CCOCCLOS

APPLICATION DE LA THÉORIE D'EKMAN À L'ÉTUDE DES COURANTS ET DES REMONTÉES D'EAUX PROFONDES LE LONG DES CÔTES SÉNÉGALAISES

par

C. TEISSON(1)

INTRODUCTION

1. THEORIE D'EKMAN

1

- 1.1. Courants de dérive pure provoqués par le vent dans un océan homogène 1,1.1. Mise en équation
 - 1.1.2. Résolution du problème
 - 1.1.2.1. Cas de la profondeur infinie
 - 1.1.2.2. Cas de la profondeur finie

1.2. Courants de pente

- 1.3. Circulation littorale superposition des courants de pente et de dérive
 - 1.3.1. Conditions aux limites imposées par une côte
 - 1.3.2. Structure verticale des flux
 - 1.3.3. Cas d'un vent de direction quelconque par rapport à la côte
- 1.4. Applications pratiques
 - 1,4,1, Rappel des résultats de la théorie d'Ekman
 - 1.4.2. Détermination de la contrainte due au vent sur la surface de la mer
 - **1.4.3.** Le **problème** de la détermination du coefficient de viscosité virtuelle
 - 1.4.3.1. Considérations théoriques
 - 1.4.3.2. Méthodes empiriques
 - 1.4.4, Calcul de la vitesse de dérive et de la profondeur d'influence de frottement

2. APPLICATION AUX COTES SENEGALAISES

- 2.1. Courant de surface du au vent en saison froide
- 2.2. Circulation en surface et sur le fond sur la Petite Côte
- 2.3, Indice d'upwelling côtier : calcul du transport d'Ekman influence de l'orientation de la côte par rapport à la direction du vent

(1) Océanologue-physicien, coopérant VSW de l'ORSTOM.

2

- 2.3.1. Méthode de calcul de l'indice d'upwelling côtier
- 2.3.2. Evolution moyenne annuelle de l'upwelling le long des côtes du Sénégal

5

La tanta

- 2.3.3. Variation interannuelle de l'upwelling
- 2.3.4, Corrélation entre les températures de surface mensuelles aux stations côtières et l'indice d'upwelling
- 2.3.5. Misé en évidence des périodes d'intensification et de relaxa-a tion de l'upwelling à l'aide de l'indice.

CONCLUSION

,

ANNEXE I : Relation entre la température moyenne en saison froide et 1 'intensité moyenne des vents (1966 - 1981). Fluctuation des vents à long terme.

ANNEXE II: Programme informatique du calcul d'indice d'upwelling côtier.

and the second second

(a) A set is the set of the s

· •

INTRODUCTION

L'upwelling le long des côtes du Sénégal a au départ été étudié d'une manière descriptive (ROSSIGNOL, 1965 : CREMOUX, 1967-1970). Depuis peu a été entreprise une analyse exhaustive de l'hydrologie du plateau continental : courantologic, circulation thermohaline, variabilité des condition5 de surface (REBERT, 1979). Il nous a semblé intéressant de comparer et confronter certaines des observations précédentes aux résultats obtenus par la théorie d'Ekman,

La théorie d'Ekman a l'avantage de conduire à des résulats simples : malgré des hypothèses restrictives elle est représentative des phénomènes d'upwelling à grande échelle (BAKUN, 1973 · WOOSTER et al., 1976). Elle permet, d'avoir une, vue d'ensemble, qualitative, de la circulation et des transport5 de masse loin des processus complexes de la frange littorale.

La première partie reprend la théorie d'Ekman, telle qu'elle a été développée dans les ouvrages de LACOMBE, de NEUMANN (1966). On insiste sur les hypothèses, sur la détermination délicate de la valeur numérique de certains paramètres.

Dans la seconde partie nous appliquons la théorie d'Ekman à quelques cas particulier5 : courant de surface dû au vent en saison froide, circulation théorique sur la Petite Côte, calcul d'indice d'upwelling côtier à partir du transport d'Ekman.

Le lecteur déjà au fait de la théorie d'Ekman, ou ne désirant pas approfondir les calculs théoriques, pourra passer directement.au paragraphe 1.4. "Application5 pratiques".

1. THEORIE D'EKMAN

1.1. COURANTS DE DERIVE PURE PROVOQUES PAR LE VENT DANS UN OCEAN HOMOGENE

1.1.1. Mise en équation

Les équations de départ sont les équation 5 de base en mécanique des fluidas

(1)
$$\underline{\delta u}_{\delta t}$$
 + ($\mathbf{u} \nabla$.) \mathbf{u} + $2\mathbf{\tilde{Q}}\mathbf{A}\mathbf{\tilde{u}}$ = $-1\nabla \mathbf{p}$ + $\mathbf{\tilde{F}}$ + $\mathbf{\tilde{p}}$
dérivée particulaire: force gradient forces tenseur
(variation locale accélération de de extérieures des
de la vitesse + d'espace Coriwli a presaiwn dia aipations
dans le temps non linéaire

où ρ est la densité de l'eau, p la pression, **u** vitesse des masses d'eaux, ∇ opérateur gradient, $\vec{\Omega}$ vitesse de rotation de la terre.

L'équation de continuité s'écrit :

(2) $\frac{\delta \rho}{\delta t}$ + div' (ρ u) = 0

En natation tensorielle, ces équations prennent la forme :

ſ	<u>ðui</u> ðt	+	uj	$\frac{\delta u_{i}}{\delta x_{j}}$	+	F _{ci}	100	~ <u>1</u> p	$\frac{\delta p}{\delta x_1}$	4	Fi	+	Di	
	δρ δt	+	$\frac{\delta}{\delta x_1}$	(pu _i)	-	0		•					: 	

Hypothèses:

4

a.- On se place dans un océan tournant, plan (Latitude φ = constante), illimité,

b.- 11 souffle un vent de vitesse et de direction **constantes** pendant un temps suffisamment long (cas des **alizés**), pour **que le** mouvement des eaux soit devenu permanent :

 $\frac{\delta \mathbf{u}}{\delta \mathbf{t}} = \mathbf{0}$

c.- L'accélération d'espace est supposée négligeable (courbure très faible des lignes de courant) :

 $(\vec{u} \nabla \cdot) \vec{u} = \vec{0}$

d.- On néglige les farces extérieures **telles que** gravité, attraction **luni-solaire**.

e.- On définit les axes 0c vers l'est, 0y vers le nord et 0z vers le bas (dans l'hémisphère nord). La force de Coriolis a alors pour composantes : f-2 $\omega \sin \phi x v$, 2 $\omega \sin \phi \times v$, 0) ϕ latitude, ω vitesse de rotation de la terre.

f .- D'une manière générale, le tenseur des dissipations s'écrit :

$$D_{i} = \frac{\delta}{\delta x_{j}} \left(\sqrt{\frac{\delta u i}{\delta x_{j}}} - \frac{\overline{u'_{i} u'_{j}}}{\overline{v}'_{i}} \right)$$

avec \vee : viscosité cinématique ; $\overline{u_i}$ vitesse moyenne ; u'_i , u'_j fluctuation des vitesses ; $\overline{u'_i u'_j}$ tenseur de Reynolds. Dans le cas prissent , la seule force

de frottement. eat la contrainte due au vent appliquée à la surface de la mer.

On suppose en outre qu'il n'y a pas de dissipation horizontale :

$$D_{i} = \frac{\delta}{\delta_{z}} \left(\frac{\sqrt{\delta u_{i}}}{\delta_{z}} - \overline{u'_{i} u'} \right)$$

On pose $Rm = -\frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$ Km coefficient de **viscosité** turbulente, On

peut alors écrire le tenseur des dissipations sous la forme :

$$D_{i} = \frac{\delta}{\delta_{z}} \left((v + Km) \frac{\delta u_{i}}{\delta_{z}} \right) = K_{z} \frac{\delta^{2} \overline{u_{i}}}{\delta z^{2}}$$

avec Kz coefficient vertical de viscasitd Virtuelle. Pour simplifier on notera $K = K_2$ $u_1 = \overline{u_1}$ les composantes moyennes de la vitesse et $(\overline{u_1}, \overline{u_2}, \overline{u_3}) = (u, v, w)$.

g.- L'océan étant illimité, il ne s'y développe ni pente, ni piling-up et on peut supposer qu'il n'y a *pas* de composante verticale de la vitesse de l'eau (ou qu'elle est négligeable vis à via des composantes horizontales) :

$$\delta w = 0$$
 $\delta w = 0$
 δx_i

L'océan est de densité **Q** constante : (2) s'écrit alors

div
$$\mathbf{u} = \mathbf{0}$$
 ou $\frac{\delta \mathbf{u}}{\delta x} + \frac{\delta \mathbf{v}}{\delta \mathbf{y}} = 0$
Finalement, l'équation (1) se ramène à :
(3)
 $\left\{\begin{array}{c} \mathbf{u} = \mathbf{0} & \mathbf{u} & \mathbf{v} = \mathbf{0} \\ \mathbf{u} = \mathbf{0} & \mathbf{v} = \mathbf{0} \\ \mathbf{u} = \mathbf{0} \\ \mathbf{$

(puisque u et v ne dépendent en fait que de z).

En introduisant le flux de quantité de mouvement vertical Txz :

dz 2

$$txz = \rho (Km + v) \frac{\delta u}{\delta z}$$
on aurait: = 2 $\omega \sin \varphi xv = \frac{1}{\rho} \frac{\delta txz}{\delta z}$
Posons $\int = 2 \omega \sin \varphi \text{ et } a^2 = \frac{\Lambda}{K} \cdot (3) \text{ s'écrit alors :}$

$$\frac{d^2 u}{dz^2} + a^2 v = 0$$

$$\frac{d^2 v}{dz^2} - a^2 u = 0$$
(4b)

On additionne (4a) + i (4b) en posant we use + iv. L'équation (1) se présente sous la forme simple : $\frac{d^2w}{dz^2} - i a^2w = 0 \qquad (5) \qquad , while the state of the second secon$

1 C + 2 1 1

En résumé, grâce aux nombreuses hypothèses simplificatrices, l'équation générale (1) se ramène à une forme aisément intégrable, en tenant compte des conditions aux límites que nous allons maintenant examiner.

1.1.2. Résolution du problème

1.1.2.1. Cas de la profondeur infinie

On sait que la solution (5) se présente sous la forme : $w = A e^{a \sqrt{iz}} + B e^{-a \sqrt{iz}}$

Les constantes A et B doivent être déterminées par les conditions aux limi tes. Rappelons que a = $\sqrt{6/K}$, avec 6 paramètre de Coriolis et K coeffioient de viscosité virtuelle. Pour simplifier le problème on suppose: que le vent souffle 'parallèlement à Oy (c'est-à-dire dans une direction nord-sud).

Four définir les conditions aux limites en surface, on fait **l'hypothèse** classique **que le flux** de quantité de mouvement se conserve à **l'interface :** en d'autres termes, toute l'énergie due **au** vent sert **à** entrainer les masses d**'eaux :** il **n'y** a pas de perte due au déferlement des vagues.

En surface an a donc :

$$\tau y_0 = \rho K \left(\frac{dv}{dz}\right)_0 = \tau$$

(τ contrainte due au vent **à** la surface de la mer)

et $T_{x \circ} = K \left(\frac{du}{dz} \right)_{\circ} = 0$ puisque le vent souffle parallèlement à 0y : v. nt y (Nord) T $\frac{z}{\sqrt{2}} x(Est)$

Avec la condition de vitesse nulle'pour une profondeur z infinie 'et en séparant partie rélle et imaginaire dans w, on aboutit à :

(6)
$$\begin{cases} u = V_0 e^{-(a/V_2)z} \cos(\pi/4 - a/\sqrt{2}z) \\ v = V_0 e^{-(a/\sqrt{2})z} \sin(\pi/4 - a/\sqrt{2}z) \\ avec V_0, vitesse du' courant en surface = T = T \\ oka = 0 \\ \sqrt{2} \end{cases}$$

L'équation (6) fournit les composantes du courant en réponse à un vent constant, exerçant une contrainte τ sur la surface de la mer. Examinons plus en détail cette solution :

- En surface la viterre est : $u = V_0 \cos \pi/4$ $v = V_0 \sin \pi/4$

Le courant en surface **est dirigé à 45° à droite** (dans l'hémisphère nord), de la direction vers laquelle **souf** f le **le vent**.

- La grandeur du vecteur diminue exponentiellement avec la profondeur, Sa direction est donné+ par $\theta = \pi/4 - a/\sqrt{2}z$. Avec la profondeur, la direction de la vitesse tourne linéairement sur la droite (dans le sens des aiguilles d'une montre).

Par rapport au **courant de surface**, le courant a tourné d'un angle π pour $az/\sqrt{2} = \pi$. A cette profondeur, le courant est en sens inverse du courant de surface **et** vaut $\nabla_0 e^{-\pi} = 1/23 \ \nabla_0$

$$z = \pi \sqrt{2} = \pi \sqrt{K} = D \quad (7)$$

D est appelée la profondeur d'inffuence du frottement, A cette profondeur le courant est environ vingt fois plus faible qu'en surface : le mouvement des masses d'eaux est pratiquement confind dans une couche **superficielle** d'épaisseur D.

La **figure la est** une représentation vectorielle **schématique** du courant d'entrainement uniquement dû au vent, en fonction de la profondeur. Projet68 sur un plan horizontal, l'extrémité des vecteurs courant forme une spirale logarithmique, la **spirale d'Ekman**.

Le calcul **du transport de** masse global entre **le** fond et *la* surface fournit des résultats intéressants. Qn t'obtient en **intégrant** les composantes de la vitesse entre z = 0 et $z = \infty$

Transport de masse **parallèlement à** $0x : Sx = \rho \int_0^\infty u \, dz = \frac{\rho V_0 D}{\pi \sqrt{2}} = \frac{\tau}{2 \omega \sin \phi}$ Transport de masse **parallèlement à** $0y : Sy = \rho \int_0^\infty v \, dz = 0$

Ainsi le transport global de masse dû **à** un pur courant d'entrainement **est** dirigé **à 90° à** droite de la direction du vent, dans l'hémisphère nord. Le transport de masse est proportionnel **à t**, la contrainte due au vent, et inversement proportionnel au sinus de la latitude. Il est **à** noter que le transport de masse est indépendant de la valeur du coefficient de viscosité virtuelle K, qui est souvent délicate à déterminer, **alors** que le courant de surface, lui, dépend de K. $V_0 = \frac{\tau}{\rho \ Ka} = \frac{\tau}{\rho \ (4K) 172}$

En conclusion, il faut garder à l'esprit que l'application *directe* des résultats **de** la théorie **d'Ekman** se heurte à deux difficultés majeures :

• D'une part, il est très difficile de trouver dans la **nature** des conditions qui satisfont les hypothèses de départ.,

- D'autre part, il est très délicat de proposer des déterminations "réalistes" de la contrainte de vent, et plus encore, du coefficient K (nous reviendrons plus en détail sur ce point dans le paragraphe 1.4).

1.2.2.1. Cas de la profondeur finie

Nous supposons maintenant que l'océan *est* de profondeur finie d et que sur le fond, pour z = d, nous avons la condition aux limites

u = v = 0

La résolution du problème se fait de la même manière que dans le cas de la profondeur infinie. Nousn'expliciterons pas en détail. **les** solutions. Nous retiendrons simplement que l'angle y du courant de surface avec **le vent** est donnée par la relation :

$$tg \gamma = \frac{sh}{sh} \frac{2\pi}{2\pi} \frac{d/D}{d/D} - \frac{sin}{sh} \frac{2\pi}{2\pi} \frac{d/D}{d/D}$$

ou encore $\gamma = \frac{\pi}{4}$ - Arctg $\left(\frac{sin}{sh} \frac{2\pi}{2x} \frac{d/D}{d/D}\right)$

avec D profondeur d'influence du frottement.

L'angle entre le vent et le courant de surface dépend du rapport entre la profondeur de la mer et la profondeur d'influence du frottement. Lorsque d/D est petit, γ tend vers 0 : par faible profondeur, le courant est dans le sens du vent. Lorsque d/D est grand y tend vers $\pi/4$: on retrouve le cas précédent de la profondeur infinie.

Le tableau suivant donne les valeurs de γ pour différentes valeurs de d/D:

d/D	0.1	0.25	0.50	0.75	1	
V	3.8°	21.5°	45°	45.5°	45"	

En pratique, **des** que la profondeur **de** la mer dépasse 1.25 D, les **caracte**ristiques du courant **sont** voisines de celles relatives à la profondeur infinie (fig. lb).

En particulier, pour d>1.25 D, le transport global est: voisin de celui

calculé en profondeur infinie, perpendiculaire à la direction du vent, et de module τ/f .

1.2. COURANTS DE PENTE

Houe venons d'étudier les courants générés par une force d'entrainement due au vent, appelés courants de dérive pure. Nous allons maintenant examiner le cas de courants crées par une pente permanentede la surface de la mer, en présence d'un coefficient de viscosité virtuelle K.

