|                 |                 | Leaves          | 2             | 1859.15                                     |
|                 |                 | Leaves          | 3             | 1377. 775                                   |
|                 |                 | Stens           | 1             | 1085. 787                                   |
|                 |                 | Stens           | 2             | 1239. 433                                   |
|                 |                 | Stens           | 3             | 918. 516                                    |
|                 | NKing-300       |                 | 1             | 1921. 103                                   |
|                 | 0               | Leaves          | 2             | 1487. 885                                   |
|                 |                 | Leaves          | 3             | 2274. 091                                   |
|                 |                 | Stems           | 1             | 1280. 735                                   |
|                 |                 | Slems           | 2             | 991.923                                     |
|                 |                 | Stems           | 3             | 1516.061                                    |
| Sampling Date   | Cultivar I      | Residue         | Replicate     | Specific surface Area                       |
|                 |                 |                 |               | (mm^2)                                      |
| 01/11/94        | Triumph-266     | Leaves          | 1             | 1565.75                                     |
|                 |                 | Leavw           | 2             | 1657. 125                                   |
|                 |                 | Leaves          | 3             | 1581.609                                    |
|                 |                 | Stems           | 1             | 1057. 167                                   |
|                 |                 | Stems           | 2             | <b>1104.75</b>                              |
|                 | 014/74400       | Slems           | 3             | 1054.539                                    |
|                 | GW-7448R        |                 | 1             | 1766.847                                    |
|                 |                 | Leaves          | 2             | 1641. 172<br>1949 059                       |
|                 |                 | Leaves<br>Stems | <b>3</b><br>1 | 1343. 953<br>1177. <b>898</b>               |
|                 |                 | Slems           | 2             | 1094. 115                                   |
|                 |                 | Stems           | 3             | 895.988                                     |
|                 | NKing-300       |                 | 1             | 1512.66                                     |
|                 | in any over     | Leaves          | 2             | 1431.586                                    |
|                 |                 | Leaves          | 3             | 1487.132                                    |
|                 |                 | Slens           | 1             | 1008.454                                    |
|                 |                 | Slens           | 2             | 954. 39                                     |
|                 |                 | Slens           | 3             | 965. 421                                    |
| Sampling Date   | Cultivar R      | lesidue         | Replicate     | Specific surface Area                       |
|                 |                 |                 |               | (mm*2)                                      |
| 01/18/94        | Triumph-266     | Leaves          | 1             | 1720.478                                    |
|                 |                 | Leaves          | 2             | 1494. 911                                   |
|                 |                 | Leaves          | 3             | 139201                                      |
|                 |                 | Slems           | 1             | 1146. 985                                   |
|                 |                 | Stems           | 2             | 996.607                                     |
|                 | 014/7/105       | Stems           | 3             | 928.006                                     |
|                 | GW-7448R        |                 | 1             | 1393. 95                                    |
|                 |                 | Leaves          | 2             | 1645. 371                                   |
|                 |                 | Leaves          | 3             | 1371.543                                    |

, i

M (110)11-0+

Table J. Change in specific surface area of sorghum residue.

|                   |             | Stens            | 1               | 929. 3                |
|-------------------|-------------|------------------|-----------------|-----------------------|
|                   |             | Stens            | 2               | 1096.914              |
|                   |             | Stems            | 3               | 914.362               |
|                   | NKing-300   | Leaves           | 1               | 1703. 716             |
|                   |             | Leaves           | 2               | 1360. 117             |
|                   |             | Leaves           | 3               | 1290. 498             |
|                   |             | Stems            | 1               | 1135.81               |
|                   |             | Stems            | 2               | 900. 745              |
| Outralian Data    | 0.11        | Stems            | 3<br>Deviliante | 860. 332              |
| Sampling Date     | Cultivar    | Residue          | Replicate       | Specific surface Area |
| 02/01/94          | Toursh 966  |                  | 4               | (mm <sup>*</sup> 2)   |
| 02/01/94          | Triumph-266 |                  | 1               | 1914.823              |
|                   |             | Leaves<br>Leaves | 2<br>3          | 1340.288<br>1307.354  |
|                   |             | Slems            | 3<br>1          | 1278.548              |
|                   |             | Stems            | 2               | 893.525               |
|                   |             | Stems            | 23              | 871.569               |
|                   | GW-744BR    |                  | 1               | 1399.205              |
|                   |             | Leaves           | 2               | 1229.792              |
|                   |             | Leaves           | 3               | 1300.349              |
|                   |             | Stems            | 1               | 932.803               |
|                   |             | Stems            | 2               | 819. 861              |
|                   |             | Stems            | 3               | 866.899               |
|                   | NKing-300   | Leaves           | 1               | 1664. 187             |
|                   |             | Leaves           | 2               | 1342.443              |
|                   |             | Leaves           | 3               | 1342.872              |
|                   |             | Stems            | 1               | 1109.658              |
|                   |             | Stems            | 2               | 894.962               |
| • · · · · · · · · | • •••       | Stems            | 3               | 895247                |
| Sampling Date     | Cultivar    | Residue          | Replicate       | Specific surface Area |
| 03/01/94          | Townsh 266  | Leaves           | 1               | (mm^2)                |
| 03/01/94          | Triumph-266 |                  | 1               | 1231.095              |
|                   |             | Leaves<br>Leaves | 2               | 1892.18               |
|                   |             | Stens            | <b>3</b><br>1   | 1430. 478<br>820. 73  |
|                   |             | Stens            | 2               | 1261.453              |
|                   |             | Stens            | 23              | 953. 851              |
|                   | GW-744BR    | Leaves           | 1               | 133. 533              |
|                   |             | Leaves           | 2               | 1319. 422             |
|                   |             | Leaves           | 3               | 1208. 443             |
|                   |             | Stens            | 1               | 887. 021              |
|                   |             | Stens            | 2               | 879.632               |
|                   |             | Slens            | 3               | 805.632               |
|                   | NKing-300   | Leaves           | 1               | 1203. 354             |
|                   |             | Leaves           | 2               | 1293. 157             |
|                   |             | Leaves           | 3               | 1366.153              |
|                   |             | Stems            | 1               | 802235                |
|                   |             | Stems            | 2               | 862.104               |
|                   |             | Stems            | 3               | <b>910. 788</b>       |
|                   |             |                  |                 |                       |

