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Short-lived species are extremely dependent on the seasonal and interannual variability of
environmental conditions, and determining their stock status is often difficult. This study investigates
the effects of environmental variability and fishing pressure on the stock of octopus Octopus vulgaris
in Senegalese waters over a 10-year period from 1996 to 2005. Monthly catches-at-age were estimated
based on catch-at-weight data and a polymodal decomposition constrained by a given growth curve.
Octopus recruitments and fishing mortalities were then estimated using a catch-at-age analysis
performed on a monthly basis. Yield and biomass per recruit were simulated using a Thompson and
Bell model and used to generate a diagnostic of the fishery’s impacts. Results indicate that the high
interannual and seasonal variability of the octopus stock biomass is linked to the spring recruitment
event, the annual intensity of which was significantly correlated with the coastal upwelling index and
sea surface temperature. Yield per recruit varied seasonally but remained almost unchanged from
one year to the next. Even when catches vary strongly according to recruitment, the octopus stock
appears to be consistently fully exploited, or slightly overexploited in some years. In this context of
environmental variability, usual indicators such as the maximum yield per recruit, and the related

fishing mortality and spawning potential ratio, remain useful for fisheries management purposes.
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Introduction

The cephalopod Octopus vulgaris (Cuvier 1797) is one
of the main demersal fishery resources in the Eastern
Central Atlantic. The resource shows marked interan-
nual and seasonal variability in catches (Caveriviere et
al. 2002), a phenomenon commonly exhibited by most
fisheries involving short-lived species, and which reflects
changes in local abundance (Wang et al. 2003). In Senegal,
the octopus stock has been caught primarily in the south
of Dakar, near the fishing port of Mbour (Figure 1). High
levels of abundance were first observed during the summer
of 1986. Exploitation started that year, and in subsequent
years, catches varied considerably, from <5 000 tonnes (t) to
15 000 t, and reaching a peak of nearly 45 000 t during the
summer of 1999 (Caveriviére et al. 2002, Diallo et al. 2002).
Octopus recruitment is usually highly variable from year to
year, and changes in abundance and recruitment between

years may be attributed to fluctuations in environmental
conditions that affect the early phases of cephalopod popula-
tions (Rodhouse et al. 1992, Caveriviere et al. 2002, Thiaw
2010). Previous studies have demonstrated the effects of
sea surface temperature (SST) and retention processes on
recruitment fluctuations in the following cephalopods: Loligo
gahi in the South Atlantic (Agnew et al. 2000), Loligo forbesi
in the English Channel (Robin and Denis 1999, Royer et
al. 2002, 2006) and O. vulgaris along the Galician coast
(Otero et al. 2008), on the Saharan Bank (Demarcq and
Faure 2000, Faure et al. 2000, Balguerias et al. 2002) and
in Senegal (Caveriviere and Demarcq 2002, Laurans et al.
2002). In addition, the effect of environmental variability (SST
variability) on the abundance of O. vulgaris on a seasonal
scale was also observed off the Canary Islands (Caballero-
Alfonso et al. 2010). As a result, the global octopus stock

African Journal of Marine Science is co-published by NISC (Pty) Ltd and Taylor & Francis



210

Thiaw, Gascuel, Thiao, Thiaw and Jouffre

exhibits rapid and unstable dynamics, and the stock’s
potential production varies widely from year to year. This
natural variability may at least partially mask the impact of
fishing. Thus, modelling the impact of the environment and
fishing pressures on the dynamics of the octopus stock is
challenging.

Based on both catch and environmental data from a
10-year period (1996—-2005), the present paper examined
the population structure and the influence of environ-
mental changes and fishing pressure on the dynamics of
the Senegalese stock of octopus over this period. For this
purpose, this study undertook the following investigations:

1. Recruitment, stock size in numbers and fishing mortality
of the octopus stock were estimated using a virtual
population analysis model (VPA) computed on a monthly
resolution step and covered a range of more than 100
monthly cohorts (from January 1996 to December 2005).

