DYNAMICS OF SHORT-LIVED SPECIES: the case of exploited stocks of Octopus and shrimps in Senegal

Modou THIAW

 thiawm@ird.frSupervisors: Didier Gascuel \& Didier Jouffre

Agrocampus Ouest
PhD Thesis defense 08/02/2010

Contents

1. Context, case study and objectives
2. Dynamics of Octopus and shrimps stocks (1996-2005)
3. Environmental effects on variability of Octopus abundance
4. Diagnosis on stocks status in a changing environment
5. Conclusion

Fisheries in Senegal

- Social and economical importance (National Fisheries department)
- Average annual catch $=400000$ tons
- 30% of exportation
- Gross National Product (GNP) 5\%
- 600000 employers
- contribute to the nutrition of populations

ONE OF THE WORLD'S MOST PRODUCTIVE AREA

SST (METEOSAT satellite data)

Chlorophyll a (SeaWiFS satellite data)

- Favorable climatic conditions due to the presence of coastal upwelling (Roy, 1989)

HIGH LEVEL OF ANTHROPIC PRESSURE

Fishing impact: development of demersal fisheries

ECOLOGICAL SUCCESSION SCENARIO

FISH -> -> SHRIMPS - OCTOPUS

Catches equilibrium curves for the main exploited demersal fish

Example: Senegal

Some demersal stocks have been collapsed to the advantage of short-lived species.

CASE STUDY

- Octopus stock: south of Dakar (Petite Côte)
- The stock is composed by a single annual cohort.

- High variability of production from year-to-year

Special jigging hand line for fishing Octopus
«Turluttes»

EXPLOITED SHRIMPS IN SENEGAL

- Coastal water shrimps (4)

Farfantepenaeus notialis

White Shrimp
Length max: 230 mm TL (female) 170 mm TL (Male)
80% of the shrimp catch

Melicertus kerathurus
Tiger Shrimp
Length max: 180 mm TL (female) 135 mm TL (Male)

Penaeus monodon
Giant Tiger Shrimp or "Black Tiger" 310 mm TL, 250 g

Parapenaeopsis atlantica
Guinea Shrimp
Length max: 170 mm TL (female)
120 mm TL (Male)

- Shallow water shrimps (5)

Parapenaeus longirostris
Cappa Shrimp or « Gambas » Length max: 190 mm TL

Heterocarpus ensifer

Plesionika martia

Plesiopenaeus edwarsianus
«Carabinero"

Aristeus varidens
«Alistado "

CASE STUDY

- Two shrimp stocks in Senegal

- Trends of shrimp catches

RECRUITMENT PATTERNS OF WHITE SHRIMP

- Spawning and living areas

Shrimp lives in the sea

- Juveniles grow in estuaries (3-4 months)
- Reproduction in the sea
- Industrial fishing of adults in the sea
- Artisanal fishing of juveniles in the estuary
- Potential impact of seasonal upwelling
- Fishery collapse related to recruitment failure
\checkmark Causes
- bad growth
- recruitment overexploitation
- environment forcing on recruitment
- parental stock biomass

MODELS FOR SHORT-LIVED SPECIES

Characteristics of short-lived species

- Biology: short life cycle, rapid growth, post spawning mortality (Octopus) and high rates of natural mortality associated with the early stages of life (Lhomme, 1981; Garcia et Le Reste, 1986; Jouffre et al., 2002).
- Extremely dependant on variability of environment
- Stocks present rapid and unstable dynamics
- their potential production varies widely from year-to-year (Caverivière et al., 2002;

Thiaw et al., 2009).

- marked variability in catches for most fisheries of short-lived species (Wang et al., 2003).
\rightarrow Specific modeling strategy for population dynamics and stocks assessment

Principle ObJective

To understand the population dynamics of octopus and shrimps in order to improve the scientific bases of specific fisheries management plan.

OutLine

Three scientific questions:

What is the variability of the recruitment and biomass of short-lived species stocks?