# Table J. Continued.

ł.

| Sampling Date | Cuttivar    | Residue | Replicate | Specific surface Area |
|---------------|-------------|---------|-----------|-----------------------|
|               |             |         |           | (mm^2)                |
| 03/29/94      | Triumph-266 | Leaves  | 1         | 1093.314              |
|               |             | Leaves  | 2         | 1 507.983             |
|               |             | Leaves  | 3         | 1288.835              |
|               |             | Stems   | 1         | 728.878               |
|               |             | Stems   | 2         | 1005. 322             |
|               |             | Stems   | 3         | a59223                |
|               | GW-744BR    | Leaves  | 1         | 1250.348              |
|               |             | Leaves  | 2         | 1243. <b>08</b>       |
|               |             | Leaves  | 3         | 1231.973              |
|               |             | Stems   | 1         | 833. 565              |
|               |             | Stems   | 2         | 828.719               |
|               |             | Stems   | 3         | 821.315               |
|               | NKing-300   | Leaves  | 1         | 1302.674              |
|               | J           | Leaves  | 2         | 1254286               |
|               |             | Leaves  | 3         | 1261.079              |
|               |             | Stems   | 1         | 868. 449              |
|               |             | Stems   | 2         | 838.19                |
|               |             | Stems   | 3         | 840. 719              |

Table K. ANOVA for CO2 evolution from no-till and plowed soils amended with peanut residue.