Supposons donc que **sous** l'action d'un vent **prolongé**, la surface de la mer ait pris une **inclinaison**, et, le vent ayant **cessé**, le mouvement **des** masses d'eaux du fait de cette inclinaison soit devenu permanent.

Orientons **Ox** dans le sens de la **pente, Oy** sur sa gauche, **z** vers le bas. L'océan est de profondeur finie d

ġ.

L'équation (1) s'écrit, dans ces conditions :

(8)
$$\begin{cases} -6v = K \frac{\delta^2 u}{\delta z^2} - \frac{1}{\rho} \frac{\delta p}{\delta x} \\ 6u = K \frac{\delta^2 v}{\delta z^2} \end{cases}$$

p = po +

avec

$$\rho_g \xi; \frac{\delta p}{\delta x} = \rho_g \frac{\delta \xi}{\delta x} = -\rho_g t_g \beta = -\rho_g \beta$$

pour une inclinaison β faible. On abcutit alors au système d'équations :

$$(9) \begin{cases} \frac{d^2u}{dz^2} = -a^2v - g\beta/K \\ \frac{d^2v}{dz^2} = a^2u \end{cases}$$

En posant $v = v_1 + g\beta/Ka^2$ et $w = u + iv$, il vient
 $\frac{d^2w}{dz^2} - i = a^2w = 0$

On retrouve l'équation (5). La résolution s'effectue de la même manière

que précédemment, avec les canditons aux limites :

pour
$$z = 0$$
: $K \frac{du}{dz} = K \frac{dv}{dz} = 0$ puisque le vent est nul en surface
pour $z = d$ $\cup = \sqrt{2} = 0$, sur le fond de l'océan.
On est amené à poser $D_* = \pi \sqrt{\frac{K}{\omega \sin \phi}}$, épaisseur de la couche 'de fond

d'influence de frottement. $D_{\hat{\pi}}$ est équivalent à D dans la mesure où le coefficient K est le même en surface et sur le fond. La structure verticale d'un courant de pente pour un océan de profondeur d et **projetée** sur un **plan** horizontal est donnée par la figure ²a.

Pour les profondeurs d > 1.25 D, le mouvement est géostrophique sauf dans la couche d'épaisseur D_{*} au dessus du fond, où l'influence du frottement est prépondérante : cette couche est occupée par le courant dont la vitesse décroit exponentiellement avec la profondeur = cette vitesse a une composante dans le sens du gradient de pression (composante anisobarique:par grande profondeur ,dans la couche, la vitesse est à 45° à droite du gradient de pression). Au dessus de la couche d'épaisseur D_{*}, le mouvement s'effectue parallèlement aux isobares, perpendiculairement à la pente, sur la droite pour un observateur regardant dans le sens du gradient (dans l'hémisphère nord) : dans cette couche le courant est très voisin de $g\beta/f_0$, valeur du courant géostrophique pur.

Si d/D_{\star} est faible, la vitesse a une composante *importante* dans le sens de la pente,

Si $d/D_{\hat{x}}$ est grand, le courant n'a de composante suivant la pente que près du fond.

Les calculs de transports de **masse** dus **a** un courant de pente ne prennent une forme simple que lorsque d est très supérieur **a** D_* : le flux d'eau dans le sens de la pente, qui réprésente **le** transport **dû** au frottement sur le fond vaut :

$$M_{x} = \rho g \beta D / 2 \pi \delta$$

Le transport de masse perpendiculaire à la pente vaut en valeur absolue :

 $M_y = \rho g \beta d/f -M_{32}$ où le premier terme du **second** membre **représente** le transport de masse d'un courant **géostrophique** sans frottement.

Fig. 2a.- Structure verticale d'un courant de pente dans un océan de profondeur d, projetée sur un plan horizontal (d'après EKMAN)

ζ,

Signature www.Essana.com

s. •

: *

Fig. 2b.- Système de courant d'Ekman

(a) Pur courant de dérive en surface

1 A.

. .,

- (b) Courant de surface résultant(c) Courant géostrophique (profond)
- (d) Courant de fond

1.3. CIRCULATION LITTORALE, SUPERPOSITION DES COURANTS DE DERIVE ET DE PENTE

1.3.1. Conditions aux limites imposées par une côte

Nous **avons** étudié séparément les courants **générés** par le vent et par une pente constante : nous allons maintenant examiner **la** superposition de ces effets au voisinage d'une **côte** que nous supposerons rectiligne et infiniment longue, l'océan **étant homogène** de profondeur d constante,

Orientons l'axe des y parallèlement à la côte : supposons que le vent souffle parallèlement à Oy et que nous nous trouvons en régime permanent (shématiquement cela peut représenter le cas des alizés soufflant le long de la côte NW de 1 "Afrique).

Les équations (4) et (9), toutes deux linéaires, peuvent c'ajouter, ainsi que leur solutions . sous l'action du vent des courants de dérive pure produiront un transport de masse perpendiculaire à la côte, créant ainsi une ponte de la surface de la mer : le niveau de la mer s 'abaissera à la côte.

Les conditions aux limites imposées au voisinage immédiat de la côte sont les suivantes :

- Le flux normal à la côte est nul (équation de continuité) ·

- La pente de la surface de la mer cet perpendiculaire en rivage (cc qui revient à dire que le courant de pente est grossièrement parallèle au rivage sauf dans la couche de frottement au **dessus** du fond),

Pour une profondeur d suffiaament grande, la superposition des solutions des équations (4) et (9) conduit au champ de courant suivant :

- Sur le fond, dans une couche d'épaisseur D_{π} , on observe le courant de Land, dévié de 45° à 90° à droite du gradient de pression :

- Dans une couche intermédiaire, d'épaisseur $d-(D + D_*)$, 'on observe le courant de pente quasi géostrophique, encore appelé courant **profond**, dévié à 90° à droite du gradient de pression, donc parallèle au rivage. Dans cette couche le courant de dérive pure est négligeable.

- Dans la couche superficielle, d'épaisseur D_0 on observe le courant de dérive dont l'allure suit la spirale d'Ekman. Sa valeur en surface est V_0 . En outre le courant de pente est présent et a les mêmes caractéristiques que dans la couche intermédiaire.

On peut représenter schématiquement **la structure** verticale du champ de courant :

L'allure du courant résultant à différentes **profondeurs** est donnée par la figure 2b, Si la profondeur d est inférieure à D + D*, la couche intermédiaire disparaié, et les courants de surface et de fond s'interpénêtrent.

1.3.2. Structure verticale des flux

Le flux résultant est donné par **la** superposition des flux du courant de dérive et de pente.

Le flux du courant de dérive est dirigé à 90° à droite du vent et vaut :

$$sx = \frac{-\tau}{5} \qquad : \quad (Sy = 0)$$

Le flux du courant de pente a pour composante :

$$ME = P g \beta D^{*}/2\pi$$

$$My = \rho g \beta d/f - Mx = \rho g \frac{\beta}{f} (d - \frac{D_{*}}{2\pi})$$

Au niveau des **flux,tout** se passe. comme si le courant géostrophique existe dans la couche supérieure d'épaisseur d $-D_*$, et que le flux M selon la pente est provoqué par le même courant **sur la couche d'épaisseur** D^* au dessus du f o n d .

Au voisinage d'une côte, nous aurons donc la configuration suivante :

14

La condition aux limites imposée au voisinage **immédiat** de la **côte** est que le flux **normal** soit nul :

 $S_{xt} + M_{xt} = 0 \qquad (10)$

Comme le flux S_{tr} est confiné dans la couche de surface, et que le flux Mx n'existe que dans la couche de fond, écrire $S^{tr} + M_{tr} = 0$ implique, par raison de continuité, des courants verticaux le long de la côte. Dans le cas ci-dessus, il. y aura apparition de courants ascendants qui remplaceront les masses d'eaux superficielles emmenées vers le large par le flux du courant de dérive, par les masses d'eaux 'profondes apportées par le flux du courant de fond : c 'est le phénomène "d'upwelling" côtier.

Explicitons l'équation. (10) :

$$-\frac{\tau}{6} + \rho g \frac{\beta D_*}{2\pi 6} = 0$$

On peut alors Calculer la valeur du courant géostrophique :

$$u_{g} = \frac{g\beta}{6} = \frac{2\pi\tau}{\rho 6 D*}$$

A partir du moment où l'on connait la tension du vent τ , en surface, et ies coefficients de viscosité virtuelle K et K* en surface et sur le fond, courant de dérive pure et courant géostrophique profond sont déterminés par $v_0 = \tau/\rho(K_0^2)^{1/2}$ $u_g = \tau/\rho(K*_0^2)^{1/2}$ et l'on peut en déduire le courant résultant à n'importe quelle profondeur (à partir des spirales d'Ekman).

1.3.3. Cas d'un vent de direction quelconque à la côte

Supposons maintenant que le vent n'est plus orienté parallèlement au rivage

mais souffle d'une direction quelconque. Soit a L'angle entre la normale intérieure à la côte et la direction vers laquelle souffle le vent, comptée positivement :

Lé flux de dérive S est toujours orienté à 90° à droite de la direction du vent : pour les vents tels que a <180° le flux S a sa composante à la côte orientée vers le rivage : ce sont les vents d'afflux, de piling-up. Pour Les vents tels que $180^{\circ} < \alpha < 360^{\circ}$, la composante normale du flux est orientée vers le large ; ce sont les vents de reflux, d'upwelling.

D'autre part, la pente générée par le vent est toujours perpendiculaire au rivage, Ecrivons que le flux normal à la côte est nul :

+ s COS (a -
$$\pi/2$$
) + o g $\frac{\beta D_{*}}{2\pi 6}$ = 0

La **vitesse** du courant géostrophique est toujours Ug = $g\beta/d$ et le flux de dérive S = $\underline{\tau}$

a v e c

$$V_0 = \tau/\rho (K_0')^{1/2}$$
 et $D_* = \pi \times (2K_*/6)^{1/2}$
 $V_0 \times (K/6)^{1/2} \sin \alpha = Ug \times (K_*/26)^{1/2}$
 $U_g = Vo \sin \alpha \times (2K/K_*)^{1/2}$

Dans la mesure où le coeffikent de viscosité virtuelle est le même en surface et sur le fond, $(K = K_*)$:

$$\mathbf{U}_{g} = \mathbf{V}_{0} \sqrt{2} \sin a \qquad (12)$$

1.4. APLICATIONS PRATIQUES

1.4.1. Rappel des résultats de la théorie d'Ekman

Un vent de vitesse W exerce une contrainte τ à la surface de la mer, créant un courant de dérive V_0 en surface à 45° à droite de la direction vers laquelle souffle le vent, dans l'hémisphère nord. Le flux d'eau global du courant de dérive pure est orienté à 90° à droite du veut et vaut $S = \tau \frac{1}{6}$, $\binom{1}{6}$ est le paramètre de Coriolis égal à 2 ω sin φ , avec ω vitesse angulaire de rotation de la terre et φ la latitude du lieu considéré). Au voisinage d'une côte, le flux S va créer une pente de la mer perpendiculaire au rivage, générant un courant profond Ug, quasi géostrophique et parallèle au rivage, à 90° à droite du gradient de pression. A cause des frottements dans une couche d 'épaisseur D_k au dessus du fond, le courant généré par La pente se transforme en "courant de fond", qui n'est plus parallèle au rivage et possède une composante suivant la normale à la côte. La situation décrite ci-dessus peut être ainsi représentée:

Le courant de dérive étant en pratique confiné dans une couche superficielle d'épaisseur D, le flux S, bien qu'intégré sur toute la profondeur, ne représente finalement qu'un transport de masses d'eaux superficiellea de cette couche. Nous observerons donc sur une coupe verticale perpendiculaire au rivage la figure réprésentée en 1.3.2.

La théorie d'Ekman nous donne les épaisseurs D et D_* où doivent être pris en compte les courants de dérive pure et de fond :

 $D = \pi x (K/\omega \sin \phi)^{1/2} \qquad D_* = \pi x (K_*/\omega \sin \phi)^{1/2}$ K et K* coefficient de viscosité virtuelle en surface et sur le fond K = V + Km

avec v : viscosité cinématique, Km coefficient de viscosité turbulente

La vitesse du courant de dérive en surface est donnée par :

$$V_{0} = \tau / p \times (K_{0})^{1/2}$$

où o est la densité de L'eau de mer.

et le courant profond géostrophique est donnée: pars

ug = V₀ V₂ sin α α est défini en 1.3.3.

Pour les applications numériques, il nous faut donc connaître la valeur de $\{$, τ et K

f est immédiatement déterminé : $f = 2 \omega \sin \varphi$, avec ω vitesse angulaire de rotation de la terre = 7.29 10^{-5} s^{-1} et φ latitude **moyenne** ciu Sénégal = 15° o n trouve f = 3. 7 10^{-5} s^{-1} .

1,4,2, Détermination de la contrainte due au vent τ

 τ/ρ a les dimensions d'une vitesse au carré. On introduit la notion classique de **vitesse** de frottement W_{\star} dans l'air en posant : (MONIN et YAGLOM, 1971) : $\underline{\tau} = (W_{\star})^2$ avec ρ_a densité de l'air: on définit le coefficient de frottement adimensionalisé :

$$C_{f}(z) = \frac{(W_{\star})^{2}}{(W(z))} = \frac{\tau}{\rho_{aW}^{2}(z)}$$

où W(z) est la vitesse moyenne du vent à une altitude z au-dessus de la mer. Le vent étant le plus souvent mesuré au niveau de référence 10 m, de nombreuses déterminations expérimentales ont conduit à Cf (10) = 1.3 10⁻³. On a donc une relation quadratique entre la contrainte τ et le vent :

 $\tau = \rho_{air} \times 1.3 \ 10^{-3} \times W^2 \ (10)$ pour un vent de 5 mfs $\tau = 1.2 \times 1.3 \ 10^{-3} \times (5)^2 = 3.9 \ 10^{-2} \ \text{kg m}^{-1} \ \text{s}^{-2}$

1,4,3. Le problème de la détermination du coefficient de viscosité virtuelle

C'est le point délicat de la théorie : on ignore actuellement la relation qui existe entre le coefficient K'et la vitesse du vent, l'influence de la stratification. Dans ces conditions, les déterminations expérimentales ne peuvent **conduire** qu'à un ordre de grandeur, et il. n'est pas rare de voir le coefficient K varier d'un rapport cent suivant les publications et les régions du globe étudiées.

Notons dès à présent que dans la théorie d'Ekman, l'hypothèse d'un même coefficient en surface et sur le fond, (qui conduit à une même épaisseur des couches de surface et de fond, D et D_*), est sujette à caution puisque le déferlement des vagues dans ta couche de surface doit causer des mouvements

extrêmement turbulents, alors que dans les couches plus profondes l'influence de la stratification doit au contraire **emortir** les effets turbulents,

1.4.3.1. Considérations théoriques

Si l'on assimile la surface de la mer à une paroi plane **rigide,on** peut montrer **par** analyse **dimensionnelle** que le profil des vitesses suit une loi logarithmique au voisinage de cette parai (1) dû à un écoulement turbulent complétement développé. (TEISSON, 1979).

Dans cette couche limite logarithmique, le profil des vitesses a la forme u (z) = u_{*} Log z

$$\frac{1}{\chi} = \frac{1}{\chi} = \frac{1}{z^0}$$

où u_* est la vitesse de fratfeaent dans l'eau, zo le paramètre de rugosité qui caractérise l'état de la surface et χ la constante de Von Karman = 0.4

Le flux de quantité de mouvement (égal à la contrainte de vent τo en surface) s'écrit :

$$\tau = \rho_{\underline{i}} K \quad \frac{du}{dz} = \rho_{\underline{i}} K \quad \frac{u*}{\chi z} = \rho_{\underline{i}} u*^2$$

Il vient :

$$X = \chi u * z$$

Expérimentalement, la couche limite logarithmique se développe jusqu'à z = 0 (10⁴ \vee) (MONIN et YAGLOM, 1971).

On peut supposer que *dans* la couche a profil constant, K ne prendra pas de valeur supérieure :

 $K = 0(10^{-4} \text{ xv})$ avec v viscosité cinématique de l'eau = $10^{-6} \text{ m}^2/\text{s}$ on trouve K = 0 (4 $10^{-3} \text{ m}^2/\text{s}$) = $0(40 \text{ cm}^2/\text{s})$

⁽¹⁾ Au contact de la paroi, il existe une sous couche visqueuse plus ou moins développée suivant la rugosité de la paroi, où le profil des vitesses est linéaire (MONIN et YAGLOM).

Nous trouvons donc une valeur moyenne de K de l'ordre de $40 \text{ cm}^2/\text{s}$, ceci pour des conditions neutres(sans stratification). Notons que :

soit . K = v > Km $Km = K - y = 4 \ 10^{-3} - 10^{-6} = 4 \ 10^{-3} = K$

Sauf au voisinage immédiat de la parai, les tensions turbulentes sont très supérieures aux tensions visqueuses et on peut assimiler le coefficient K au coefficient 'de viscosité turbulent Km, K est encore appelé coefficient d'échange pour'la quantité de mouvement.