2. The VPA estimates (on recruitments and abundances)
were used in addition to complementary catch data to
explore correlations between the main stock characteris-
tics and selected environmental variables (i.e. variables
that potentially influence its dynamics). Statistical
analyses were performed to test the ability of the coastal
upwelling index (CUI) and SST to explain changes in
recruitment or a significant part of the variability observed
in population abundance and catches.

3. Estimates of recruitments and fishing mortalities were
also used as input data in a Thompson and Bell (1934)
simulation model. Monthly age-structured production
models were aggregated for each year over the entire
data time period, providing a diagnosis of the current
status of the octopus stock in Senegal as well as a global
assessment of the impact of the fishery on this short-
lived resource.

Material and methods

Data

Monthly catch-at-weight

The total catch in weight of octopus fished monthly in
Senegal were provided by the Oceanographic Research
Centre of Dakar-Thiaroye (CRODT, Centre de Recherches
Océanographiques de Dakar-Thiaroye) from January 1996
to December 2005, in addition to the catches from artisanal
and industrial fisheries for that time period.

Monthly catches-at-weight were deduced from total catch
using two datasets. The ‘factories sample’ was provided
by two of the main factories that process fish products in
Senegal for both the artisanal and industrial fisheries. This
dataset includes the monthly factory production by commer-
cial category according to the Mitsubishi classification
(Table 1). This sample represents more than 50% of the
total Senegalese catch for octopus, and covers a large area
(all octopus landings sites are included) and long periods of
time, and is thus considered to be highly representative.
It allowed for the estimation of the Senegalese octopus
production by month and by commercial category for both
the artisanal and the industrial fisheries.

In addition, data from a ‘quality control’ study performed
by representatives of the purchasers were also provided by
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Figure 1: Map showing the location of the main octopus fishing
ground in Senegalese waters

Table 1: Weight limits (eviscerated fresh weight) defining Mitsubishi
classification for octopus fisheries (Jouffre et al. 2002)

Commercial category Individual weight (g)

T10 <200
T9 200-300
T8 300-500
T7 500-800
T6 800-1 200
T5 1200-1 500
T4 1 500-2 000
T3 2 000-3 000
T2 3 0004 500
T >4 500

factories. During this study, catches of octopus sorted into
commercial categories were randomly undersampled, and
the individual weights of each octopus were determined.
These data allowed for the estimation of average weight
distributions within each commercial category.

The number of octopus caught in Senegal each month per
weight class (per 50 g) was deduced from these samples,
adding the catch-at-weight value of the 10 commercial
categories.

Biological parameters

Growth parameters, which were required for the conver-
sion of catches-at-weight into catches-at-age (see below),
were estimated by Domain et al. (2000), from in situ
mark-recapture experiments. The following equation was
used:

VVt _ ea(2‘+b)
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Table 2: Annual environmental data used in the statistical correlations analysis

Year CUI(m*s'm™) SST (°C)
Yearly mean February—April Mean CUI > 3.5 Yearly mean March—May March—April

1996 242 412 414 24.90 22.09 21.21
1997 2.52 4.53 4.53 25.15 21.75 20.98
1998 2.88 5.31 5.45 25.26 22.58 22.42
1999 3.18 7.32 6.33 24.32 21.26 19.89
2000 2.90 5.36 5.30 25.50 23.21 23.08
2001 2.81 5.32 5.10 25.59 23.15 22.22
2002 3.12 6.34 6.24 25.03 20.86 20.55
2003 2.96 6.16 5.79 24.98 22.14 21.29
2004 2.29 3.81 4.51 25.11 22.29 22.14
2005 1.90 3.77 4.52 25.94 23.50 22.70

CUI = coastal upwelling index

where a = 0.0135, b = 290.75, W is the weight (in g) and t is
the age in number of days.