| SOURCE                                | DF | SS                  | MS                   | F                  | Significant |
|---------------------------------------|----|---------------------|----------------------|--------------------|-------------|
| Soil                                  | 1  | 9. 060368           | 9. 060368            | 0. 05674475        |             |
| Depth                                 | 3  | 1106. 07699         | 368. 69233           | 2.30910625         |             |
| <ul> <li>linear</li> </ul>            | 1  | <b>26. 849355</b>   | <b>20. 8493.</b> .   | 0. 1681565         |             |
| - quadratic                           | 1  | 7. 392884           | 7. 392864            | 0.04630136         |             |
| • cubic                               | 1  | 1071. 83475         | 1071. 834751         | 6.7128609          | •           |
| Soil*Dpth                             | 3  | 4676. 36659         | 1558.788529          | 9. 76263418        | 11          |
| • linear                              | 1  | <b>2472. 33803</b>  | 2472. 338032         | 15.4841605         | ***         |
| <ul> <li>quadratic</li> </ul>         | 1  | 1628. 7657          | 1628. 765698         | 10. 2008986        | ***         |
| • cubic                               | 1  | 575. <b>2618</b> 57 | 575. 261857          | 3. 60264340        |             |
| Error (a)                             | 16 | 2554. 70163         | 159. 6688456         |                    |             |
| Time                                  | S  | 11358. 725          | 2271. 744999         | 72. 4864128        | ***         |
| • linear                              | 1  | 9058.0113           | 9058. 011295         | <b>289. 021323</b> | ***         |
| - quadratic                           | 1  | 1907. 3793          | 1907. 379302         | 60.8603006         | ***         |
| • cubi c                              | 1  | <b>366. 842741</b>  | 368. 842741          | 11. 7689649        | **          |
| - quartic                             | 1  | 17. 187227          | 17. 187227           | 0. 54640681        |             |
| - quintic                             | 1  | 7. 304431           | 7.304431             | 0. 23306841        |             |
| Soil*Time                             | S  | 106. 522397         | 21. 3044794          | 0. 67977933        |             |
| - linear                              | 1  | <b>89. 455435</b>   | <b>89. 455435</b>    | 2.85432722         |             |
| - quadratic                           | 1  | 15. <b>6028</b> 14  | 15. 602814           | 0. 49785166        |             |
| - cubic                               | 1  | 0. 041369           | 0.041369             | 0. 00131999        |             |
| - quartic                             | 1  | 0. 093946           | 0. 093946            | 0. 00299761        |             |
| - quintic                             | 1  | 1. 328833           | 1.326833             | 0.04240015         |             |
| - linear linear                       | 1  | 1. 226565           | 1. 226565            | 0. 03913701        |             |
| <ul> <li>linear*quadratic</li> </ul>  | 1  | 4.909641            | 4.909641             | 0. 1566559         |             |
| - linear cubic                        | 1  | 286. 681271         | 286. 681271          | 9. 15375372        | **          |
| <ul> <li>quadratic*linear</li> </ul>  | 1  | 0. 076256           | 0. 076258            | 0. 00243316        |             |
| -quadratic*quadratic                  | 1  | 2. 556083           | 2. 556083            | 0. 08155902        |             |
| -quadratic*cubic                      | 1  | 144. 013663         | 144. 013 <b>8</b> 33 | 4. 5951673         | *           |
| - cubic*linear                        | 1  | 5.070099            | 5.070099             | 0.16177577         |             |
| <ul> <li>cubic*quadratic</li> </ul>   | 1  | 1.866062            | 1.866062             | 0. 05954196        |             |
| <ul> <li>cubic*cubic</li> </ul>       | 1  | 54. 063451          | 54.063451            | 1.72504644         |             |
| <ul> <li>quartic*linear</li> </ul>    | 1  | <b>18. 318810</b>   | 18. 318618           | 0. 5845134         |             |
| <ul> <li>quartic*quadratic</li> </ul> | 1  | 0. 42737            | 0. 42737             | 0.01383644         |             |
| - quartic*cubic                       | 1  | 2. 226306           | 2.226306             | 0. 07103655        |             |
| - quintic*linear                      | 1  | 1.416799            | 1.416799             | 0. 04520698        |             |
| <ul> <li>quintic*quadratic</li> </ul> | 1  | 0. 233665           | 0. 233 <b>88</b> 5   | 0. 00745638        |             |
| - quintic*cubic                       | 1  | 3. 00459            | 3. 00459             | 0. 09588989        |             |

,

Table K. Continued.

| SOURCE                | D F | SS         | MS          | F S        | lignificant |
|-----------------------|-----|------------|-------------|------------|-------------|
| S * D T               | 15  | 1680.73547 | 112.0490311 | 3.57523944 | **          |
| linear*linear*linear  | 1   | 889.677402 | 869.677402  | 27.749503  | 2 🕶         |
| linear*linear*quadrat | 1   | 361.994844 | 361.994844  | 11.550463  | 5 ***       |
| linear linear cubic   | 1   | 15.976778  | 15.976778   | 0.50978403 |             |
| linear*quadratic*line | 1   | 159.618111 | 159.618111  | 5.09306471 | ×           |
| lineafquadratic'qua   | 1   | 136.314224 | 136.314224  | 4.34948866 | ĸ           |
| linear*quadratic*cubi | 1   | 26.63316   | 26.63316    | 0.84980587 |             |
| linear*cubic*linear   | 1   | 8.394755   | 8.394755    | 0.26785827 |             |
| lineaf cubic quadrati | 1   | 48.573996  | 48.573996   | 1.54988994 |             |
| linear*cubic*cubic    | 1   | 27.897104  | 27.897604   | 0.89013556 |             |
| linear*quartic*linear | 1   | 9.84662    | 9.64662     | 0.30780254 |             |
| linear quartic quadra | 1   | 2.809419   | 2.809419    | 0.08964241 |             |
| linear*quartic*cubic  | 1   | 5.47294    | 5.47294     | 0.17462954 |             |
| linear quintic linear | 1   | 7.347722   | 7.347722    | 0.23444973 |             |
| lineaf quintic quadra | 1   | 0.212978   | 0.212978    | 0.00679588 |             |
| linear*quintic*cubic  | 1   | 0.165413   | 0.165413    | 0.00527797 |             |
| Error (b)             | 80  | 2507.22298 | 31.34028725 |            |             |
| Total                 | 143 | 24525.7012 |             |            |             |
| PE (a+b)              |     |            |             |            |             |
|                       |     |            |             |            |             |