What is the part of the variability of octopus abundance linked to the environment (upwelling)?

In this variability context, what is the diagnosis on the stocks status?

Three parts:

Monthly cohort analysis
Linear model

Seasonal decomposition analysis Correlations between recruitment and environmental factors

Yield per recruit and Spawning potential ratio diagnoses Surplus production models

Contents

1. Context , case study and objectives
2. Dynamics of octopus and shrimps stocks (1996-2005)
3. Environmental effects on variability of Octopus abundance
4. Diagnosis on stocks status in a changing environment
5. Conclusion

MONTHLY COHORT ANALYSIS MODEL

(CRODT, 1985-2005)
Catch per
category
(Sampling 1996-2005)
Mean weight at age
(Jouffre et al., 2002)

Pre-processing

Recruitment \mathbf{R}

Abundance N
Fishing mort. F

Cohort analysis model

Outputs

Sensibility of the model to the parameters $\mathrm{F}_{\mathrm{i}, \mathrm{T}}$ and $\mathrm{F}_{\mathrm{l}-1, \mathrm{t}}$ was tested.

2.1. POPULATION DYNAMICS OF OCTOPUS

- Octopus recruitment

1. Monthly recruitment
2. Fishing mortalities F

- Yield per recruit for each monthly cohort -Spawning potential ratio for each monthly cohort

DECOMPOSITION OF THE VARIABILITY

Recruitment, spawning potential ratio and yield per recruit were used as input data to show the interannual and seasonal variability of the dynamics of octopus stock using Linear Model (LM).

1. Monthly recruitment
2. Spawning potential ratio, for each cohort
3. Yield per recruit, for each cohort

Seasonal variability
 Interannual variability
 Residuals

2.1. DYNAMICS OF OCTOPUS STOCK AND VARIABILITY

Recruitment

Spawning potential ratio

■ Year ■ Month - Residuals

CV=157\%

Interannual variability

CV=90\%

Seasonal

 variabilityCV=16\%

Seasonal variability and low variability with year

2.2. DYNAMICS OF SOUTHERN SHRIMP STOCKS

- Estimation of the recruitment

Trend of recruitment:

- Seasonal variability (main peak at the end of the rainy season)
- Year-to-year variability
- Clear trend to decrease
- Estimation of biomass stock

DYNAMICS OF SHRIMPS FISHERIES

- Estimation of fishing mortality

SUMMARY OF STOCKS DYNAMICS

\square High variability of recruitment and biomass from year-to-year
Recruitment and biomass highly change between years and seasons. For Octopus stock, there is no trend. For the southern shrimp stock, results indicate also a high variability with a clear decrease over the period.
\square Markedly interannual and seasonal exploitation pattern
Fishing mortality changes from year-to-year according to the yearly recruitment and abundance.
\square What relationship between environment and recruitment variability?
Even in this context of high seasonal and year-to-year variability of octopus recruitment, what is the part of this variability linked to the environment?

Contents

1. Context, case study and objectives
2. Dynamics of octopus and shrimps stocks (1996-2005)
3. Environmental effects on variability of Octopus abundance
4. Diagnosis on stocks status in a changing environment
5. Conclusion

3. ENVIRONMENTAL EFFECTS ANALYSIS

Biological data

- Monthly recruitment of Octopus estimated by the cohort analysis (1996-2005)

Environmental data

- Monthly coastal upwelling index (CUI, m³/s/m) from NOAA website (1985-2005)
- Monthly sea surface temperature (SST, ${ }^{\circ} \mathrm{C}$) from AVHRR satellite data (1985-2005)

Seasonal decomposition of Time Series (Census II Method, Makridakis et al., 1983)

$$
R_{t}=p_{t}+s_{t}+u_{t}
$$

Pt: smoothed mean: Trend component
st : Mean by month: seasonal component
Ut : Residuals: short-term disturbance
Application to $\left\{\begin{array}{l}\text { 1. Monthly recruitment } \\ 2 . \text { Sea surface temperature } \\ 3 . \text { Coastal upwelling index }\end{array}>\begin{array}{l}\text { Values without } \\ \text { seasonal effect }\end{array}\right.$