The natural mortality (M) was estimated by Jouffre et al.
(2002; also described in Jouffre and Caveriviére 2005),
using the method proposed by Caddy (1996) and assumed
a lifespan of close to one year (Domain et al. 2000, Jouffre
et al. 2000) and an average fecundity level ranging from
300 000 to 500 000 eggs per laying (see Mangold 1983).
Thus, we considered mortality to be 0.25 month-" for the
entire exploited phase, from the fifth month to death.

Environmental data

To investigate the effects of environmental conditions

on octopus recruitment, two environmental factors were

computed. These factors have an important influence on
spring and summer primary production and may potentially

affect the survival of early life stages (Faure et al. 2000,

Caveriviére et al. 2002, Groger et al. 2007, Bartolino et al.

2008) (Table 2):

1. The CUI (expressed in m® s=' m-') was deduced from
wind speed data obtained from the NOAA Environmental
Research Division website (ERD, Upwelling and Environ-
mental Index Products, http://www.pfeg.noaa.gov). The
index was calculated according to Ekman’s theory of the
transportation of masses of surface water by wind in the
north or north-east direction, coupled with the rotation of
the earth. Monthly mean coastal upwelling indices were
calculated for the octopus stock area for the time period
January 1967—March 2007.

2. Monthly mean values from remote sensing data on SST
for a 20-year period were obtained from the advanced
very high resolution radiometer (AVHRR) satellite data
at a spatial resolution of 5 km. Data covered the period
between January 1985 and December 2005 and included
the entire western African zone (10°-36° N).

These two environmental factors were considered to be
exploratory variables and were used to determine the environ-
mental index that most effectively measures the coastal
upwelling intensity of North-West Africa. Environmental
conditions occurring in yearly and seasonal (winter and spring)
scales were taken into account because of possible direct
and indirect effects on the survival rates of octopus recruits,
considering that both larvae and young recruits are abundant

in spring (Jouffre et al. 2002). For both environmental indices,
annual and monthly averages were calculated as input
variables for a correlation analysis between recruitment and
upwelling intensity. Averages for two months (March—April),
three months (February—April or March—May) and mean CUI
higher than 3.5 m® s~ m~" were also computed.

Age-based population modelling

Dynamics of the octopus population was modelled using
an age-structured approach. Because the octopus is a
fast-growing and short-lived species with an exploitation
phase of less than one year, the model was structured on
a monthly time-scale using ages and catch rates expressed
in months (Jouffre et al. 2002, Jouffre and Caveriviére
2005). Thus, calculations include 120 monthly cohorts from
age 5 months (recruitment) to 14 months during the period
1996-2005. The approach was divided into three main steps.

Catches-at-age estimate

Monthly catches-at-age were deduced from catches-at-
weight using a method of polymodal decomposition that
included shrinkage (Gascuel 1994a, Chassot et al. 2008).
For this approach, we assumed that catches-at-weight for
each age group exhibited a normal distribution centred on
the mean weight of the age group, constrained using octopus
growth curves from Domain et al. (2000). Age groups 5-14+
months were used, where the 14+ age group encompassed
catches of the 14-month-old and older animals. The method
was applied for each month and resulted in the catches-at-
age matrix (see Appendix), used as input for the VPA. Note
that, compared to the ‘slicing method’ previously used by
Jouffre et al. (2002), the polymodal decomposition is a clear
improvement on the age-based approach for the dynamics
of the octopus population. This method takes into account
the impact of cohort abundance on the weight-to-age conver-
sion (Gascuel 1994a).