CSANADY (1975) propose une approche quelque peu différente : il montre que le coefficient de viscosité turbulente doit être de la forme :

$$K = \text{fonction}(\mathbf{u}_{\star}, \mathbf{h}, f)$$

pour un écoulement permanent dans une épaisseur d'eau h généré par une tension de vent $\tau = \rho_L u \star^2 \tilde{a}$ l'interface.

IL' aboutit alors à deux déterminations :

$$K = \frac{u_*h}{20} \text{ pour une profondeur } ho < 0/1 u_*/6$$

$$K = \frac{u_*^2}{200f} \text{ pour une profondeur } ho > 0/1 u_*/6$$

Au large du Sénégal, les vents durant la'saison froide *ont* une intensité moyenne de 5m/s :

$$u_{\star} = (\tau/\rho_L)^{1/2} = (\rho_a \operatorname{Cd}/\rho_L)^{1/2} w = 1.25 \ 10^{-3} w$$

soit $u^* = 6.25 \ 10^{-3} \text{ m/s}$ pour un vent w = 5 m/s. Nous pouvons alors calculer la profondeur ho qui sépare les domaines de détermination de K:

$$ho = 0.1 u_{\frac{*}{6}} = 17 m$$

notre **étude** ne porte **pas sur** des profondeurs **inférieures** à 27 m, nous ne retiendrons donc que la deuxième relation :

$$K = \frac{u^2}{200 f} = 2.1 \ 10^{-4} \ w^2$$

pour un vent moyen de 5 m/s, on trowe $K = 52 \text{ cm}^2/\text{s}$.

I.4.3.2. Méthodes empiriques

Il est très difficile de se faire une idée sur les valeurs à retenir pour le coefficient K. Il semble acquis qu'il dépende étroitement du vent. Ekman (1905) proposait une valeur moyenne de 100 cm²/s. Schmidt (1917) obtenait Y = $110 \text{ cm}^2/\text{s}$ pour un vent de 5 m/s. Ces valeurs, résultant d'approximations grossières, conduisent à des valeurs de courant de dérive relativement faibles,

Des mesures récentes semblent s'accorder sur des valeurs moins Elevées le K (CSANADY, paragr. précédent). HUNKIS (1966) trouve 24 cm²/s, HALPERN (1976) obtient 55 cm²/s. KULLENBERG (1976) à partir de considérations sur le transfert' d'énergie du vent vers les couche; supérieures de l'océan propose une relation de la forme :

$$\begin{array}{ccc} K & 3 & \frac{1}{4} & \frac{(\rho g & Cd)^2}{(\rho L & k)} & w2 \end{array}$$

avec k constante = $1.8 \ 10^{-2}$. L'application numérique pour le Sénégal donne K = $2 \ 10^{-4} \ w^{-2}$, coincidant avec la formule de CSANADP. Ces diverses relations faisant intervenir le paramètre de Coriolis, donc la latitude, il était intéressant de tenter de déterminer à partir des données hydrologiques recueillies, les valeurs de K au voisinage du Sénégal. A partir du calcul du coefficient de diffusion turbulente KS pour des distributions de la salinité en forme de langue (méthode de THORADE, JACOESEN, PROUDMAN dans NEUMANN), nous avons abouti à une estimation du coefficient de viscosité turbulente comprise entre 10 et 40 cm²/s en saison froide, au large du plateau continental. Cette estimation semble plausible au regard des résultats précédents.

1.4.4. Calcul de la vitesse de dérive et de la profondeur d'influence de frottement

Une fois la détermination de K effectuée, les calculs de V_0 et D ne posent aucun problème, En choisissant une valeur moyenne :

$$K = 25 \text{ cm}^2/\text{s, on obtient} :$$

$$V_0 = \frac{\tau}{\rho_L(K_0^2) 1/2} = 0.13 \text{ m/s} \quad \text{Pour un vent de 5m/s, et}$$

$$D = \pi \times (2 K/6)^{1/2} = 36 \text{ m}$$

Ces deux chiffres ne sont qu'un ordre de grandeur, dù à l'incertitude sur K. Par contre la valeur du transport de masse dù au courant de dérive pur est indépendant du coefficient de viscosité turbulente :

$$S = \tau = 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1} = 1 \text{ m}^3/\text{s} \text{ par mètre de côte.}$$

a

Par raison de continuité, il **représente** également le flux de **remontée** des eaux profondes (cf., **1.3.2.**), donc l'intensité de l'upwelling.

2. APPLICATION AUX COTES SENEGALAISES

2.1. COURANT DE SURFACE DU AU VENT EN SAISON FROIDE

Nous avons choisi de calculer le courant de surface pendant le mois de mars, représentatif de la saison froide 'durant laquelle souffle les alizés. D'après l'hodographe des vents moyens mensuels entre 1968 et 1977 (fig.3), le vent moyen en mars à Yoff souffle du nord' (direction θ : 4,4°) avec une intensité de 5,26 m/s (A Saint-Louis : θ = 358,5° W = 4,52 m/s).

Nous nous plaçons à une profondeur d grande par rapport aux épaisseurs D et D_{*} des couches de surface et de fond, afin de pouvoir appliquer les résultats en profondeur infinie, Avec l'hypothèse d'un même coefficient de viscosité turbulente K en surface et au fond de 25 cm²/s, les profondeurs d'influence de frottement D et D_{*} à la latitude du Sénégal sont de l'ordre de 40 m(cf. 1,4.4.). Les résultats qui suivent ne sont donc théoriquement valables que pour des fonds supérieurs à 80 m (D + D_{*}).

Le courant de surface est la **somme** du courant de dérive \hat{V}_0 (orienté à 45" à droite du vent), et du courant géostrophique \hat{V}_g (parallèle à la côte).

$$\vec{\nabla}_{s} = \vec{\nabla}_{o} + \vec{U}_{g}$$
avec $\nabla_{o} = \tau / \rho (Kf)^{1/2}$

$$U_{g} = V_{o} \sqrt{2} \sin \alpha$$

Les notations et la valeur des paramètres sont discutés en 1.4

Au niveau de Dakar : W = 5,26 m/S τ = 4,3 10⁻² kg m⁻¹ S⁻² v₀ = 14,2 cm/S Au niveau de St-Louis: W = 4,52 m/S τ = 3,2 10⁻² kg m⁻¹ S⁻² V₀ = 10,9 cm/S

La vitesse du courant géostrophique associé est calculée pour deux orientations de côte sur la "Grande Côte" et une orientation sur la "Petite Côte". Les directions de la côte ont été idéalisées par des lignes droites qui suivent à peu près le profil de l'isobathe 100 m. (cf., 2.3.1.)

$$\beta_{1} = 302^{\circ} \quad U_{1g} = V_{o} \sqrt{2} \quad \sin (\beta_{1} - \theta) = 12,8 \text{ cm/s}$$

$$\beta_{2} = 340^{\circ} \quad U_{2g} = V_{o} \sqrt{2} \text{ s in } (\beta_{2} - \theta) = 8,3 \text{ cm/s}$$

$$\beta_{3} = 258^{\circ} \quad U_{3g} = V \quad o \quad \sqrt{2} \text{ sin } (\beta_{3} - \theta) = 19,25 \text{ cm/s}$$

Les directions des courants résultants sont données par la figure 4.

22

Fig. 3.- Nodographe des vents moyens mensuels aux stations côtières (1968-1977)

Fig. 4.- Courant de surface du au vent en saison froide d'après la théorie d'EKMAN.

11 faut garder à l'esprit que l'incertitude sur le coefficient K n'influe que sur la grandeur des courants mais que leur direction est indépendante de K. on note que le courant de surface résultant sur la Grande Côte est pratiquement parallèle au rivage ; les eaux froides qui sont amenées en surface au voisinage de le côte auront tendance à s'écouler 1e long de la côte et ne s'étendront pas vers le large. Entre Dakar et Kayar, le courant de surface est même légèrement orienté vers la côte : les eaux froides resteront plaquées à la côte. Au contraire, le courant de surface sur la côte sud est orienté vers le large · les eaux d'upwelling auront tendance à être entraînées vers le large, C "est ce que confirme l'allure des isothermes en surface en saison froide, par exemple le 2? février 69 (fig 5) : sur la côte nord, les isothermes 17° et 18°C sont parellè-'es à la côte au nord de Kayar, et se rapprochent de la côte entre Kayar et Dakar, Sur la côte sud, les isothermes 16" et 17° ont tendance à se détacher de la côte. Nous avons reproduit la direction théorique du courant calculée sur la côte sud . on constate que la langue d'eau inférieure à 17° se déplace dans la même direction.

Les vitesses des courants de surface résultants peuvent également être calculées.

Grande Côte entre Kayar et Saint-Louis	Vs	12	23,5	cm/s
Grande Côte entre Dakar et Kayar	V _s	n	22,2	cm/s
Petite Côte au sud de <u>Dakar</u>	Vs	10	28,8	cm/s

Ces vitesses sont du même ordre de grandeur que celles observées par REBER et PRIVE (1974) au nord et au sud de la presqu'île du Cap-Vert. Aux stations du large (fond supérieur à 100 m), le courant de surface était de 20 à 30 cm/s, par un vent du nord de 5 m/s.

Remarques ;

Los valeurs de 50 à 75 cm/s (observées par REBERT, 1974) auxquelles il est souvent fait référence en tant que valeur moyenne du courant de surface le long de la Petite Côte en saison froide, ont été observées alors que les vents soufflaient en noyenne à plus de 7 m/s. Comme le courant en surface est proportionnel su carré de la vitesse du vent? nous aurions, pour ces vents de 7 m/s :

 $V_s = 55 \text{ cm/s}$

d'après la théorie d'Ekman et l'orientation de la côte au sud de Dakar, Les observations de REBERT sont donc en accord avec la théorie d'Ekman, pour un vent de '7 m/s. Le vent moyen en saison froide étant d'environ 5 m/s, il semble plus réaliste de prendre une valeur uoyenne du courant de surface de 25-30 cm/s.

Direction du courant de surface moyen théorique Fig. 5.- Isothermes de surface du 19 au 26 février 69 (d'après CREMOUX)

2. 2. CIRCULATION EN SURFACE ET SUR LE FOND SUR LA PETITE COTE

La Petite Côte, au sud de Dakar, est connue pour être le siège d'un upwelling beaucoup plus marqué, en intensité et en durée, que l'upwelling moyen le long des côtes du Sénégal. Une couverture hydrologique fine de cette zone (travaux de D. TOURE) s'est mise en place, afin de permettre une description d'étaill de lu phénomène (localisation des sources de remontées d'eaux froides). Il était intéressant d'appliquer la théorie d'Ekman à cette région et de voir quelle était la circulation prédite. Pour ce faire, noua avons schématisé la côte et: les isobathes en portions rectilignes d'orientations distinctes (fig, 6). Nous avone ensutte repris les différentes configurations des spirales d'Ekman représentant le courant résultant (courant de dérive + courant de pente) (d'après NEUMANN). Ces configurations dépendent du rapport d/D (profondeur totale par rapport à la profondeur d'influence de frottement), et de l'orientation de la côte par rapport au vent (fig. 7). Nous nous sommes limitfs à l'étude du courant en surface et sur le fond, Choisissant une profondeur d'influence de frottement D = 40 m_a nous avons reproduit l'allure des courants pour d/D = 0.25 : 0.5 : 1.25 : 2.5 : soitd = 10, 20, 50, 100 m; le vent souffle du nord (situation moyenne représentation ve de la saison froide).

Circulation en surface (fig. 8a)

On observe une divergence très marquée dans le sud de la baie de Corée : cette divergence est due à l'allure de la côte et des isobathes 20 et 50 m. De même, les courants de surface provenant de la baie de Corée créent une zone de convergence avec les courant du large. ROSSIGNOL (1978) démontre "qu'un flot livergent a tendance à être frontolytique, alors qu'un flot convergent tend a être frontogène", On peut s'attendre à ce que la convergence des eaux de la baie de Gorée avec les eaux du large se traduise en surface par un front, un resserrement des isothermes dans le sud du Cap Manuel : au contraire la divergence Cans le sud de la baie de Gorée s "accompagnera d'un espacement des isothermes a. C'est bien ce qu'on observe en mars 74 (REBERT, 1975, fig. 9). Dans le sud du Cap Manuel les isothermes 16-17-18°C sont très rapprochés alors que l'isotherme 15°C s'étale dans le sud de la baie de Gorée. En outre, la direction des couvant c observés est en très bon accord avec la circulation prédite. Notons enfin que 'La langue d'eau froide inférieure à 16° se déplace dans la direction du courant de surface moyen calculé en 2.1. pour la Petite Côte.

Fig. 6.- Modélisation de la côte et des isobathes pour le calcul du courant de surface et de fond.

Fig. 7.- Structure verticale des courants pour différentes orientations de côte (d'après **EKMAN** dans NEUMANN).

Fig. 8.- Circulation sur la petite côte d'après la théorie d'EKMAN

Circulation sur le fond (fig. 8b)

On observe essentiellement une circulation perpendiculaire à la côte et dirigée vers elle. L'inflexion vers l'Est des isobathes 20 et 50 m sous la presqu'île du Cap-Vert provoque une distorsion des lignes de courant et génère l'upwelling de la baie de Gorée. La remontée des eaux profondes à la côte s'effectue principalement entre Thiaroyc et Rufisque. L'origine de ces eaux qui représente "la source" qui alimente l'upwelling se situe à 15-20 milles dans le Sud-Sud Ouest de la baie de Gorée, sur les fonds de 50-100 m (indiquée par un "S" sur la figure).

Ces résultats sont en très bon accord avec les données des campagnes précédentes (1967-1970). Toutes les campagnes effectuées en saison froide montrent en surface la poche d'eaux froides entre Thiaroye et Rufisque (fig. 10 mars 1968). Les observations détaillées de D. TOURE ent mis en évidence lors de la campagne du 5 février 1981 l'upwelling situé au niveau de Rufisque, mais également un deuxième upwelling situé au niveau de Popenguine (fig. 11). Ces deux upwellings correspondent-ils aux deux veines de courant qui apparaissent sur la circulation théorique sur le fond, l'une dirigée vers Thiaroye, l'autre vers Popenguine ? Plutôt que de conclure hativement, il. faudrait s'assurer, d'une part que la structure A deux upwellings est caractéristique (c'est-à-dire L'observer, A nouveau lors des prochaines campagnes), d'autre part vérifier à l'aide de courantomètres la circulation théorique sur le fond.

Cette circulation théorique *sur* le fond peut-être confrontée au déplace, ment des masses d'eaux en période d'upwelling. Pour ce faire, nous nous sommes placés en début de saison froide, où les situations sont plus tranchées, car les eaux d'upwelling contrastent avec les eaux d'origine guinéenne ou tropicale (t supérieur à 24°C) encore présentes. Ainsi lors de la campagne du 15 novembre 1968, (fig. 12) les isothermes de surface sont supérieurs à 24°. Meis sur une coupe horizontale à une profondeur de 25 m une poche d'eaux froides (t inférieur à 20°) apparait nettement sur les fonds de 50 m dans le sud de la baie de Gorée. La remontée des eaux a commencé à s'effectuer, mais elle n'atteint pas encore la surface, L'indice d'upwelling pour cette période (cf. 2.3. pour le calcul et la définition), montre que nous nous trouvons au début d'une période d'upwelling qui va durer du ll au 19 novembre (fig. 15). Diverses mesures effectuées pendant cette période permettent de suivre la progression des eaux froides (fig. 17 & 17). Ces eaux froides atteignent le Sud du cap Manuel (station B, t = 19,6°C à 20 m sur les fonds de 25 m) 3 jours plus tard, le 18 novembre. A cette station. l'eau en surface ne s'est toujours pas refroidie. Le 22 novembre soit 7 jours plus tard, les eaux froides sont

Fig. 10.- Isothermes de surface lors de la campagne de mars 68 (d'après CREMOUX).

FIG. 12.- Isothermes le 15 novembre 1968

au milieu de la baie de Gorde (station A, fond de 10m) et occupent tout l'épaisseur d'eau (t = 20, 3°C). Notons que Le 13 novembre. à la station A, seul un léger refroidissement se faisait sentir dans la couche d'eau au dessus du fond (t = 22,3° contre 23.95°). Enfin à la station côtière de Thiaroye, les eaux n' ont commencé à se refroidir qu'à partir du 19 novembre. et les eaux caractéristiques de la poche d'eaux froides mise en évidence lors de la cmpagne du 15 novembre n'apparaissent que le 23 novembre (t = 19,9°) soit 3 jour plus tard. Pour la fin du nois de novembre. l'indice d'upwelling est faible, indiquant une période de relaxation > la poche d'eaux froides reflue et les eaux superf iciellea chaudes viennent la recouvrir. Ainsi , l e 27 novembre obser ve-t-on une température côtière de 23.2° à Thiaroye, tandis qu'aux stations / et B, les eaux ont une température uniforme de 23.4 -23.6°C A toutes les profondeurs.