SEASONAL DECOMPOSITION OF RECRUITMENT

Octopus recruitment

Input variable: recruitment from VPA

Seasonal component:

- Main recruitment : March
- Secondary: September

Trend:

- Maximum: 1999 and 2002
- Minimum: 2001

Residuals

SEASONAL DECOMPOSITION OF ENVIRONMENT

Coastal upwelling index

Sea surface temperature

SEASONALITY OF RECRUITMENT AND UPWELLING

Seasonal component

Seasonal variability of upwelling

Seasonal variability of octopus recruitment

High seasonality of recruitment and upwelling

ENVIRONMENTAL EFFECTS ON RECRUITMENT

Trend

Year-to-year variability of recruitment due to upwelling intensity.
\square Interannual variability of recruitment due to environment
Two peaks of recruitment each year. The success of the yearly recruitment is significantly related to the upwelling intensity.
\square What evolution of the stock on the long term?
The upwelling intensity significantly decreased over the 1996-2005 period: what will be the long term effects on the Senegalese octopus stock?
\square Relationship between shrimp abundance and environment
Shrimp abundance was assessed depending on recruitment and environmental variability in the estuary (Laë, com. pers.)
\square Even in this environmental variability, what status of Octopus and shrimp stocks?

Even in this high environmental variability, what is the fishing impact on the abundance of Octopus and shrimp stocks?

Contents

1. Context, case study and objectives
2. Dynamics of octopus and shrimps stocks (1996-2005)
3. Environmental effects on variability of Octopus abundance
4. Diagnosis on stocks status in a changing environment
4.1. Using Y/R and SPR tools
4.2. Surplus productions models
5. Conclusion

4.1. USING Y/R AND SPR TOOLS

Outputs of monthly VPA (1996-2005)

Recruitment

Spawning stock biomass

RESULTS FOR THE OCTOPUS STOCK

In Senegal, all of the cohorts are close to full exploitation.
However, recruitment overfishing might occur if adults are overexploited before spawning.

FISHING EFFECTS AND EXPLOITATION PATTERN

Mean diagnosis 1996-2005

Actual spawning potential ratio was 25% compared to the unexploited stock.

RESULTS FOR THE SOUTHERN SHRIMP STOCK

Diagnosis of stock status:

- Curves are close similar (excepted the years 2002, 2003 and 2004)
- For each year, the stock is overfished
- Clear trend to decrease of Y / R

Yield per recruit:

- High year-to-year variability of Y/R
\longrightarrow Different exploitation diagrams
- Decrease of length exploited shrimps

FISHING EFFECTS ON SOUTHERN SHRIMP STOCK

Actual spawning potential ratio is lower than 10% compared to the unexploited stock.

Contains

1. Context and case study
2. Dynamics of octopus and shrimps stocks (1996-2005)
3. Environmental effects on variability of Octopus abundance
4. Diagnosis on stocks status in changing environment
4.1. Using Y/R and SPR tools
4.2. Surplus productions models
5. Conclusion

4.2. SURPLUS PRODUCTIONS MODELS

- Fishing impact (Fox, 1970)
- Fishing and upwelling impacts (Freon, 1991)

Surplus production models (equilibrium)
Fox model

Surplus production models (equilibrium) with environmental effect

- Abundance (Alt)
- Catches (Y_{t})

Freon model

FISHING EFFECTS ON OCTOPUS STOCK

Abundance\Fishing effort

Diagnosis of Octopus stock

- Stock is close to full exploitation
- Annual catch is strongly affected by the upwelling intensity
- MSY changes according to the upwelling intensity
- For the Fox model, MSY= 9000 tons