Virtual population analysis (VPA)

A VPA was used to model past stock dynamics and to
estimate the input data required by the next stages (simula-
tions and diagnosis), namely monthly recruitment vectors
and fishing mortality matrices. Calculations were computed
using Excel, and alternatively used three basic equations:
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Catch equation

Fi i

Cti= E ~Fi i)
¢ i tM

xNgix(1-e )

Survival equation

_ —(R,j+M)
N1 js1=Npixe

Pope approximation of the survival equation (Pope 1972)

M; i
_ Mo —r
Ntj=Npqi1xe ' +Cpixe 2

where i denotes the month, t the age group, C the total

catch (in number), F the fishing mortality, M the natural

mortality, and N the number of individuals.

For each cohort, calculations were initialised by a terminal
fishing mortality referring to the oldest age group (see
below). This mortality was used in the catch equation to
generate the abundance of the terminal age group, which,
in turn, was used in the Pope’s equation to estimate the
abundance of the preceding age class of the same cohort.
Pope’s equation was used to generate the abundances of
all age classes. Fishing mortalities in each age group were
calculated from abundance estimates using the reverse
form of the survival equation.

Terminal fishing mortalities for the last age group (F;))
and the last month (F, ) were estimated iteratively (repeating
the calculation until stabilisation), initialising the calculations
with arbitrary values and then assuming that:

* F;,is equal to the average fishing mortality of the five
oldest age groups (from Fy;to F,;)).

+ F,,is equal to the average fishing mortality in December
for the three previous fishing seasons, in order to take
account the seasonality of the landings (December 2002,
December 2003 and December 2004).

Results from the VPA (i.e. estimates of the monthly
population numbers at age N, including the recruitment
N;)), and the weight-at-age estimated by Jouffre et al.
(2002), were used to derive values of biomass at age and
monthly total stock biomass.

Simulation model and diagnosis

Yield and biomass per recruit models (Thompson and Bell
1934 in Sparre and Venema 1998 and Gascuel 2008) were
used to analyse the fishing impact on the octopus stock.
Input data included the matrix of fishing mortalities-at-ages
F,; and the vector of monthly recruitments R, estimated over
the period 1996-2005 from the VPA, the vector of stock
numbers at age N, estimated from the VPA for the first
month of simulation (January 1996), the mean individual
weights at age W, estimated by Jouffre et al. (2002), and
the natural mortality M.

For each monthly cohort, diagnoses were created taking
into account constant exploitation (no changes in relative
fishing mortalities at age) using multipliers of monthly fishing
mortalities ranging from 0 (no fishing) to 2 (multiplier mF = 1,
corresponding to the current fishing effort). The yield per
recruit (Y/R) and biomass per recruit (B/R) were estimated
using the following equations:

-1
Y mFR+M
VRS |w. MR (R PR
e RV R VI e
S mFFM)
— mF-Fr i-5 t
+WT.7.G
mF-Fr + M
- S mERM -(mF-F+M)
— =5 -
B/R=) W;- -
; te mF -F, +M

Animals older than 13 months were assumed to be
mature. Thus, the equation for spawning stock biomass per
recruit (SSB/R) is:

N mrFm ~(mF-F+M)
i=5 -e

T
SSBIR =2 Wi-e TmERM

t=13

The spawning potential ratio (SPR) is the SSB/R at a
given fishing mortality divided by the SSB/R without fishing
mF = 0 (Beverton and Holt 1957 in Gascuel 2008):

SSB/R

(SSB/R) 1r=o

SPR =

Yield per recruit, biomass per recruit and the spawning
potential ratio calculated for the 12 monthly cohorts of the
same year (i.e. whose recruitment at age 5 month occurs
during the same year) were summed to obtain a diagnosis
of the exploitation of each yearly cohort between 1996 and
2005. Finally, the following reference points were used to
characterise the status of the stock: F,,,, the mean fishing
mortality rate F from age 9 to 13 months that corresponds
to the point where SPR is equals to 25% of the virgin
(SSB/R) r=0; Frmaxs the mean fishing mortality (from 9 to 13
months) that produced the maximum yield per recruit; and
Y/R..« and the spawning potential ratio, SPR,,. These
reference points are generally accepted indicators and are
therefore useful for fisheries management purposes.