L'origine et le déplacement de la poche d'eaux froides vers Thiaroye es'en accord avec la théorie d'Eknan. Une étude plus détaillée de la réponse de l'upwelling en fonction du vent. à partir d'u modèle de JANOWITZ et PIETRAFEGA (1980) est en préparation. Cette étude explique également la présence caractéristique de l'upwelling sur le rebord du plateau continental tel qu'il apparait sur la coupe à 25 m le 15 novembre 1968. Pour l'instant il faut retenir que la théorie d'Eknon prédit valablement l'origine, le déplacement et l'arrivée à la côte des masses d'eaux subsuperficielles mises en mouvement par le -vent: en surf ace, l'observation de la position des isothermes, de la direction des courants est également en accord avec la théorie.

2.3. INDICE D'UPWELLING COTIER : CALCHI, DU TRANSPORT D'EKMAN.

INFLUENCE DE L'ORIENTATION DE LA COTE PAR RAPPORT A LA DIRECTION DU VENT

2.3.1. Methode de calcul de l'indice d'upwelling côtier

Nous avons vu dans la première partie que <u>le transport</u> de masses d'eaux en surface dû au vent était de la forme :

$$S = \tau/f$$

et était dirigé à 90° à droite de la direction vers laquelle souffle le vent. Au voiainage d'une côte, le transport vers le large se calcule en prenant la composante perpendiculaire au rivage du transport d'Ekman S. Ce transport vers le large représente le flux d'eaux superficielles chassée* vers le large par le vent, et remplacées par des eaux profondes c'est un indicateur de la quan tité d'eaux amenées en surface.Les valeurs positives correspondent à une removetée des eaux un upwelling; les valeurs négatives indiquent un transport d'eaux
superficielles vers la côte, un downwelling ou piling up. Le transport perpendiculaire à la côte est donc un indice d'upwelling côtier (désormais appelé C.U.I. pour Costal Upwelling Indice, cf. BAKUN)

Si \overline{n} est la normale extérieure à la côte, nous avons :

C.U.I. = S cos α

Soit β l'angle de **la** normale extérieure par rapport **à** Oy (nord).

Si θ est la direction de laquelle souffle le vent, comptée selon la rose des vents (nord 0°,est 90°.. ●)alors l'angle entre Oy et le flux S vaut :

et

Il vient

$$\Theta$$
 + 270° (modulo 360°)
 $\alpha = \beta - (\Theta + 270)$

C.U.I. = $s \cos \alpha = \frac{\tau}{f} \cos (\beta - \Theta + 90)$

Ce résultat est théoriquement valable pour lespronfondeurs d supérieures à D + D_★ (80 m)

La tension du vent est donnée. par la relation quadratique

 $\tau = \rho_{air} \operatorname{Cd} | V | V$

Du fait de la relation non linéaire entre le vent et la tension, les valeurs de l'indice d'upwelling dépendront de 1' intervalle de mesure utilisé : ainsi l'indice d'upwelling mensuel calculé à partir du vent moyen mensuel sera plus faible que la moyenne de l'indice journalier : l'écart dépendra de la variance intramensuelle du vecteur vent. En d'autres termes, si 1 'on dispose de peu de données (vent moyen mensuel au lieu de vent journalier), cela créera un lissage relatif qui conduira à une diminution 'de l'indice.

Tenant compte de ces considérations, nous avons calculé l'indice mensuel à partir de la moyenne des indices journaliers du mois en diverses, régions du littoral. Nous avons modélisé La côte de la façon suivante : (cf. fig. 4)

Région 1 "Saint-Louis" : Grande Côte, de Kayar à St-Louis Région 2 "Kayar" : Grande Côte, de la presqu '11e du Cap-Vert à Kayar Région 3 "Petite Cote" : de la presqu'11e du Cap-Vert à Joal

Les directions de la côte ont été idéalisées par des lignes droites qui suivent à peu près le profil de 1 'isobathe 100 m.

Les normales extérieures correspondant aux orientations de la côte valent

 β_1 (Saint-Louis) = 302° β_2 (Kayar) = 349 β_3 (Petite Côte) = 252°

Les données de vent nous ont été aimablement communiquées par 1 'ASRCELA nous disposons des vents journaliers (moyenne de 8 observations triboraires, intensité en dixième de m/s et: direction en dixième de degré), aux stations météo de Yoff (Dakar) et Saint-Louis, do 1968 à 1977. Nous ne discuterons pas de la représentativité de ces stations dans 1 'absolu puisque nous nous intéres serons surtout aux variations relatives de 1' indice, Nous nous servirons de l'un dice d'upwelling pour expliquer certaines structures hydrologiques observées au large du Sénéga 1, ainsi que les variations de température de surface aux stations côtières. Tout en gardant à l'esprit les restrictions d'usage (relation entre le vent mesuré à terre et celui du large, homogénéité des vents 1. long des côtes) nous tenterons de relier: qualitativement, les phénomènes d'upwelling observés avec les "évenements' atmosphèriques correspondants . Pous supposerons donc que le vent mesuré à Yoff est représentatif en première approximation des conditions de vent sur la Petite Côte et sur la Grande Côte jusqu'à Kayar, l'indice d'upwelling pour la Grande Côte (de Kayar à St-Louis) Stant calcul6 A partir de vents observés à St-Louis. Le programe informatique est donné en annexe.

Les résultats sont obtenus par région et par an. Ils sont exprimés en m³/s par mètre de cote, Le programme calcule pour une région donnée le C. U.I., journalier. Pour chaque mois il calcule la moyenne dos C.U.I. journaliers, qui représente une estimation du C.U.I mensuel. Un calcul par quinzaine est également effectué. Les résultats peuvent être interprétés à différents niveaux

- Comparaison des régions entra elle · le C.U.I. fait apparaître pour une période donnée. les régions orientées l e psufavorablement au vent dominant, et donc sujettes à l'upwelling le nlus actif,

- Evolution annuelle en une même région : le C, U, I, met en évidence le manière beaucoup plus précise que les températures côtières le début et 1 a fin de la saison d'upwelling. Au cours de cette saison, il permet de distipguer les périodes de remontée intense de masses 4 baux (C. U. I. Slevé) des périodes de relaxations (C.U.I. faibles).

, TABLEAU I.- Indice d'upwelling mensuel sur la Petite Côte (en m³/s par mètre de côte)

	JANVIER	FEVRIER	MARS	AVRIL	MAI	JUIN	JUILLET	AOUT	SEPTEMBRE	OCTOBRE	NOVEMBRE	DECEMBRE
1968	-733	.763	.919	,783	.741	.424	.103	.129	.076	.295	.642	.792
1969	.533	.687	.702	1.113	.743	.534	.132	.019	.068	.277	.534	.714
1970	.950	.654	1.072	. 791	.819	. 476	.263	.074	.118	.395	.707	.950
1971	.687	.923	1.134	1.274	1.385	.435	.386	.116	.216	.273	1.024	.910
1972	1.144	1.341	1.560	1.651	1.206	.527	. 395	.208	.425	.427	.748	•906
1973	.839	1.336	1.338	1.513	.815	.677	. 490	.163	.364	.490	1.158	1.409
1974	1.082	1.204	1,608	1,825	1.164	.605	.306	.179	.224	.693	.903	.768
1975	.809	1.026	1.288	1.704	1.423	. 502	. 262	.123	.182	. 369	.865	.989
1976	1.037	1.174	1.607	1.413	1.557	.588	.317	.058	. 141	.501	.527	.923
1977	1.011	1.101	1.038	1,203	1,356	.531	.586	.491	. 154	.735	.534	.544
							· ,		.			
Moy.	.882	1.021	1.227	1.327	1.121	,530	; 324	.156	.197	.446	.764	.891

TABLEAU IL- Indice d'unwelling mensuel sur la Grande Côte (Dakar-Kayar) en m⁻/s par m (ABLEAU	EAU IL- Indice d'upwelling	mensuel	sur	la	Grande	Côte	(Dakar-Kayar)	en	m ³ /s par	m	de	côte
---	--------	----------------------------	---------	-----	----	--------	------	---------------	----	-----------------------	---	----	------

	JANVIER	FEVRIER	MARS	AVRIL	MAI	JUIN	JUILLET	AOUT	SEPTEMBRE	OCTOBRE	NOVEMBRE	DECEMBRE
1968	.254	.194	.118	010	087	218	318	351	119	090	. 126	.254
1969	.161	.054	.021	.216	172	331	301	271	086	003	,187	.233
1970	.596	.139	.161	.225	.039	203	340	264	243	086	.231	.357
1971	.328	.465	•.374	.674	.600	267	181	179	002	021	.768	.758
1972	.933	1.034	1.176	.656	.436	,053	227	224	-,051	.064	,513	.737
1973	.674	.\$02	.626	.785	022 1	105	313	133	.027	063	.332	.690
1 74	.695	.913	.924	,722	. 191	121	259	-,148	056	.352	.508	.699
1 75	.735	.740	.644	.593	.535	251	213	384	192	.015	.790	.782
1 76	1.032	.?)8	1.005	.522	.631	191	-,363	348	144	.225	.572	.910
197,	.970	. 34	.644	.593	.569	225	276	239	102	.216	.482	.596
	. · · · · · · · · · · · · · · · · · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>			· · · · · · · · · · · · · · · · · · ·				(genetine gelien die zuie en der	. 94999-9799-9799-1	
lic	561	,618	.569	.510	.272	-,126	286	259	085	.065	.451	.602

۰.

	JANVIER	FEVRI ER	MARS	AVRIL.	MAT	JUIN	JUILLET	AOUT :	SEPTEMBRE	OCTOBRE	NOVEMBRE	DECEMBRE
1968	.676	.929	1.190	1.019	1.103	.227	 149	.026	043	.258	.592	615
1969 、	.536	.823	.995	1.181	.591	.278	103	031	.038	.160	.345	.310
1970	.457	.249	.510	:443	. 372	005	213	109	114 .	.225	.288	.388
1971	. 454	.509	.773	.815	,650	<u> </u>	141	. 135	122	.160	.394	.404
1972	.503	.663	.795	.703	.537	.247	337	234	060	.236	.375	.671
1973	.606	1.005	.582	.740	.134	039	347	235	027	.137	.348	.480
1974	.626	.608	1.286	1.140	• 599	.045	253	078	008	.306	.614	.554
1975	.668	.644	.665	1.363	.998	314	349	382	171	.009	.573	.617
1976	.781	.608	.867	.955	.950	.043	389		008	. 489	.421	.626
1977	.880	.708	.623	. 829	1.133	112	.016	.209	079	.472	.342	.452
											<u> </u>	
68-77 Moy .	,619	.675	,829	.919	.707	.029	227	121	-,044	. 245	. 429	,512

TABLEAU III.- Indice d'upwelling mensuel sur la Grande Côte (Cayar-Saint-Louis) en m3/s par mètre de côte.

.

Fig 33. Evolution moyenne annuelle (1968-1977) de l'indice d'upwelling le long des côtes Sénégolaises.

2.3.2. Evolution moyenne annuelle de l'upwelling le long des côtes d u Sénégal

Pour chaque région, nous avons regroupé l'indice mensuel dans un tableau et avons calculé l'indice moyen mensuel pour la période 1968-1977.(tabl. I à VII).

Exemple : Indice moyen de janvier pour la Petite Côte = $\frac{1}{10}$ $\sum_{i=6\ell}^{77}$ indice janvier (année i, Petite Côte).

Nous avons ainsi obtenu une année type pour chaque région, représentant l'évolut ion moyenne au cours d'une année de l'intensité de l'upwelling (f ig. 13). Les courbes obtenues montrent que «

-La Petite Côte est la mieux orientée par rapport aux vents dominants, Elle se trouve toute l'année en situation d'upwelling comme l'avaient noté STEQUERT <u>et al.</u> (1979). "Au Sud Le Dakar, les eaux restent riches toute 1 'annee du fait de la persistance plus longue de l'upwelling...

La saison d'upwelling intense dure d'e décembre à mai avec un maximum très marqué en mars-avril (1,3 m³/s par mètre de côte) qui correspond <u>au maximum</u> des alizés. Les périodes de transition sont brutales, elles s'effectuent en juin et en octobre-novembre. De juillet à septembre, t'indice est peu élevé et l'upwelling ne peut être mis en évidence : la faible remontée des eaux ir duite par le vent est contrebalancée par l'arrivée des eaux chaudes guinéennes en surface.

- La Grande Côte (de Kayar 3 St-Louis) est moins bien orientée, et durant l'hivernage, elle se trouve en situation de piling-up (indice négatif). Le maxiaux en mars-avril, bier que moins important est toujours présent. L'installe tion de l'upwelling est plus régulière et s'étend d'octobre à décembre.

• La côte entre la presqu'ile du Cap-Vort et Kayar est la plus mal orien-16A De juin à septembre. 1 'indice est négatif, il. y a convergence des eau. 40 surface à la côte (piling-up), L'upwelling démarre un mois plus tard qu là Caint Louis, atteint son maximum en janvier, puis chute brutalement en mai.

2.3.3. Variation interannuelle de l'upwelling

Nous avons exemine l'inf luence des variations interannuelles de 1 "indice i upwelling, sur la température de la mer mesurée aux stations côtières. Nous nous sommes limités A la saison froide (novembre à mai) qui correspond à la saison d'upwelling intense. De 1968 A 1977, nous avons calculé un indice d'upwelling moyen et une température moyenne, pour chaque saison froide, en calculant la moyenne des températures et de l'indice pour les mois de saison Froide (novembre à mai).Par exemple

	KAY/	IR.
	C.U.I.	T
58 69		
69 -70		
70-71	0,433	19.70
71-72	0. 825	18.61
72-73	0.502	19.66
<u>73+74</u>	0.666	19.30
74-75	0.637	18,90
75-76	0.829	18.19
76 -77	0.728	19.14
Droi te de rég ression	<u>T</u> =21.38-	-3.42CUI
Coefficient de corrélation	r = ~	0.86
Niveau de signi- fication	98	R

¥()FF
C.U.I	I
0.094	20,54
0.226	20,60
0.433	20,00
0.925	18.92
0.602	23.07
0,656	19 .37
0,637	19.03
0.829	18,77
0.728	19,16
T=21.02-	-2,52CU
r = .	-0,92
99	7.

THIAR	OYE
C.U.I	T
0.745	19,15
0.791	.19.60
1.009	13.67
1,262	17,54
1.071	18,46
1,350	-17,90
1,132	17.77
1,234	17,85
1,023	12.01
	an Baalake Malake a James a
T=21,56	3,92 C UT
r =	0.89
99	7.

TABLEAU IV.-- Corrélation entre la température moyenne, et l'indice moyen d'upwelling pendant la saison froide (novembre à mai)

Température moyenne à Thiaroye pour la saison froide 1969-1970 = $\frac{1}{7}$ (T nov 69 + T déc 69 + T janv 70 + T fév 70 + T mars 70 + T avr 70 + T mai 70 = $\frac{1}{7}$ (34,4 + 20,3 + 12,5 + 17,1 + 17,9 + 18,7 + 20,3) = 19,6

Cela pernet de comparer immédiatemment les années entre elles : la ten . pérature moyenne en saison froide n'est pas constante d'une année sur l'autre mais varie dans une fourchette de 2°.

Nous avons voulu savoir si ces variations étaient reliées à l'indice d'upwelling. Les résulats des corrélations entre la température moyenne en saison froide et l'indice moyen d'upwelling pour la même période sont dornés par le tableau IV. Les températures de Thiaroye sont couplées à l'indice sur la Petite Côte, celles de Yoff et Kayar (à partir de 70) à l'indice de Kayar. Les températures à St-Louis n'étaient pas mesurées depuis assez longtemps pour permettre le calcul (mois sans mesures).

Les résulats montrent que les températures moyennes de saison froide sont corrélées négativement à 1 'indice d'upwelling (niveau de signification supérieur à 93%). En d'autres ternes les années à indice d'upwelling flevé (dù à me bonne orientation et une intensification des alizés) s'accompagneront de températures basses aux stations côtières. D'une manière indirecte, cels signifie que les températures sont relifes au vent local en saison froide au moins pour les variations interannuelles : 80% de la variance interannuelle (r = -0, 39) des températures côtières est expliquée par le relation avec le vent local.

Jusqu'à présent, il n'avait pu être établi une telle relation au niveau du Sénégal. Ainsi REBERT (1979) aveit corrélé la température moyenne annualle à Thiaroye avec la composante nord-sud du vent , pour la même période, le coof ficient de corrélation était de -0.25. Il en déduisait que Ples anomalies de compérature au niveau d u Cap-Vert sont pratiquement indépendantes du vent local '. Ton faible coefficient de corrélation s "explique pour les raisons puivan tes :

- Température et composante nord-sud étaient moyennées sur toute l'année comme la température en saison chaude :Epand de l'advection des eaux guinéennes et non du vent, if est normal que cette non-dépendance conduise A un faible coeff icient de corrélation. En moyennant non plus sur l'année, mais uniquement sur la saison froide (novembre à mai), nous nous affranchissons des températures de saison chaude, pour ne conserver que les températures susceptibles de dépendre du vent. - La température annuelle était corrélée inéairement au vent moyen, alors que le flux de remontée d'eaux profondes dépend de la tension du vent en surface, qui suit une loi quadratique par rapport au vent.