Abundance of Octopus stock:

- High year-to-year variability without trend
- Maximum: 1986, 1989, 1991 and 1999

Fishing effort

- High increase

Observed catches and catches equilibrium curves

FISHING EFFECTS ON NORTHERN SHRIMP STOCK

FISHING EFFECTS ON SOUTHERN SHRIMPS STOCK

SUMMARY OF STOCKS DIAGNOSES

\square Diagnosis of Octopus stock
Exploitation patterns remain relatively constant.
Usual Y/R or SPR models provide useful tools for diagnosis.
Octopus stock is fully exploited or close to overexploitation SPR is 25% compared to the unexploited stock.
\square Diagnosis of shrimp stocks

* Northern shrimps stock

Stock is overexploited.
The driving force of abundance seems to be the upwelling intensity.
\& Southern shrimps stock
Stock is strongly overexploited and less affected by environment.
Fishing induces a 5- to 10-fold reduction in the stock abundance. SPR is lower than 10% compared to the unexploited stock.
\square High variability of MSY depending of upwelling intensity
For short-lived species, MSY varies according to the upwelling intensity.

Contents

1. Context, case study and objectives
2. Dynamics of octopus and shrimps stocks (1996-2005)
3. Environmental effects on variability of Octopus abundance
4. Diagnosis on stocks status in a changing environment
5. Conclusion

CONCLUSION

\square What is the variability of the recruitment and biomass of short-lived species stocks?

Populations' dynamics of Octopus and shrimp stocks are variable from year-to-year, thus drawing away a high year-to-year variability of catches.
\square What is the part of the variability of Octopus abundance linked to the environment (upwelling)?

Upwelling intensity influences the Octopus population dynamics.
Time series approach is a useful tool to study these relationships.
\square In this variability context, what is the diagnosis on the stocks status?
Coastal upwelling explains a large part of the year-to-year variability in the abundance of octopus and shrimp stocks. Octopus stock is fully exploited or close overfished and shrimp stocks are overfished.
\square Consequences for the Management
Necessity of taking into account of environment, fishing and the dynamics of populations, each being an essential component towards the

PROSPECT

\square Taking in account estuaries artisanal fisheries to improve diagnoses of shrimp stocks and to analyze fleet interactions

Taking in account artisanal fisheries data
Quantify the estuaries artisanal fishing effects on the marines shrimp stocks
\square Application of depletion model
The annual life-cycle means that assessments have to be carried out on a real time basis if they are to be used to limit fishing effort or catch in the current season.

Application of multispecies and bioeconomic models
In western African area, fisheries exploit several different species.
Fishery on point of view Economy?.
\square Fishing effects of short-lived species on the ecosystem
Decreasing trend in shrimps (Farfantepenaeus notialis) abundance has occurred simultaneously in other shrimps populations of the sea.
Complex interactions between population structure and fishing

ACKNOWLEDGEMENTS

This study was financially supported by IRD.

Thanks to all that supported this work, particularly:

- Didier Gascuel	- Omar Thiom Thiaw	- Didier Jouffre	- Djiga Thiao
- Catherine Cliquet	- Malick Diouf	- Alain Caverivière	- Modou Thiam
- Catherine Le Penven	- Mamina Daffé	- Hervé Demarcq	- Jacques Marec
- Sébastien Rochelle	- Daly Sène	- Moussa Guèye	- Ismaïla Mandiang
- Caroline Kostecki	- Mamadou Sène	- Georges P. Sène	- Ibrahima Ndiaye
- Sylvie Guenette	- Abdoulaye Niane	- Djiby Faye	- Diaga Diop
- Etienne Rivot	- Mme Kébé	- Mbaye Tine	- Waly Ndiaye
- Olivier Le Pape	- Mr Ly	-Khady Diouf	
- Jérôme Guitton	- Mr Bâ		
- Marie Lesieur			

QUESTIONS ?

DINUREUDIRUF...!