Results

Stock dynamics

The commercial catch of common octopus varied between
years and seasons (Figure 2). The monthly average number
of octopus caught over the period was 1.4 million, with a
high coefficient of variation of 207% (minimum = 0.01 million
in November 2001 and maximum = 21.3 million in August
1999). There was no clear trend in the catches, but a clear
seasonal pattern emerged with higher catches observed
during summer. In summer, 10 monthly age classes were
being exploited simultaneously. This structure illustrates the
species’ short life cycle, resulting in an exploitation phase of
less than one year. The octopus life cycle is characterised
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Figure 2: Monthly catches and cohort analysis estimates of (a) octopus recruitment, (b) biomass and (c) mean fishing mortality (F, from age

9 to 13 months), from January 1996 to December 2005

by the death of post-spawning individuals and a relatively
long pre-recruitment period (5 months long) compared to
the total life expectancy (estimated to be 12—14 months on
average in Senegal, Domain et al. 2000).

Results from catch data indicate that octopus recruitment
(number of individuals at age 5 months) varied consider-
ably between years and seasons (Figure 2a). In addition,
recruitment was continuous all year but peaked in spring

and declined in summer. The average number of recruits
was 5.6 million per month with a high coefficient of variation
of 160% (minimum = 0.4 million in March 2001 and
maximum = 61.8 million in March 1999). Recruitment also
fluctuated widely between yearly cohorts, but no real trend
in recruit abundance was observed during the study period
(Table 3). Values varied between 13 million recruits (cohort
2001) and 243 million (cohort 1999) per year.
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The biomass also varied considerably between years and
seasons (Figure 2b). High interannual biomass variability
was likely due to the simultaneous presence of a unique
annual cohort (i.e. no overlapping between successive
annual cohorts because of the short lifespan). The minimum
biomass was observed in August 2001 (696 t) and the
maximum in July 1999 (39 187 t). Biomass by age revealed
that the summer peak was composed of juveniles (6-9
months) and adults, whereas the spring peak consisted of
recruits (5 months) and juveniles (6—9 months).

In Senegal, the octopus fishery is characterised by
marked interannual and seasonal exploitation with a high
fishing mortality in summer and low mortality in winter,
spring and autumn (Figures 2c, 3). Fishing pressure peaks
in July or August to take advantage of maximum biomass.
Mean annual fishing mortality varied from 0.32 to 0.70
month-' from year to year (Table 3).

Figure 3 illustrates that fishing mortality was highest for
the last six age classes and lowest for the youngest age
classes during the first months after recruitment. Mortality
increased progressively throughout the lifespan of individuals
within a cohort, and reached a maximum for older octopuses
that were most abundant in summer. The seasonal pattern
of exploitation for O. vulgaris was relatively similar for all
seasons (same profile along age class, Figure 3) but differed
in intensity throughout the year and peaked in summer.

Environmental effects on octopus recruitment
Correlation coefficients for the relationship between the
number of recruits and environmental parameters showed
that the coastal upwelling intensity has a positive influence
on recruitment (Table 4). Highly significant negative correla-
tions were found between recruitment and SST (Figure 4).
Annual recruitment exhibited a significant negative correla-
tion with an annual mean of SST (2 = 0.63, p < 0.05,

Figure 4). Thus, more than 60% of the year-to-year variability
in the octopus recruitment success can be explained by
interannual fluctuations in SST that is linked to coastal
upwelling (Table 4). The year 1999 was characterised by
very strong upwelling, which may explain the particularly high
observed recruitment that led to biased correlations (Figure
4). Nevertheless, a significant correlation remained for the
spring SST when the data for 1999 were removed from the
dataset. Other regressions with seasonal environmental
indices showed that annual recruitment of octopus was signif-
icantly correlated with winter and spring coastal upwelling
indices, suggesting that winter and spring conditions strongly
influence early life survival rates.
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Figure 3: Cohort exploitation patterns for four periods: January—
March, April-June, July—September and October—-December