- Seule la composante nord-sud du vent stait utilisée, ce qui revenait à supposer que les alizés ne soufflaient que dans cotte direction, et que les côtes du Sénégal étaient également orientées nord-sud. Le fait de tenir compte de l'angle entre la direction de le côte et l'orientation du vent conduit à des résultats plus satisfaisants.

En résumé, les calculs d'indice moyen mensuel et en saison froide sont nlus fastidieux et moins rapides que le calcul de la composante M-S des venta, mais ils permettent de passer d'un coefficient de corrélation de $-0.25 \ 3 -0.27$ ils montrent que les anomalies annuelles de température sont reliées au vent 'local. Une relation portant sur un plus grand nombre d'années (1966-1981), entre le température moyenne en saison froide et 1 'intensité moyenne des vents est étudiée en annexe I · la fluctuation des vents à long terme (1947-1981)y est également abordée.

2.3.4. Corrélation entre les températures de surface mensuelles nus stations côtières et l'indice d'upwelling

Après avoir constaté que la température moyenne en saison froide était reliée au vent local, nous avons étudié les corrélations au niveau monsuel (tabl.V). Comme on peut s'y attendre, les températures moyennes mensuelles sont plus ou moins bien corrélées à l'indice d'upwelling mensuel suivant les mois de l'année:

- En saison chaud2 (juin A septembre) les températures sont peu ou pas corrélées à l'indice. Les vénta , faibles , n'influent pas sur les températures de surf ace. Au contraire , les températures de surface doivent dépendre d'autres facteurs : advection des eaux guinéennes , précipitations , .

- D'octobre à mai, la corrélation est bonne à Yoff, assez bonne à Kayar et Thiaroye. La meilleure corrélation entre température et indice est observé pour les trois stations en mais à cette période de l'année les eaux chaudes er provenance du golf e de Guinée atteignent la latitude du Cap Roxo (ROSSIGNOL, 1955 : fig. 14). Tant que les alizés sont établis les températures aux stations côtières restent froides : les alizés équilibrent la poussée des eaux guinéerres et des eaux tropicales du contre courant équatorial. Dès que les alizés cesser. les eaux chaudes recouvrent 10 plateau continental. Comme l'avait déjà noté REBERT, la corrélation hautement signif icstive en mai conf irne "lé synchronisne entre le retrait des alizés et l'apparition des eaux chaudes du contre courant équatorial". Une forte corrélation est également observée en TABLEAN A CORESCONDER AN AN AN ANTAL CORESCONDER AN ANTAL AND AN ANTAL ANTAL AND AN ANTAL ANTAL

-3.93 D S N F Μ J J Α 0 М A J Coefficient -0.47 -0,56 -0.13 -0.66 _0,76 _0,91 -0.70 -0.78 -0.84 -0.94 0.35 -0,41 corrélation -0.63 -2.52 -4.05 -8.28 -2,72 -5.12 -1.79 -2.01 -2.29 -2.55 -2.87 -1.92 Pente Niveau 95 % 99 % 90 % 99 % 80 % 95 % 98 % 99 % -------Signification

CAYAR 1970-1977

YOFF 1969-1977

	J	F	М	A	М	J	J	A	S	0	N	D
Coefficient corrélation	∞0 ,68	-0.77	-0,91	-0.58	-0.90	0.06	-0,10	-0.31	-0_00	-0.50	-0.51	-0.73
Pente	-1.66	-2.16	-2.64	-2.75	-4.53	0.67	-062	-1,21	-	-2.20	226	-3.93
Niveau signification	95 %	98 %	99	90 %	99%			***		80 %	80 %	95 %

THIAROYE 1968-1977

	J	F	M	A	M	J	J	A	S	0	N	D
Coefficient corrélation	-0.30	-0.53	-0.73	-0.69	-0.81	0.53	-0.12	~0,49	-0.00	-0.81	-0.49	0.22
Pente	-1.39	-1.42	-2.65	-2.37	-4.37	11.04	-0.63	-2.55	-	-3.65	-1,86	1.09
Niveau signification	-	80 %	98 %	95 %	99 %	80 %	-	80 %		99 %	80 %	ânt

Eaux d'upwelling

Eaux tropicales

Eaux guinéennes

FIG. 14.-Masses d'eaux en mai-juin (d'après ROSSIGNOL)

nctobre à Thiaroye, en décembre à Yoff et Kayar. C'est le phénomène inverse de celui de mai qui se produit · à cette période le rafraichissement des term mératures des stations côtières est étroitement lié à l'apparition des alizés.

- La valeur moyenne des pentes est de -2.5°C par unité d'indice d'upwelling. Mais la parte mensuelle est beaucoup plus forte aux trois stations en mai, en octobre à Thiaroye, en novembre-décembre à Kayar et en décembre à Voff Bendant ces périodes, l'influence de l'indice (donc du vent) sur les températures des stations obtières est plus grande qu'au cours du reste de l'ancée. Due même anomalie de vent se traduire par une anomalie de température plus parquée · par exemple. le fait que le vent souffle à 5 m/s au lieu de 4 m/s conduire à un refroidissement à Kayar des températures mensuelles de l° en février, mars, avril, mais de 1.9° en mai et de 3,1° en décembre : les températures de début et fin de saison froide sont étroitement dépendantes du vent - Les pentes sont en général négatives sauf en juin à Yoff et à Thiaroye et en décembre à Thiaroye. Mis à part ces mois où la température de surface semble no pas dépendre du vent, un accroissement du vent s'accour pagne d'un refroidissement des températures.

En résumé, le vent ne joue pas un rôle significatif sur les températures de surface des stations côtières en saison chaude. En saison froide, la relation indice-température n'explique en moyenne que 50 % de la variance des températures ($\mathbf{r} = -0.70$). Mais le début et la fin de la saison froide sont (troitement liés à l'apparition et au retrait des alizés.

2.3.5. Mise en évidence des périodes 4 intensification et de relaxation de l'upwelling à l'aide de l'indice

L'indice d'upwelling nous a permis de mettre en évidence, sur une année type (cf. 2.3.2.), l e s mois à indice élevé correspondant à la "saison froid l'upwelling, pendant cette saison froide, ne se développe pns de manière uniforme, mis présente des périodes alternées de relaxation et d'intensification l'indice d'upwelling journalier est un moyen de mieux délimiter ces périodes ill permet de faire le lien entre les données requeillies aux stations côté res ou lors des radiales, et le phénomène motour, le vent. Afin de mettre en évidence ces périodes d'intensification et de relaxation des vents et leurs con séquences sur les températures côtières, nous avons analysé à l'aide de l'in d'iee journalier les données requeillies lors de la période du 23 octobre au 1 4 décembre 1968 - nous disposes des températures journal ières à Thiaroye (fig. 16) bi-heblomadaires aux stations A et B (fig. 17), et de la campagne du 12 au 13 novembre(Grande Côte) et du 14 au 17 novembre(Petite Côte)(fig. 12).

Fig. 15. - Indice d'upwelling journalier du 23 octobre au 14 décembre 1968 sur la Petite Côte

Fig. 16 - Température de surface à Thiaroye du 23 octobre au 14 décembre 1968

Fig. 17a.- Température à la station A (fonds 12 m) du 23 octobre au 14 décembre 1968.

Fig. 17b.- Température à la station B (fonds 25 m) du 23 octobre au 14 décembre 1968.

Les variations de 1 'indice journalier sur <u>la</u> Petite <u>Côte</u> peuvent se <u>résum</u> mar comme suit :

(a) - 23 - 29 oct · C.U.I. quasiment nul, fin de l'hivernage (vent ¹¹ ⁹m/s)
(b) - 30 oct-2 nov · C.U.I. très élevé (vent ¹¹ ³ NNN · 6m/s)
(c) - 03 - 10 nov · période de relaxation (^{NU} · 3 m/s)
(d) - 11 - 19 nov · C.U.I. élevé. Période d'intensification de l'upwelling (vent N · 5 m/s) malgré une accalmie le 13
(e) - 20 nov45 nov: période de relaxation (vent N · 3 m/s)
(f) - 26 nov-03 déc: C.U.I. moyen, repr ise progressive de 1 'upwelling

(g) - 04 - 13 dec ; intensification de l'upwelling (vent N · 5 m/s)

?eut-on relier les températures côtières observées pendant cette période aux variations de 1 'indice décrités ci-dessus ?

a.- Du 23 au 31 octobre la température est supérieure à 27° à Thiaroye tandis qu'aux stations A et B une couche homotherme supérieure à 28" est présente : c'est la structure typique durant l'hivernage : le C.U.T. pratiquement nul confirme qu'il n'y A pas de mouvements ascendants.

b. - La réponse au "forcing" du 30 octobre au 2 novembre (4 jours) est très nette : la, température baisse brutalement de 3'" sur les fonds de 12 m (de 28° 7 à 19° 7) entre le 29 octobre et Le 4 novembre, de 5° à Thiaroye (27° 2 à 21° 8) entre le 31 octobre et le 2 novembre, (La station B n'ayant pas été visitée durant cette période, le phénomène y est suggéré en pointillés). Le minimum de température à Thiaroye apparait le 6 novembre (t = 20° 2) soit 7 jours après le maximum de vent, et alors que les vents sont faibles depuis 1 e 3 novembre : on observe un temps de réponse de 7 'jours;' Le minimum du é novembre à Thiaroye correspond à 1 arrivée de la veine d "eaux froides qui se trouvait le 4 novembre sur les fonds de 12 m(station A).

c.- Là période de relaxation des vents, du 3 au 10 nov, se traduit par un réchauffement général des eaux. Ce réchauffement sc poursuit jusqu'au 14 novembre aux stations A et B, jusqu'au 16 novembre à Thiaroye (t = 24°).
Comme le ref roidissement précédent, le réchauffement n'est pas en phase evec le phénomène moteur : la période de relaxation des vents dure du 3 au 10 nov le réchauffement à Thiaroye débute le 7 et se termine le 16.

a,- La période suivante (flu 11 au, 19 nov) correspond à une intensification de l'upwelling sur la Petite Côte. C'est pendant cotte période qu'ont été réalisées les radiales (12 - 13 nov sur la Grande Côte et 14 - 17 nov sur la Petite Côte). Pour interpréter les données sur La Grande Côte, il faut nous référer au C.U.I. A St-Louis et à Kayar (fig. 18). A St-Louis, après le

Fig. 18- Indice d'upwelling journalier du 23 octobre au 21 novembre 1968 sur la grande **côte**

"forcing" du 30 octobre au 2 novembre (aux mêmes dates qu'à Yoff), le C.U.I. a conservé une valeur moyenne : globalement du 30 octobre au 12 novembre, cette région est orientée favorablement à l'apparition d'un unvelling. A Kayar, au contraire; le C.U.I. est très faible voire négatif, ce qui correspond à une situation d'afflux des eaux superficiel les chaudes vers la côte, Sans aucun doute, la période de vents forts de la fin octobre a eu lieu, corres à St-Louis et Yoff mais leur direction NNW, perpendiculaire à la direction de la côte dans cette région, était défavorable à l'apparition d'un upwelling c'est ce qui explique les valeurs très faibles du C.U.I.

L'allure des isothermes en surface sur la Grande Côte (fig. 12) confirme la présence de remontées d'eaux froides au niveau de St-Louis, avec des caux inférieures à 22° la long de la côte. Au contraire, au niveau de Kayar les eaux chaudes du large sont amenées à la côte (piling-up) comme le laissaient prévoir les valeurs négatives du C.U. I. : ainsi l'isotherme de surface 26°. qui était repousse à SO km au large par l'upwelling de St-Louis se trouvo ramené à la côte au niveau de Kayar. La même situation se reproduit à 25 mètres. où des eaux inferieures à 20° apparaissent (au-dessus des fonds de 50 m à St-Louis, tandis qu'à Kayar l'isotherme 25" est plaqué à la côte (il se situait 4 110 km au large au niveau de St-Louis).

Sur la Petite Côte, les radiales (du 1.4 au 17 nov) ont été réalisées au milieu de la période d'intensification de l'upwelling (du 11 au 19 nov), En surface, on observe un refroidissement des eaux dans la baie de Gorée · 24° contre 27° plus au large, Mais comme nous 1 "avons vu plus haut cos éaux à 24° résultent du "forcing" de début novembre « cc sont les eaux à 20° de début novembre qui se sont réchauffées. Cela apparait nettement aux stations A est P : le 14 novembre, rien n'indique un refroidissement à ces stations : au contraire le réchauf fement est général . Nous avons d'ailleurs vu que le réchauffement à Thiaroye se poursuivait jusqu'au 16 nov. Contraircment aux apparences les eaux à 24" de la baie de Gorée le 14 nov ne sont pas dues à l'upwelling qui a débuté le 11 novembre, mais à l'upwelling précédent, Le 14 novembre, ¹'upwelling n'a démarré que depuis 3 jours · c'est insuffisant pour que les eaux froides atteignent la surface ou même les fonds de 25 m (station B) (cf., théorie de JANOWITZ et PIETRAFESA), Par contre, l'upwelling est présent au dessus des fonds de 53 m, sur la coupe A 25 m avec dos caux inférieures à 21°. La progression des eaux froides a déjà été dudiée en 2.2. Elles apparaissent le 18 au dessus du fond à la station B (t = 19,6°) alors que la station A est toujours occupée par des eaux chaudes (t = 22,3à 10 m). Le 22 novembre, c'est la structure inverse que l'on observa :

la veine d'eaux froides s'est déplacée vers la côte et occupe toute 1 * épaisseur d'eaux à la station A. La station B. située plus au large, se trouve 6008 1 'influence des eaux superficielles chaudes qui 'avaient été chassées Par 1 upwelling et qui reviennent le s vents Rtant faibles depuis 3 jours : on ~ observe des températures plus élevées qu'à la station A. Insistons encore sur le déphase entre le phénomène moteur , le vent, et les températures observées. La période de vents forts dure du 11 au 19 novembre, mais le refroidissement maximal. n'apparaît que le 18 novembre 3 la station A, le 22 en A le 2° à Thiaroye. Nous observons à nouveau un temps de réponse de 6 jours à Thiaroye après le maxima de vent (le 17).

e.- Ca relaxation des vents du 20 au 25 novembre a pour conséquence le ralentissement puis l'arrêt des remontées d'enux froides, le phénomène d'upwelling n'étant plus entretenu, La période précédente avait vu les eaux à lo côte emmenées vers le large sous l'action du vent, on observe à présent le retour de ces eaux superficielles chaudes qui avaient été chassées par l'upwelling : le 28 novembre elles occupent toute l'épaisseur d'eau aux stations (et B : la température est de 23,3 contre 20,3 à la station A le 22. A Thiarcyc du 23 au 29 novembre, la température croit de 19,9° à 23°4. Notons que le 28 novembre, les eaux aux stations A et B n'ont pas encore répondu au nouvel upwelling qui démarre (voir ci-dessous) .

f-g.- La période suivante est consacrée à une nouvelle intensification progressive des vents (du 26 novembre au 13 décembre), Le schéma classique se reproduit . Les eaux froides n'apparaissent pas instantanément (le 5 décembre à la station A et B). La période de vent favorable dure 15 'jours : les eaux chaudes supérieures à 23° sont chassées vers le large définitivement et ne reviendront à la côte qu'en mai · la saison froide s'installe.

La comparaison des données hydrologiques et des observations de vent peut ainsi être poursuivie pour toute la saison froide. L'étude précédente a suffi à mettre en valeur le rôle du C.U.I. journalier · d'une manière générele, il a permis de prévoir que la région située entre la Presqu'île du Cap-Vert et Kayar ne serait pas le siège de remontées d'eaux froides durant le mois de novembre. D'une manière plus précise, sur la Petite Côte qui est la région la plus étudiée, Les observations ponctuelles n'apparaissent plus figées, mais sont replacées dans leur contexte grâce au C.U.I. · les évolution passées et futures **par** rapport A l'instant d'observation sont plus facilers au prévisibles, Si l'on considère le phénomène d'upwelling en tant que système , le C.U.I se situe en amont du système : il représente en quelque sorte les données d'entrées brutes ; au contraire,; les températures côtières se situent en aval elles représentent les sorties du système, modifiées par d'autres paramètres tels que bathymétrie, stratification..., C.U. I et températures sont complémentaires : certaines périodes de vent peuvent être d'une durée insuffisante pour affecter les températures côtières de surface (le refroidissement se li mitant aux couches au-dessus du fond). Le C.U.I. nous indiquera qu'il y a eu possibilité d'upwelling. De même les températures des stations côtières peuvent Être sujettes à des refroidissements sans que le vent local en soit la cause (phénomène d'ondes internes par exemple) .