Table 3: Results of cohort analysis for O. vulgaris between 1996 and 2005

Recruitment

Year (x 109) Catch (t) Biomass (t) SSB (1) Mean Fy_,
1996 38480 6111 2 466 214 0.57
1997 33178 4688 2231 175 0.46
1998 82 204 9484 5340 467 0.29
1999 243 216 45 080 19 318 1673 0.70
2000 17 860 4195 2127 377 0.37
2001 13 680 1175 1176 316 0.29
2002 102 347 13 860 7289 552 0.46
2003 64 995 11 375 5956 905 0.37
2004 49 940 8 489 5228 1145 0.36
2005 26 703 6 954 3568 822 0.32
Table 4: Correlation between octopus recruitment and different mean values of coastal upwelling index (CUI) and SST
P CUI (m®s' m™) SST (°C)

Yearly mean February—April  Mean CUI > 3.5 March—May March—April Yearly mean
Yearly recruitment 0.315*** 0.554*** 0.496*** 0.428*** 0.524*** 0.626***
Recruitment without 1999 0.231** 0.269*** 0.418*** 0.520*** 0.275** 0.306***

**p>0.05
*kk p< 0.05
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Annual exploitation diagnosis
Yield-per-recruit curves suggest that increasing current
fishing efforts would result in a slight decrease in yield per

recruit, and that decreasing fishing efforts would not result
in a significant increase in yield per recruit (Figure 5). For
the 1996, 1997 and 1999 cohorts, the octopus population
seems to have been slightly overexploited, whereas the

2001 cohort appears to have been underexploited. The
exploitation diagnosis for the 1998, 2000, 2002, 2003 and
2004 cohorts is that the stock was fully exploited (Table 5).
Yields per recruit expressed as a function of fishing mortality
were very similar from one year to another and showed that
for all cohorts, full exploitation was reached for F,, close to
0.4 month-', providing an average of 180 g recruit-'. Year
2001 was an exception due to a particular seasonal pattern
of the fishing efforts and a low mean yearly fishing effort
(Table 5).

Yield per recruit and spawning potential ratio curves
expressed for a ‘mean’ fishing season (Figure 6) showed
that the stock has been, on average, fully exploited from
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Table 5: Estimates of fishing mortality (F), yield per recruit (Y/R) and spawning potential ratio (SPR) reference points for O. vulgaris taken

in Senegal
Fcurren F % Fmax Y/Rcurren Y/R % Y/Rmax

Cohort (monthL) (moast;r*) (month-1) (9) ‘ (92)5/ ) SPR_rent SPR, .
1996 0.57 0.34 0.40 169.97 172.82 174.37 0.13 0.21
1997 0.46 0.30 0.33 173.94 175.86 176.44 0.13 0.23
1998 0.29 0.32 0.35 174.31 174.83 175.34 0.29 0.23
1999 0.70 0.35 0.42 180.32 184.17 186.79 0.09 0.20
2000 0.37 0.37 0.44 188.13 188.13 188.70 0.24 0.19
2001 0.29 073 0.71 173.59 184.87 185.43 0.44 0.25
2002 0.46 0.34 0.41 188.65 188.43 189.20 0.17 0.20
2003 0.37 0.37 0.41 189.08 189.08 189.44 0.25 0.23
2004 0.36 0.31 0.36 186.87 186.00 186.87 0.20 0.20
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Figure 6: Relationship between yield per recruit and spawning
potential ratio versus multiplier factor for the cohorts, 1996—-2004

to lower than 22% of the pristine condition and may have
some effect on octopus recruitment. However, from 1996
to 2004, the spawning potential ratio exhibited high year-to-
year variability, and during several years SPR values were
lower than 15%. No effects were found for related recruit-
ment and no trends were observed (Figure 7).

In the context of environmental variability, the usual
indicators such as F,,, SPR,, and Y/R_,,, remain useful
for fisheries management purposes (Table 5). Five yearly
cohorts (among the nine included in our dataset) have been
overexploited (F > F,.,,), leading to a yield per recruit close
to Y, (because of the flat Y/R curve) and catches close
to the maximum sustainable yield (MSY) for the cohort.
Nevertheless, the SPR of these cohorts was severely
affected, with values lower than 15% (and even 10% for the
1999 cohort). Even if recruitment is strongly dependent on
environmental conditions, such a value should not be consid-
ered sustainable in a precautionary approach.

We also observed that exploiting cohorts that have a
fishing mortality equal to F,,, leads to spawning potential
ratios that are always lower than 25% (except for the unique
2001 cohort). A more precautionary approach based on the

SPR = 25% target would lead to fishing mortalities (F,s,)

Figure 7: Annual variability of spawning potential ratios and fishing
mortality (from age 9 to 13 months), 1996-2004

that are lower than F,,, (on average F,,, = 0.38 and F_,, =
0.43), whereas the related yield per recruit would be very
close to Y/R

max*

Discussion

Results from this study will help identify the relationships
between variability in octopus recruitment and coastal upwelling
intensity, and evaluate the status of the octopus stock relative
to fishing efforts.

Effects of upwelling on octopus

Results showed that the population structure and abundance
of octopus varied greatly from year to year and seasonally.
Biomass varied according to season, reaching its highest
level in July and lowest in October. High interannual fluctu-
ations in recruitment were also observed. These large
variations in recruitment and in biomass have been described
or suspected for most cephalopod stocks (Beddington et al.
1990, Pierce and Guerra 1994, Agnew et al. 1998, Young et
al. 2004, Otero et al. 2008), including octopus stocks in other
West African areas such as Mauritania (Jouffre et al. 2006,
Gascuel et al. 2007), in the Sahara Bank near Dakhla (Faraj
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and Bez 2007) and in the Canary Islands (Caballero-Alfonso
et al. 2010).

The present study allows us to quantify the seasonal
recruitment of the Senegalese octopus stock using a
monthly VPA. This quantification is particularly important for
estimating recruitment because it concerns a variable that
is difficult to estimate directly or using absolute values, and
is of special interest to the relationship between resources
and the environment. For example, in our study there was a
20-fold difference between the maximum and the minimum
values of annual recruitments estimated throughout the
10-year study period. Results also confirmed that recruitment
occurred mainly in spring, although the length of the peak
period varied annually. Recruitment estimates supported
the results of the previous stock assessment for octopus
in Senegalese waters (Jouffre et al. 2002), and our study
extends these assessments to include a larger time period
(4 vs 10), a significant improvement when considering the
levels of temporal variability. In addition, our study brings
new insights into the causes of this variability, which was not
explained by variations in fishing activity, and there was no
relationship between spawning stock size and recruitment.
Changes in recruitment between years were mainly attribut-
able to fluctuations in environmental conditions.

The relationship between annual octopus recruitment and
annual mean SST was significant (63% of the total variance
explained). Coastal upwelling intensity was shown to be the
source of interannual fluctuations observed in the recruit-
ment of O. vulgaris in West Africa, as shown previously for
the population along that coast (Caveriviere and Demarcq
2002, Faure 2000, Laurans et al. 2002) and on popula-
tions in Mauritania (Demarcq and Faure 2000). This pattern
is also in accordance with the dynamics exhibited by other
important resources in the area (e.g. Sardinella sp. and
Farfantepenaeus notialis), which have similar periodicity
(Fréon et al. 1992, Oliver 1993, Cole and McGlade 1998,
Carbonell et al. 1999, Thiaw et al. 2009). Changes in
recruitment from year to year that are due to fluctuations in
environmental conditions are thought to especially affect the
early life stages of several cephalopod populations (Dawe
and Warren 1993, Bakun and Csirke 1998, Waluda et al.
1999, Caballero-Alfonso et al. 2010), an idea first suggested
for English Channel loliginids that were affected by SST
(Robin and Denis 1999, Agnew et al. 2000). This conclu-
sion indicates that the physical environment or food availa-
bility may be the primary controlling factor for larval octopus
survival, and this bottom-up control is likely driving octopus
recruitment.