Lorsque les périodes de vents favorables sent d'une dur& suffisante la comparaison des évolutions du C.U.I. et des températures côtières permet d'appréhender le temps de réponse du système. Ainsi, en début de saison froide.. les périodes d'intensification des vents sont suffisamment espacées Pour pouvoir être traitées indépendamment les unes des autres : c'est ce qui a, motivé notre choix de l'exemple de novembre 1963. Pour chaque phase d'intensification. relaxation, on isole aisément la période de refroidissement puis le réchauffement correspondant , avec un temps de réponse par rapport au phénomène moteur (5-7 jours en novembre 1968). Au fur et A. mesure que la saison avance, les phases d'intensification sont de plus en plus rspprochéas ,les phases de relaxation durent moins longtemps. le réchauffement me s'effectue que partiellement et le refroidissement reprend avant que le système ait trouvé un état d'équilibre stable = les températures résultent de la superposition de ces ph8nomène.s, et il devient très difficile de les relier au vont local journalier.

Il nous a cependant paru intéressant d'isoler, au cours de l'année les périodes de vents très favorables et leurs durées respectives. A partir des données de C.U.I. pour les dix années de 1968 à 1977, nous avons voulu définir une année type avec, pour chaque mois, le nombre de jours noyons d'upwelling et la durée des périodes d'upwelling. Pour ce faire, sur les dix années 1968-1 977, nous n'avons retenu que les jours où le C.U.I. prenait des valeurs supérieures à 0.95. Le choix de la valeur 0.95 est empirique, cela correspond approximativement à un vent de 5 m/s soufflant parallèlement à la côte ; nous nvons décidé que les jours où le C.U.I. dépassait 0.95 étaient des journées très favorables à l'upwelling.

	J	F	М	Δ	м	J	J	Α	S	0	N	D	Total
1968	7	6	14	14	9	6	0	0	0_	3	7	12	78
1969	4	7	11	19	9	4	0	0	0	2	2	· 9	67
1970	13	5	20	10	16	4	0	0	0	4	8	13	93
1971	7	14	19	24	24	3	1	0	0	0	17	11	120
1972	21	27	· 31	26	19	5	0	1	4	5	10	13	162
973	0	22	24	25	11	9	6	0	4	3	22	24	160
1974	22	20	29	30	22	5	2	1	1	. 11	14	0	167
1975	10	16	25	28	26	4		2		5	0	17	145
1976	15	22	30 .	26	23	7	1	0	1	6	2	4	147
1977	16	18	15	22	28	4	5	9	1	1	5	2	136
Moy.	12.5	15.7	21.8	22.4	18.7	5.1	1.6	.3	1.2	5.0	· 9.7	12.5	127.5

Tabl. VI a.- Nombre de jours d'upwelling par nois sur la Petite Côte de 1968 à 1977 (C.U.I. supérieur à 0.95)

	68-69	69-70	70-71	71-72	72-73	73-74	74-75	75-76	76-77	Droite regression	Coeff. corrél.	Seuil signif.
Jrs d'up- velling	69	75	109	152	115	171	129	143	115	T=20.55		
Tempé- rature	19.16	19,60	18.67	17.54	18.46	17.90	7.77	17.86	18.01	- 0.02 NJ	r = -0.90	99%

Tabl. VI b.- Corrélation entre la température moyenne et le nombre de jours d'upwelling en saison froide (novembre à mai).

S

FIG. 19a.- Nombre d'observations d'une phase d'upwelling de x jours (1968-1977)

FIG. 19b.- Contribution de chaque phase au phénomène d'upwelling

Le tableau VI.a présente le décompte des jours d'upwelling par mois et par an sur la Petite Côte : on dénombre en moyenne 127 jours d'upwelling par an, ce sont les mois de mars et avril qui présentent le plus fort pourcentage de journées d'upwelling (22 jours sur 30 en noyanne). Le même type de calcul conduit à 34 jours d'upwelling par an en movenne A Kayar et 53 jours à St-Louis: la Petite Côte apparaît, de loir comme la région du Sénégal la mieux orient& à l'apparition de l'upwelling. Sur ces 127 jours d'upwelling, 113 se situent de novembre à mai = la saison d'upwelling est très délimitée dans le temps. Si 1 'on s' intéresse uniquement à la période de novembre à mai la corrélation interannuelle entre la nombre de jours d'upwelling durant cette période et la température moyenne est hautement signif icative (tabl.VI.b) Plus les journées de vent favorable auront été nombreuses; plus les températures moyennes seront fraîches. Cela confirme le résultat de 2.3.3.: la température moyenne en saison froide est reliée au vent local.

Sur le tableau VI.a, on constate que sur les 127 jours d'upweiling de la Petite Côte 4 jours seulement ont lieu de juillet à septembre.

Ces 4 journées d'upwelling réparties sur 3 mois sont trop isolées poux avoir une influence notable sur le milieu et ne présentent pas d'intérêt. En nous limitant à l'époque d'octobre à juin pour chaque année de 1968 à 1977 Epoque qui recouvre largement la saison d'upwelling, nous avons recensé grâce à un programme informatique la durée de toutes les phases de vent favorable pour la Petite Côte. (Une phase favorable est une période de x jours consécutifs où le C.U.I. a dépassé 0.95). Sur la figure 19a apparaît le nombre d'observations des dif f érentes durées des périodes d'upwelling. En valeur absolue c'est le nombre de fois pù l'upwelling a duré x jours pour les années W-77. En valeur relative (c'est-à-dire divisé par le nombre total d'observations).~ c'est la probabilité d'observer une période de x jours, Les phases les plus fréquemment observées sont celles qui durent moins de 10 jours (261 observations). 12 pha ses durent de 11 à 20 jours, 8 phases de 21 à 30 jours, 2 phases enfin durent respectivement 49 et 55 jours. La figure 19b représente la contribution de chaque phase (ou classe en langage probabiliste). Ainsi la classe 4 (Phase de 4 jours) a été observées 29 fois et correspond à une contribution de 29 x 4 = 116 journées d'upwelling sur les 1234 journées recensées de 1966 🧠 1977. La classe 2, bien qu'observée 46 fois n'apporte qu'une contribution de $2 \times 46 = 92$ journées. Un constate que les phases de moins de 10 jours, qui étaient les plus fréquenment observées, sont également celles qui contribuer,:

5.9

le plus au phénomène d'upwelling : 61 % des journées d'upwelling appartiennent à une phase de moins de 10 jours : 24 % proviennent d'une phase de 11 à 25 jours, 15 % d'une phase de plus de 25 jours. Les modes principaux sont , par ordre décroissant, les classes 4, 3, 1, 2, 7 : cela signifie, qu'une journée d'upwelling prise au hasard durant la période d'octobre à juin, a le plus de chances d'appartenir à une phase de 4 jours, 3, 1, 2, 7 jours.

Evolution moyenne des alizés durant la saison froide

Le programme informatique a ensuite été modifié pour être appliqué à chaque mois d'octobre à juin, Lorsqu'une période d'upwelling s'étendait sur la fin d'un mois et la début du suivant, elle C-tait recensée dans le deuxième mois : par exemple une période d'upwelling du 28 novembre au 3 décembre était assimilée par le programme à une observation d'une phase de 6 jours pour le mois de décembre. Le tableau VII représente le nombre d'observations de chaque phase par mois, la fig, 20 la contribution, de chacune de ces phases au nombre total de journées d'upwelling observées dans le mois. le tableau VIII le résumé des résultats. En début de saison froide, en octobre, les phases d'upwelling sont très courtes et durent moins de 5 jours. Le mode le plus souvent observe est la phase de 2 jours (puis 1 et 3 jours), Les alizés soufflent de manière internitte nte, le plus souvent l ou 2 jours d'affilée. C'est insuffisant nour observer un rafraîchissement des eaux côtières de surface (sauf parfois en fin de mois) mais des remontées d'eaux froides peuvent apparaître sur le rebord du plateau continental, Le mois de novembre est assez semblable à celui d'octobre, les physes d'upwelling durent en général 5 jours ou moins. Hais on dénombre deux fois plus de journées d'upwelling (9.7 contre 5) et le mode principal est la phase de 4 jours. Les périodes de vent s'allongent et ont une influence notable sur le milieu. Les premiers refroidissements , brutaux, des températures des stations côtières ont lieu : mais les phases de vent sont encore trop isolées, ct les températures se réchauffent dans lus intervalles qui séparent las phases d'upwelling. On observe des oscillations marquées des températures, associées à ces phases d'intensification, puis de relaxation (cf. exemple de novembre 1968),

Décembre marque la fin de la période transitoire "d'installation de l'upwelling[#]. Avec 12, 5 journées d'upwelling et un mode principal de 8 jours, la saison froide s'établit. Les modes secondaires sont les modes de 2 jours et 5 jours. PABLEAU VII.- A : Nombre d'observations par mois, d'octobre à juin de phases de vents favorables inférieures à 15 jours (Petite Côte 1988-77)

B : Recensement des phases supérieures à 15 jours

Mois	0	NJ 1	ī) : : : :	J	F	M	A	n M N	J
1	10	15	11	14	8	13	5	2	18.
Ż	8	6	11		4	3		7	n antikana ar sin antikana ar an
3	3	4	4	5	7	3	- 3	5	1
4	2.	7	2	6		3		4	£1,
5	1	2	3	1	3	2	1	1	
6]		1		1	3	
7		1		4	5 _w-v	}	1	1	
			3	1]	1	1		T T CHANNE PRODUCTS CO.
9	analysis - fact a generation of the state of the		1	1	2	1		1	
10] 			ana Philippe Mill - Mill and a Philip - Philippe Million	1	1		
11		· · · · · · ·			1				unat r710400 v 1 k 4 a
12				1					
13					1	1			
14	an a			an ja Sau - sanata Sigar das Ing	1	1	1	antan alan ana ana a	
15			l				1		
В						.2. .2. .2. .3. 	19 21 3 22 29 29 29 3 55	17 j 19 22	

FIG. 20.- Contribution de chacune des phases au nombre total de journées d'upwelling observées par mois.

	J	F	M	A	M	J	J	A	S	0.	N	D
Nombre moyen de jours d'upwelling	12.5	15.7	21.8	22.4	18.7	5.1	1.6	1.3	1.2	5.0	9.7	12.5
Mode principal	7j	7j	>10j	>10j	>10j	4j		- -	-	2j	4j	8j

TABLEAU MIT Nombre de journées d'upwelling par mois et évolution au cours de l'année de la durée des phases d'upwelling

							•						
				а 194	•								
Pour un mois donné	1-2-3 j	25	22	13	6	20	64	. –			73	41	37
probabilité en (%)	4-56j	25	12	10	5	20	36		-	-	27	40	24
d'upwelling appar-	7-8-9 i	39	36	11	7	5				-		8	27
tienne à une phase de	10-15j	11	22	18	18				-			11	12
	16-25j			8	38	35		-	-	-		<u> </u>	
	> 25j		8	40	26	20			-	-	1		

Le mode de 2 jours rappelle que nous ne sommes qu'en début de saison froide et que les alizés peuvent avoir du mal à s'Etablir, Le mode de 5 jours narque au contraire la tendance à l'allongement des phases, déjà remarquée dans le mode principal de 8 jours.

En janvier, les journées d'upwelling stagnent (12,5 jours) : les périodes de vents favorables se stabilisent autour d'une semaine (mode principal, de 7 jours). Les modes "courts" (1, 2 et 3 jours) ne sont plus prépondérants contrairement aux mois d'octobre, novembre, décembre : ce sont les phases de "moyenne durée" (7-8-9 jours) qui contribuent le plus (39 %) au phénomène d'upwelling (tableau VIII) .

On constate en février une légère augmentation des journées d'upwelling (15.7 jours) : plus d'une journée sur deux est une journée d'upwelling. Le mode à 7 jours est toujours très marqué, mais les phases de plus de 10 jours apparaissent : la contribution principale est due aux phases moyenne durée (7, 8, 9 jours) avec 36 % suivie par les phases supérieures à 10 jours(30 %),

Mars et avril sont des mois assez semblables, qui correspondent au maxinum d'intensité des alizés, Ils se caractérisent par un nombre élevé de journées d'upwelling (22 en moyenne), et par une absence de mode très marque pour Les périodes de vent de moins de 10 jours, Ce sont les phases très longue durée qui contribuent le plus aux journées d'upwelling : pendant ces mois, les aliés peuvent souffler plus de 30 jours d'affilée (plus longue période observée 55 jours en 1974, 49 jours en 1972). Les phases courte et moyenne durée sont quasiment inexistantes (surtout en avril),

Mai est encore sous l'influence des phases longues <u>durées</u> : ce sont les périodes comprises entre 16 et 25 jours qui sont prépondérantes. Mais les phn-, ses plus courtes ne sont pas négligeables et on observe un mode à 6 jours.

L'activité des alizés décroit fortement au cours de ce mois.

Juin marque la fin de la saison des alizés avec seulement 5 jours dans le mois les alizés soufflent encore épisodiquement toujours sur des périodes de moins de 4 jours.

Si l'on revient, après cette étude mois par mois, à la fig 19 b, on comprend que l'importance des classes 1 à 4 est surtout due aux observations effectuées en octobre et juin, qui ne sont pas à proprement parler des mois d'upwelling. En retirant les observations d'octobre et de juin. on obtient un nouvel histogramme qui représente mieux les conditions de saison froide , de novembre à mai. Les principaux modes snnt les modes de 3, 7 et 4 jours et nous nous sommes affranchis des modes de 1 et 2 jours qui reflétaient les observations d'octobre et juin.

Schéma récapitulatif

...

Un schéma récapitulatif de l'évolution moyenne des alizés sur la Patite Sôte au cours de la saison, froide peut être propos5 ·

-- Ses premières incursions d'alizés ont -lieu en octobre : la fait que ces incursions soient très: isolées et leur période de moins de 5 jours, (le plus souvent 1 ou 2 jours) ne permet pas d'influencer de manière durable le milieu. Les conditions sont celles de saison chaude (température de 25 à 2000).

- En novembre et décembre, les alizés s'installent progressivement : La furée des périodes d'alizés s'allonge à 4 jours, puis une semaine · les cons . quences sur le milieu sont très nettes avec une chute brutale des températures est jèrés, les phénomeneut des produire dernatelle de quinzoine d'octobre si les calizés : sont "en avance".

Mais les périodes d'alizés sont encore trop espacées pour que le refroidissement soit définitif, et on observe un régime transitoire de refroidissement-réchauffement des températures de la mer aux stations côtières (oscilla-~ tion de 18 à 24°) avec un déphasage plus ou moins marqué avec le phénomène moteur (6-7 jours à Thiaraye).

- De janvier à mi-février, les alizés se stabilisent : ils soufflent toujours sur des périodes de l semaine, parfois moins en janvier (3-4 jours). L'évolution des températures est plus régulière, le ref roidissement marque un palier à 17-18°. La deuxième quinzaine de février voit l'apparition fies périodes d'alizés de plus de 10 jours.

- Les mois de mars, avril sont les mois d'intensité maximale des alizés, Leur présence est quasi permanente, et il est fréquent de les voir souffler 20 à 30 jours d'affilée. L'impact sur le milieu est considérable « upwelling très développé avec remontée intense de sels nutritifs. Le ref roidissement reprend et on peut observer des températures inférieures à 15-16°.

Mai voit la fin de ces grandes périodes d'alizés. Aprks avoir soufflé 20 ou 30 jours, les alizés s'arrêtent pour ne reprendre que sur des périodes beaucoup plus courtes (6 jours, 4 jours>, Les températures à la côte se réchauffent nais les alizés encore présents équilibrent la poussée des eaux chaudes qui arrivent du sud et maintiennent un petit upwelling au sud de le presqu'ile du Cap-Vert.

- Juin marque le départ des alizés et le retour des eaux superficielles chaudes à la côte . les alizés ne soufflent qu'une ou deux fois dans le mois sur des périodes courtes de moins de 4 jours.

La transition saison chaude - saison froide, qui se situe d'octobre à iscembre, a de grandes conséquences biologiques, L'oscillation verticale de la thermocline (cf., fig. 17 .a et 17 .b) projette vers le haut, dans la zone euphotique, les sels minéraux concentrés jusqu'alors sous la thermocline, nondant ainsi possible, le démarrage de la chaine alimentaire (DOMAIN, 1980) 4 'au niveau du fond, sur le rebord du plateau, on observe à cette époque la présence de quantités importantes de poissons qui trouvent vraisenblablement dans cette zone une forte quantité de nourriture (DOMAIN). Cette remontée brutale de la thermocline est due de manière certaine à la première phase de vent favorable d'une durée conséquente (au moins trois jours d'alizés, d'intensité supérieure à 5 m/s). Cette première apparition soutenue des alizés se situe entre le 20 octobre et le 15 novembre. Si la période de vent. n'est pas assez longue, la remontée de la thermocline ne se fera pas sentir aux stations côtières. L'enrichissement se fera en subsurface, il pourra être prodit par le calcul de 1 'indice d' upwelling journalier et confirmé par des mesures aux stations A et B (fonds de 10 et.25 m en baie de Garée et au sud du Cap Manue 1) : on connaîtra avec précision le début de 'fa saison froide.'

Remarques sur le choix de certains paramètres

La notion de journée d'upwelling a été définie par rapport à une valeur minimale de 0,95 pour le C. U. I. On peut se demander dans quelle mesure le choix d'un autre seuil aurait influencé les résulats précédents.

Des seuils de 0.90 puis 1,0 ayant été successivement introduits dans le programme, on a pu constater que les résultats étaient très peu sensibles à ces modif i'cations .Celas ' exnlique par' le fait: que les valeurs de C.U.I., de 0,9 à 1 correspondent à une barrière dans le régime des vents . ces valeurs sont obtenues pour des vents' de l'ordre de 4, 5 m/s · dans la réalité, ou les alizés sont établis, et ils soufflent à 5,6 ou 7 m/s, ou nous sommes en période de relaxation; et ils soufflent à moitis de 4 m/s. En pratique, les valeurs de C.U.I. de 0,9 à 1,0 sont assez peu observées et remplissent bien leur rôle de seuil.

Un autre paramètre important qui peut être sujet à caution est le choix le l'orientation de la côte qui intervient dans tous les calculs de C.U.I. Ici encore, une modification de l'orientation de la côte dans une fourchette ± 5° ne conduit pas à des résultats fondamentalement différents. Les résultats en valeur absolue sont modifiés de quelques pour cent, mais les variations su cours de l'année restent les mêmes. En outre, les trois régions du Sénégal définies en 2.3.1. conservent leurs caractéristiques particulières. L'application de la théorie d'Ekman aux côtes sénégalaises a porté principalement sur la détermination théorique des courants en ssison froide et le calcul du flux de remontée d'éaux profondes, qui caractérise 1 'upwelling.

Connaissance des courants

L'intensité des courants de surface en saison froide le long des cêtes sénégalaises est 'de 20 à 30 cm/s d'après les observations et le calcul théorique. Leur direction moyenne explique le recollement des isothermes au rivage entre Dakar et Kayar (zone de convergence) puis leur décollement sur la Petite Côte (divergence), Entre St-Louis et Yayar, l'écoulement s'effectue parallèlement a u r i v a g e .

L'étude plus détaillée de <u>la Petite Côte à mis en évidence du point de vu</u> bhéorique, le front et la divergence observés en surface, dans le sud de <u>la</u> baie de Gorée en saison froide. Ces phénomènes sont dus à l'orientation irrégulière de <u>la côte et à l'allure des isohathes à ce niveau</u>, Le calcul de <u>la</u> circulation théorique sur le fond a permis de situer "la source" des remont les l eaux froides sur les fonds de 50 - 100 m, au niveau du rebord du plateau. continental.

Flux de remontée d'eaux profondes

Grâce à la théorie d'Ekman, nous avons défini 1 ' indice d'upwelling côtion cui est un paramètre important pour la compréhension du phénomène d'upwelling, 1 "aide de cet indice, et en schématisant les côtes du Sénégal en trois réaions d'orientations distinctes, nous avons montré que

- La Petite Côte est le siège de l'upwelling le plus actif, en intensité et en durée. Au contraire, la région située entre la presqu'île du Cap-Vert et Kayar s'est avérée mal orientée aux vents dominants et souvent en situation de convergence (downwelling).

• Le vent local est la cause directe des refroidissements observés auz stations côtières. Les températures froides sont dues aux remontées d'coux profondes riches en sels nutritifs, Ainsi, l'enrichissement des eaux côtières est lié, d'une année sur l'autre., à l'intensité des alizés **80** % de la va riance interannuelle (d'une saison froide à l'autre) est expliquée par la relation avec le vent local.

- Cette très forte corrélation entre vent (par l'intermédiaire de l'indice d'upwelling) et température se retrouve au niveau mensuel, en octobre et mai, mois qui correspondent à 1" installation et au départ des alizés. Les refroidissements et réchauffements des eaux côtières sont directement liés à l'apparition et au retrait des alizés.

Le calcul de l'indice d'upwelling au niveau journalier permet de suivre l'évolution de l'upwelling au cours de la saison froide pour une région donnée.

La comparaison de l'indice d'upwelling journalier avec les données hydro logiques recueillies sur la Petite Côte a mis en évidence en début de saisor, froide , le couplage à moyen terme (avec un déphasage de 1. 'ordre de 6 jours) entre les périodes de vants favorables et les remontées d'eaux profondes à la côte. Tout au long de la saison froide, lés fluctuations de 1 'upwelling peuvent être retracées, en s 'appuyant sur les données hydrologiques (radiales , stations côtières) et en interpolant à l'aide de l'indice entre chaque campagne, Ainsi les observations, bien que ponctuelles, prennent une nouvelle dimension « jusqu' à présent descriptives , elles peuvent désorrais servir de hase à un modéle explicatif de l'upwelling, grâce à l'indice qui les relie au phénomène moteur, le vent,

Le phénomène d'upwelling n' est pas un phénomène stationnaire ni continuil ne s'installe pas progressivement, mais présente des phases d'intensificetion et de relaxation. L'étude sur la durée des périodes de vents favorables qui conditionnent, par leur intensité, la remontée des eaux profondes a montré que ces périodes s'allongeaient au fur et à mesure que la saison froide s'avançait, passant de quelques jours en octobre-novembre à une semaine en janvier pour atteindre des durées de plus de 20 jours en mars-avril,

Au niveau mensuel, ou moyenné sur la saison froide, l'indice d'upwelling d St-Louis ou Kayar semble refléter de manière plus fidèle les conditions de milieu qui influent sur la pêche (CURY, 1982), que les températures côtières dont la représentativité est souvent, mise en doute (PORTOLANO, 198 1). Le fébut de la saison de pêche à Kayar et St-Louis est particulièrement bien corrélé avec l'indice d'upwelling. (CURY, 1982),

En rapprochant suffisamment les sorties 4 la mer {au moins hebdomadaires) et en sélectionnant quelques stations de référence autour de la presqu'ile du Cap-Vert, la suite logique de cette étude est de proposer une modélisation des remontées d'eaux profondes qui dépendra du temps et du vent,

· · ·

ANNEXE I

RELATION ENTRE LA TEMPERATURE MOYENNE EN SAISON FROIDE ET L'INTENSITE MOYENNE DES VENTS (1966-1981) FLUCTUATIONS DES VENTS A LONG TERME

Nous avons Etudić en 2,3.3. la correlation existant entre l'indice d'upwelling et la température moyenne de la mer en saison froide, Malheureusement, les données de vents fournies par l'ASECNA ne sont actuellement informatisées que pour la période 1968-1977. Les données de vent antérieures et postérieures se trouvent sous forme manuscrite dans les Résumés Climatologique3 Mensuels, Le direction moyenne journalière du vent n'est pas fournie, la direction mensuelle est donnée par quadrant (NE, SSW...). On ne dispose donc pas d'une diroction précise et le traitement informatique, en particulier le calcul de l'indice d'upwelling, n'est pas réalisable, D'autre part tes températures journolikres de la mer à la station côtière de Thiaroye sent relevées en continu depuis 1966. Afin de ne pas perdre cette masse d'informations, nous avons studié la corrélation entre la température moyenne à Thiaroye en saison froide (novembre à mai), et l'intensité moyenne des vents à Yoff durant cette période. La direction du vent n'étant pas exploitable, nous n'en avons pas tenu comptet. arguant du fait qu'elle est à peu près constante de novembre à mai (cf., hodographe des vents, fig. 3).

L'intensité moyenne du vent en saison froide a été calculée à partir de la somme des intensités de vent de chaque mois de la saison (même type de calcul qu'en 2.3.3.). Nous avons ensuite étudié la corrélation entre la tempéreture moyenne et le carré de l'intensité moyenne du vent, puisqu'en théorie le flux de remontées d'eaux profonde3 est proportionnel à la tension du vent en surface qui suit une loi quadratique par rapport au vent, Les rfsultats de la fig. 21 montrent que la corrélation est hautement significative, même si elle n'explique que 50 % de la variance.

Ce type de calcul, malgré les réserves formulées en 2.3.3., confirme que les variations interennuelles des températures côtières sont étroitement dépendantes de 1 'intensité des alizés : les années où les alizés sont bien établis s'accompagnerent de températures basses aux stations côtières. Ces naux froides, de par leur teneur en sels nutritifs , contribuent par 1 'intermédiaire du plancton aux richesses halieutiques des côtes du Sénégal. P. FRECN (1982) a montré la corrélation entre 1'intensité du vent et les prises de

~ \circ

sardinelles sur la Petite Côte. Le rôle prépondérant du vent dans la génération de l'upwelling est ainsi clairement établi.

L'intensité moyenne des vents en saison froide influençant directement le milieu, nous avons recherché l'existence d'une périodicité à long terme dans le régime des vents. Nous avons obtenu de l'ASECNA une série homogène de mesures de 1947 à 1981. Les mesures de $v \ e \ n \ t$ à Dakar existent depuis 1897 : elles étaient au départ codées en échelle Beaufort, puis en km/h. Jusqu'en 1947, le site de mesure a souvent été nodifié en position et altitude au-dessus du sol, rendant la série inexploitable. De 1947 à 1981 l'intensité moyenne du vent montre une tendance très nette à la baisse, significative à 99 %. Cette tendance explique 45 % de la variance observée (r = -0.67). Une fois cette tendance retirée , une périodicité de l'ordre de 8 ans semble se dégager :

D'après les résultats précédents, nous nous dirigeons vers des années à vent faible si :

- la tendance se poursuit

- le cycle est toujours présent (amplitude estimée : 0,6 m/s)

Ainsi, pour la saison 84-85, les hypothèses conduisent à une vitesse moyenne des vents de

L'indice d'upwelling étant proportionnel au carré de la vitesse du vent, le rapport de l'indice d'upwelling en 84-85 parrapport à la période 1971-1981 (vent moyen de 5,5 m/s) serait de $(3,9/5,5)^2 = 0,50$.

L'intensité de l'upwelling et de l'enrichissement des eaux serait réduit de moitié, avec des conséquences notables sur la pêche (biomasse induite plus faible, variation de la capturabilité). Ces prévisions pessimistes seront vraisemblablement bouleversées, si la tendance ne représente pas une évolution à très long terme et s'inverse avant que la vitesse du vent ne prenne des valeurs extrêmes (présence de composantes à plus grande période dans les fluctuations de vent).
ANNEXE II

PROGRAMME INFORMATIQUE

CALCUE DE L'INDICE D'UPWELLING CETIER

METHODE:LE TRANSPORT DE MASSE D'EAUX DU AU VENT EST DONNE PAR LA THEORIE D'EKMAN= TC/F;F EST LE PARAMETRE DE CORIGLIS,TG LA CONTRAINTE DE VENT SUR LA SURFACE DE LA MER,DONNÉE PAR LA RE--LATION QUADRATIQUE CLASSIQUE TO=RC#C#V##2. RO EST LA DENSI--TE DE L'AIR,C LE COEFFICIENT DE FROTTEMENT,V LA VITESSE DU VENT. AU VOISINAGE D'UNE COTE,LE TRANSPORT VERS LE LARGE EST DETERMINEE EN PRENANT LA COMPOSANTE PERPENDICULAIRE AU RIVAGE DU TRANSPORT D'EKMANIGONT LA DIRECTION EST A 90 DEGRES A DROI TE DE LA DIRECTION THETA DU VENTI. LA VALEUR DE CE TRANSPORT NEPRESENTE L'INDICE C'UPWELLING COTIER

PARAMETRES D'ENTREE, ISUR CARTES)

1 ANC	CHEIX	SΞ	L'ANNEE	ΕX	1 ANG = 68	
12	:CHCIX	DE	LA REGION	ΕX	12=2	REGION(2)=CAYAR

NGTATIONS

LES DIRECTIONS SUNT DONNEES EN DEGRE SUIVANT LA RESE DES VENTS ALPHA, BETA :NORMALES EXTERIEURES A LA COTE CUI(JJ,M) ::QUASTAL UPWELLING INDICE! POUR LE MOIS M, JOUR JJ CUII(M) ::COASTAL OPWELLING INDICE! MOYEN, POUR LE MOIS M JZI(M) :INDICE POUR LA PREMIERE QUINZAINE DU MOIS M IZZ(M) :INDICE POUR LA SECONDE QUINZAINE DU MOIS M 4X, MY ::UNITE DE LECTURE POUR LA BANDE DU FICHIER "METEC!

DIMENSION ALPHA(3);CUI(31,12);CUI1(12);GZI(12);GZZ(12);MY(3) REAL *8 REGIEN(3) DATA REGIEN/*ST LUUIS*;*CAYAR*;*PTE CEIE*/ DATA ALPHA/302.;340.;258./ EATA MY/3;2;2/ F=3.7E=0 P1=3.14159 RE=1.2 C=1.3E=3 J=.001*R0*C/F

LECTURE DES PARAMETRES D'ENTREE INITIALISATION DES TABLEAUX

```
L0 READ(5,100,END=11) 1ANC,12
MX=MY(12)
SETA=ALPHA(12)
JJ=0
CU J M=1,12
CUI1(M)=0.
271(4)=0.
```

Ĉ

74 122(4)=0. 30 4 L=1,31 4 CUIL.M)=0. J CONTENUE LECTURE OU FICHLER MALTEC ! SUR L'UNITE MX CALCUL DE L'INDICE JOURNALIER, PAR QUINZAINE, MENSUEL 1 ... EAD(MK, 101, END=51 THETARV, IAN, M.J. TELENANE. IANCE SOTO 1 LIHU.NE.O) GUTC 2 Training and the set of the set 1 = 1 - 1 2 JJ≠JJ+P states to be the first state 001(00;M)=8*V+*2*000((00TA-THETA+90.)/180.*PI) IF(JJ.EQ.15) CZI(M)=CU11(N)/JJ a la s ITTOJ. GT. 159 (2214)=222(M)+CUI(JJ,M) IF(V.ED.12. AND JJ.ED.31) GETS 35 1F(4.0):12:ARE.J.22.J01.60T0 3. . IF(J.NE.O) GETE 1 LUIL(M)=LUIL(M)/JJ J22(4)=J22(X)/(JJ-15) J J = JIF (4.22.12) SETC 6 3313.1 0 17(1AN.E1.77) 3010 3 REAC(MX, 102) THETA, J GG TG 2 IMPRESSION CES RESULTATS U JULNTINUE 7971 NT 2007, REDFER (12), FAN -98 DIT 201 -11 7 7 = 1.31 33 M L=1,31 -7 PRIMT 202, L, (COF(L, M), M=1, 12) 2%I IT 205, QZ1, QZ2, CU11 ETJGE DIUNE NUJVELLE ANNEE ETZEU GIUNE NUUVELLE REGIUN ċ. e e transferte 30 TU 10 LL STOP LOD FOR INT(10X, 212) 101 FURMAT(2x, F5, 1, 0X, F4, 1, 47x, 312) 102 FURMAT(2X,F5.1,5X,F4.1) 200 FORMAT(1H1////4QX,*INDICE: GPWELLING COTIER*,4X,A8,4X,*19*,12,4/// 1//1 ۰, DIFERANT(9X,* JANVIER *,* FEVRIER *,* MARS *,* AVRIL *, 1* ANI *,* JULA, *,* JULLET *,* ACUT (*,*SEPTEMBRE *, 21 COTUDAE 1,1 NOVENSKE 1,1 DELEMBRE 17). 202 FUR 1A1 (6X,12,3X,12(F5.2,5X)) 203 FOR 4AT(////* INDICE MENSUEL:*//3X;*JINZ1?;2X;12(F6.3;4X)/3X;*GINZ2 1* ,2X, 121F6.3, 4X)//3X, *NUYEN*, 2X, 12(F6.3, 4X)) STOP CNO.