The fishing impact — diagnosis on the stock status

The exploitation patterns at each relative age indicated
that the older animals are subjected to the highest levels of
fishing mortality. The increase in fishing mortality in adults
could be explained by a seasonal change in the behaviour
of fishers. Larger octopus may be the preferred target in
spring when they spawn along the coast, and in summer
when octopus numbers have greatly increased. However,
the lowest fishing mortalities were observed in winter and
spring when the catchability of the stock was lowest, and
in autumn when abundance had declines. This type of

exploitation pattern was also observed for the same stock
(Jouffre et al. 2002) and for squid stock in the English
Channel (Royer et al. 2002, 2006).

Octopus cohorts were generally fully exploited or slightly
overexploited, and, with the exception of the 2001 cohort,
the current rate of fishing mortality was always higher
or close to the F_,, and F,s, thresholds. This high fishing
mortality leads to high catch rates with yields per recruit that
are close to the maximum value Y/R_,,, but it can also lead
to low biomass with an observed SPR of <10% (the recruit-
ment overfishing empirical threshold generally accepted
for fish stocks) for one of the 10 studied cohorts. Managing
the fishery with the goal of maintaining mortality around the
F s, threshold would be a more precautionary approach and
would lead to higher biomass, thus increasing the global
resilience of the stock. In this case, fishing mortality would
be slightly lower than the Fg, target, and catches would
then be close to the maximum sustainable yield.

A monthly age-based assessment approach

The following two options for the present stock assessment

approaches should be addressed:

1. The use of an age-based modelling approach. Indeed,
size-based (or weight-based) methods exist. These
methods use ‘pseudo-cohorts’ (i.e. the catch or biomass
for the entire stock over a given period of time is consid-
ered equivalent to those of a single cohort over its entire
life) and assume constant recruitment and unchanged
levels of exploitation for all cohorts in the pseudo-cohort
(Gascuel et al. 1994b). Such assumptions are inappro-
priate in the present study, which focuses on typical
seasonal exploitation and a recruitment pattern also
known to be strongly seasonal.

2. The use of a one-month resolution option. This option
is unusual within the field of stock assessment studies,
where traditional age-based models usually involve
years. The use of months is required for species charac-
terised by a short life and a very fast growth rate, and
appears to be a very powerful approach for species such
as O. wulgaris.

Conclusion

This paper emphasises that the high year-to-year variability
of octopus recruitment caused by upwelling intensity is a key
issue for the analysis of cephalopod fisheries. The results
also show that the octopus stock has been fully exploited or
slightly overexploited over the past decade. Status of octopus
stock appears relatively constant, contrasting with the
annual variability in catches. A similar pattern has also been
observed in the exploitation of octopus off Mauritania, as
described by Jouffre et al. (2006). These authors suggested
that the Mauritanian octopus fishery seems to adapt to the
current fishing efforts targeting this cephalopod, sometimes
reporting the largest part of their fishing effort on other
demersal resources with longer lifespans, such as Sparidae
fish. Fishing efforts in these fisheries seem to be driven by
the annual local abundance of the resource (rather than the
reverse). Therefore, adaptive management plans involving
more frequent and periodical assessments are needed to
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optimise these environmentally constrained and short-term
fisheries (Beddington et al. 1990, Pierce and Guerra 1994,
Agnew et al. 1998, Young et al. 2004, Guerra et al. 2010).
Short-step stock modelling techniques like the one proposed
here should be a useful tool to achieve this goal.
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