7/30.FT02F001 DD DSN=METCO.YUFF.26877, UNIT=TAPE, VOL=SER=GGMETE, // DIDP=(ULD,PADD), DOB=(BUKSIZE=1600,LRE0L=30,RE0F1=F3),LABEL=9

Ĉ

	JANVIER	FEVRIER	MARS	AVRIL	MAL	JUIN	JUILLET	AGUT	SEPTEMBRE	GCTCBRE	NEVENORE	CECEMBRE
1	2.22	0.64	0.67	0.56	0.13	C.87	0.28	0.13	0.37	-0.10	1.27	0.48
2	1.61	0.67	0.42	0.93	0.54	1.00	-0.35	0.12	0.02	0.42	1.09	0.73
3	0.90	0.71	0.46	C.51	0.23	0.76	-0.25	0.24	- O . C ?	0.05	0+52	0.72
4	0.93	0.67	0. 8C	1.09	1.05	1.00	0.01	0.19	~0.G2	-0-00	0.34	0.85
5	1.24	.0.54	1.22	1.17	0.95	1.28	0.43	0.33	· C • C 3	0.00	0.37	0.89
6	0.80	0.79	1.26	1.01	0.54	1.31	0.31	0.13	-0.11	0.C7	0.26	0.97
1	0.58	с.73	1.18	Ċ.97	0.52	A.41	fi.08	0.04	-0-14	0.10	0.19	1.05
9	0.78	0.25	1.09	1.05	0.30	0.59	C-25	0.24	-0.01	-0.17	0-41	1.24
9	0.49	0.71	0.64	1.14	1.27	0.41	0+58	0.12	-0. c4	-0.09	0.31	1-27
10	0.47	0.45	1.09	L • A 4	1.09	0.20	0.47	0.13	0.04	0.10	0.51	1.25
11	0.45	3.83	0.85	0.97	0.74	0.11	0.18	0.19	0.07	-0.06	1.01	1.02
1 2	0.43	0.92	1.18	1.18	0.76	0.11	-0.42	0.55	-0.01	-0.09	0.92	6.96
13	0.43	1.08	0.85	0.57	0,58	0.23	-0.13	0.39	0.15	G . C2	0.47	1.02
14	0.51	1.12	1.09	0.77	0.59	0.69	0.30	-0.02	0.01	0.11	0.80	0.63
15	0.55	1.23	1.01	0.37	1-1-8	1.02	C-11	0.02	-0.05	0.58	1-14	0-80
16	0.46	0.57′	0.84	c. 89	1.28	0.59	0.14	0.11	0.36	1.72	1.49	0.98
17	5.52	5.40	0.77	0.64	1.22	-0.05	0.12	-0.15	0-12	0.54	1.66	0.72
18	L .oi	0.61	0.74	0.54	0.93	C.1C	0-11	-0.02	0.10	-0.01	1.13	0.60
19	1.13	0.39	G.51	0.81	0.98	0.45	C-11	0.18	0.64	0.00	C. 87	0.62
2 0	1.25	0.64	0.82	1.61	0.56	0.03	0.22	0.44	0.37	0.38	0.35	0.75
2 1	0.39	0.91	0.60	1.00	0.57	- 0 . 2 4	0.36	-0-C8	-0.04	C-26	0.16	0.97
2 2	C.41	0.89	0.73	0.99	0+57	0.27	0.08	-0.47	-0.09	C+28	0.40	0.77
23	0.11	0.85	0.85	0.70	0.72	0.28	-0.21	0.33	0.11	~0.CI	0.29	0.43
24	0.06	1.04	1.22	0.60	0.78	0.08	C.C.4	0.63	0.14	0.20	0.12	0.35
25	0.50	3.17	1.14	0.55	0.82	0.16	0.25	0.22	0.19	G = 16	0.24	0.33
26	0.38	0.89	1.00	0.47	0.79	-0.02	0.04	-0.03	-0.11	C-11	0.67	0.35
27	c.45	0.83	0.85	03.0	0.55	-C.26	-C.CI	a.24	-0.01	C.C1	0.55	0.43
28	0.54	0.87	1.27	0.48	0.43	0.02	-0-29	0. 67	-0.62	0.11	0.53	0.40
29	0.62	1.04	0.67	-0.05	0.42	6-17	C.01	-0.16	0.08	0.67	0.66	1.14
30	0.ui	0.0	1.08	-0.16	0.91	C.16	C.39	-0.42	0.20	2.00	0.55	0.99
31	0.78	3.0	1.22	0+0	0.96	0.0	6.66	0.30	0.0	1.78	0.0	0.78
INDICE MI	ENSUEL:											
JINZI JINZZ	0.830 0.442	c. 154 0.773	0.924 0.914	c.949 0.618	0.698 0. 781	0.732 0.116	C.119 C.089	0.137 C.C75	0.017 C.135	0.062 0.514	C.639 0.646	C.928 0.664
моу ен	û.73.I	0.763	0.919	0.763	0.141	c. 424	t.103	0.129	0.076	0.295	G-642	C.792

	JANVIER	FEVRIER	MARS	AVRIL	MAL	JUIN	JUILLET	ACUT	SEPTEMERE	CCTEBRE	NCVEPBRE	CECEMERE
1	0.88	0.63	0.82	1-00	3.74	C.25	-0.15	-0-12	-0-14	-0-02	0.55	C.72.
2	0.58	0.51	i.37	1.05	1.30	C.62	0.28	-0.13	-0.04	-0.00	0.37	0.96
3	0.43	0.73	1.52	1.89	1.59	C.18	-6.15	-0.03	0.02	-0.03	0.35	6-62
4	0.97	0.37	1.14	1.22	2.18	0.30	0.05	0.37	C-11	-0.05	0.31	0.33
5	0.85	0.08	0.04	1.55	1.21	C*l&	0.62	0.14	-0.C8	0.23	0.04	0.42
b	0.52	0.41	0.20	2.12	0.85	C-C8	C-14	0.05	-0.57	C-76	0.26	0.41
7	0.12	c.75	C.57	1.55	0.01	0.71	-C_01	0.31	0.00	a.13	C.35	0.34
8	0.0	1.89	0.84	1.61	0.54	0.95	C+C2	-0.24	0.10	-0.33	0.42	a.49
	a.20	1.04	o-s.7	1.71	0.98	1-65	0.47	-0.74	-0.05	-0.29	a.76	0.43
10	1.33	1.01	0.89	1.30	-0.06	1.60	c.77	0.12	-0.03	0.18	0.65	0.46
11	1.00	0.83	A.14	1.05	-0.16	i.44	C-18	0.55	-0.12	c.31	6-99	0.94
12	1.00	1.09	0.78	1.12	0.17	0.92	-C.16	0.38	-0.10	0.21	0.90	1.83
13	0.87	0.85	0.34	1.44	0.87	0.49	-0.05	-0.13	0.03	1-18	0.82	'A.51
14	0.85	3.03	0.30	0.90	0.39	0.72	0.03	-0.44	-0.11	1.42	0.54	1.22
15	0. a4	0.33	c.35	0.61	0.33	G-51	6.20	<u>6-70</u>	0.05	0-03	0.42	C.90
16	0.73	0.29	-0.21	6.89	0.39	0.69	0.10	-0-11	-0.07	0.16	0-20	1.23
11	0.11	0.22	~0.03	6.40	0.54	0.00	-0.03	-0-10	0-03	6.65	0-48	1.55
10	a.46	0.48	0_40	0.29	0.78	0.28	6.667	0.11	0.48	0-10	0.33	0.89
20	0.40	0.05	0.41	0.29	1.70	0.43	C.2/	0 33	0.48	0.38	0.24	0.90
20	0.20	L + L * 0 74	0.09	0 4 1	1.13	V • 11 Z	0.04	0.22	0.24	V+22	9.34	1 4 4 9
21	0.19	1 12	0.10	0.41	0 4 4	0.25	-6-12	-6.66	0.20	0.27	0.35	0.32
22	0.00 0 fa	1.13	0.19	C 58	0.11	0.40	60.0	- 0 . 4 0	0.50	0.37	0.51	0.20
24	a 31	0 40	1 31	0 1 8	0.32	0.30	6.25	0.21	0 41	-0.02	0.55	0.21
25	0 2 0	3 06	±.5±	0.97	0.77	0 92	0 29	-0.13	-0-00	-0-01		0.16
26	0.27	0 13	1.05	1.36	0.72	0.92	C 18	0 02	-0 03	0 14	0.85	0 35
27	0.50	3 56	1 18	1 70	0 57	G.46	-0.10	0.02	0.05	0.14	0.87	0.35
28	0.01	0 74	1 04	1 62	0.37	0.61	C.09	-0.07	0.06	0 12	0 88	1 12
2.9	0.01	0.0	0.17	1.47	1.07	0.24	6.02	0.01	C.19	c. 54	0.95	0.48
30	0.22	0.0	0.75	1.27	0.54	-0.28	-a.25	0.44	0.12	0-85	0.60	0.42
<u>.</u>	0.26	0.0	A.00	0.0	0.34	0.0	C.26	0.06	0.0	0.61	0.0	0.20
INDICE M	ENSUEL:											
JINZ1 QINZ2	0.703 0.374	0.748 C.616	0.790 0.620	1.384 0.642	0.728 0.757	C.706 0.362	C.148 0.118	0.052 -0.013	-0.057 0.193	0.249 0.303	G.514 0.555	0.772 0.659
MOYEN	5.533	0.687	0.702	1-113	0.743	c.534	C.132	0.019	0.068	0.277	c.534	6.714

INDICE UPRELLING COTIER PTE COTE 1970

3

		JANVIEK	FEVRIER	MARS	AVRIL	MAI	JUIN	JUILLET	ACUT	SEPTEMBRE	GCTCBRE	NGVEMBRE	GECEMBRE
	1	0.43	3.47	0-40	G-61	1-77	1.18	0.20	0.37	0.34	0.26	0.12	0.12
	2	0.33	0.22	0.90	0.55	1.55	0.47	0.41	-0.29	a.29	0.04	0.10	0.41
	د	. 0.37	0.10	1.05	0.67	4.51	6.65	C.38	-0.88	0.17	0.46	0.06	0.91
		U. 57	0.20	1 72	0.41	1.32	0.02	0.48	0.27	0.35	0.42	0.52	1.13. 1.00
	6	1.07	0,413	L +) C 1 2 7	1.14	0.44	C 5 6	-0.44	0.00	-0.59	0.13	0.81	0.74
	ž	1.06	0 31	0 8 5	1.90	0 6 0	1 5 0	0.02	-0 16	- 0 0 2	0.30	0.71	0.64
	8	1.18	0.56	1.05	1.84	0.97	1.27	0.16	-0.12	0.10	-0.06	0.41	C. 57
	9	1.52	L.27	0.93	1.36	1.66	0.17	C.19	- a . 2 9	-0-16	-0.06	0.16	0.01
	10	1.46	0.99	0.85	1.06	1.32	0.55	0.30	-0.33	0.15	0.17	1.07	0.41
	11	0.38	0.89	0.93	1-11	1.14	0.16	0.36	0.12	0.28	0.28	1.68	0.59
	12	0.33	0.93	1.18	C.99	1.10	0.05	с.33	a.22	0.02	0.22	2.00	0.28
	13	0.90	0.17	1.07	0.66	0.98	0.10	0.26	0.11	0.02	0.94	1.41	0.46
	14	0.84	0.71	1.01	0.41	0.24	0.23	0.20	0.64	0.31	0.26	0.54	0.11
	15	1.51	0.00	0.99	0.33	0.28	C. 31	6.30	0.26	0.07	0.03	0.43	1.22
	10	· U. a 2	0.40	1 + 92	. 4 . 70	0.19	0.18	0.22	Q+11 0 04	0.00	0.19	0.71	1.02
	11	0.16	3.42	1 1 2	0.67	0.29	-0.01	-0.04 C.21	0.04	0.18	0.21	1 11	1.05
	10	1 02	0.60	0 44	0.34	1-01	C.82	0.57	0 37	0 3 1	0.07	0.65	1.95
	20	1.17	0.54	0-48	6.11	1.03	0.09	0.44	0.23	-0.05	0.07	0.46	6-94
	21	2.45	0.42	0.58	0.20	0,90	0.11	0.44	C. C6	-0.30	0.71	0.76	0.43
	22	1.66	0.14	0.56	0.70	0.96	0.13	c.44	0.06	- 0. 5C	1.56	1.15	0.75
	23	0.31	3.43	1.14	1.04	0.99	0.21	c.22	0.20	- 0 . 0 4	1.03	0,81	1.32
	24	0.77	0.81	1.05	C.50	1.01	0.35	-0.21	0.13	0.81	0.51	1.41	0.87
	25	0.66	0.90	1.09	0.73	0.49	0.44	C+18	0.13	0.15	0.54	0.86	1.14
	26	0. 70	0.85	1.35	0.60	0.13	0.56	0.48	0.11	0.15	c.73	0.20	1.04
	27	0.74	1.04	1.05	C.80	0.10	C . 76	-6.09	0.04	0.60	1.08	0.17	1,09
	28	1.19	1.01	1.52	0.39	0-15	0.12	-0-01	0.14	0.51	0.60	0.04	0.58
	21	0.34	0.0	1.40	1.14	0.30	0.30	0.53	0.25	-0.00	6.30	0.30	1.03
	30	0.77	U.0 2°C	1.51	1+31	0.70	1.0	0.44	0.02	4-12	0.53	0.40	2 0 6
	2.	5.00	3 0	0102		1.59		0+L1	0,002	0.0	0.55	0.5	2.00
1.		ENE:JCI +											
10	DICC MI	CHOUCL -											
1	JINZ1	0.994	0.635	1.045	C+859	1.009	0.576	C.276	0.019	0.098	0-236	C.748	0.604
	3INZ2 -	0.909	0.676	1.097	0+684	0.641	0.377	0.251	J.120	0.138	0.544	0-667	1.275
		0.071	0 154	1 070	0 70 1	0.010	C 176	0.263	C 07/	0.114	0 205	r 747	C 060

· · ·

7

~

BIBLIOGRAPYIE

- BAKUN A., 1973. Coastal Upwelling Indices, Uest Coast o f North America, 1946-1971. N O A A Tech. Rep. NMFS SSRF - 671 (103 p).
- CREMOUX J.L., 1969. Observations océanographiques effectuées en 1968. D. S.P. n° 19 Centre Rech. océanogr. Dakar.
- CREMOUX, J.L., 1970 Observations océanographiques effectuées en 1969. D.S.P., n° 3.4 Centre Rech. océanogr. Dakar.
- CSANADY G.I., 1975. Lateral Momentum Flux in Roundary Currents. Journ. of Phys. Oceanogr. 5 n° 4 p 705-717.
- CURY Ph. et WORMS J., 1982. Pêche, biologie et dynamique du thiof sur les côtes sénégalaises. ROC. sci. Cent. océanogr. Dakar. Sous presse
- DOMAIN F., 1980.- Contribution à la connaissance de l'écologie des poissons démersaux du plateau continental. sénégalo-mauritanien. Thèse de doctorat d'Etat. Paris VI,
- FREON P., 1982.- Des modèles de production appliqués à des fractions de stock dépendantes des vents d'upwelling. (Sous presse).
- HALPERN D., 1976. Structure of a coastal upwelling event observed off Aregon during July 1973. Deep-Sea. Research 23 6, p 495-509.
- HUNKIS K., 1966.- Ekman drift currents i n the Artic Ocean. Deep-Sea. Research 13, 4, p 607-621.
- JANOWITZ G. S. and PIETRAFESA L.J., 1980. A model and observations of Time. Dependant Upwelling over the Mid. Shelf and Slope. Journ. of Phys. Oceanor. 10, 10, p 1574-1583.
- KULLENBERGG,, 1977, Entrainment velocity in natural stratified vertical shear flow, Estuarine and coastal marine science 5, 3, p 329-338.
- LACOMBE H., 1965 . Cours d'océanographic physique. Gauthi er-Villars (392 p).
- MONIN A.S. et YAGLOM, 1971. Stastical fluid mechanics · Mechanics of turbule noo. M.I.T. PRESS. Cambridge.
- MEUMANN G. and PIERSON Y. J., 1966 .- Principles of physical oceanography
 - Wind driven currents in a homogeneous ocean p 191-213
 - Mixing of water messes : estimation of eddy diffusion coefficients
 - p 395-408. Prenctice Hall, Inc. (544 p),
- PORTOLANO P., 1981,- Contribution à l'étude de l'hydroclimat des côtes sénégalaises. (communication personnelle).
- REBERT J.P. et PRIVE M., 1974.- Observation de courant. au voisinage du Cap-Vert. Centre Rech. océanogr. Dakar. Archive n° 3.

- REBERT J.P. et PRIVE M., 1974.- Observation de courant sur le plateau continertel sénégalais du Cap-Vert au Cap Roxo, mars 74, Centre Rech. océanogr. Dakar. Archive n° 4.
- REBERT J.P., 1978, Variabilité des conditions de surface dans l'upwelling ouest africain. Cent. Rech. océanogr. Dakar. Doc. sci. n° 67. Comm. n° 100.
- REBERT J.P., 1978.- Hydrologie du plateau continental sénégalais, Cent. Fech., océanagr. Dakar. (Comm. personnelle).
- POSSIGNOL M. e t ABOUSSOUAN M.T., 1965.-Hydrologie narine côtière de la Pres qu'île du Cap-Vert. Archive. Cent. Rech. océanogr. Dakar,
- ROSSIGNOL M., 1978.- Les upwellings d'instabilité at le concept de la compensation forcée. Document provisoire ORSTOM, Océanographie.
- STEQUERT B., e t al. 1979.-La pêche maritime artisanale au Sénégal Cent. Rech. océanogr. Dakar. Doc. sci., n° 73,
- TEISSON Ch., 1979. -- Etude des échanges gazeux à l'interface air-mer, Mémoire D.E.A. ENSTA-PARIS VI.
- TOURE D., 1982. Contribution à l'étude de l'upwelling de la baie de Gorée. Thèse 3e cycle, Paris VI (en préparation).
- HOOSTER W.S., BAKUN, A., and Mc LAIN D.R., 1976. The seasonal upwelling cycle along the eastern boundary of North Atlantic. J. Mar. Research. <u>34</u>, 2. p 131-141.