## ICAWA

## A Bioeconomic modeling of Sardinella fisheries in Senegal

By Aliou Ba 1,2,4, Christian Chaboud 2, Modou Thiaw 6, Jörn Schmidt 5, Malick Diouf 1, Patrice Brehmer 3,4
(1) IUPA, UCAD Dakar, Sénégal
(2) IRD UMR MARBEC, Sète, France
(3) IRD UMR LEMAR, CRODT, Dakar
(4) AWA Program, Dakar , Sénégal
(5) CAU, Kiel, Allemagne
(6) ISRA, CRODT, Dakar , Sénégal


Institut de recherche
pour le développement

- A simplified representation of the fishery system


## Introduction

- Understanding the system dynamics
- Support management : how to achieve a better state of the system according to a collective point of view


## Introduction

Effort

National and International demand

- Major role of small coastal pelagic for national and regional food security (fresh and processed products)
- Increasing pressure on resource due to growth in small scale fishing effort but also from foreign (legal and illegal) exploitation
- Increasing demand on national and regional markets (fresh and processed product)
- Increasing international demand for fishmeal, major Input for aquaculture industry. Limits (quotas) in the Peruvian industrial had direct consequences on other fishing zones, and, among them, West Africa.


## Introduction

- Necessity of better fishing effort regulation, with many possible regulation tools.
- Test the impacts of different management options (licenses, quotas, taxes, MPAs, seasonal closures, share of resources allowed for foreign boats )
- Consequences of changes in economic context (prices, input costs, new markets)
- What is the best management strategy according to a wide diversity in goals and constraints ?


## Introduction

- Goals:
- Understand and model the dynamics of this fishery
- Test management scenarios
- Implement a management tool


## Methodology

An overview of the sardinella bioeconomic model

- Biological and economical data:
- Literature,
- CRODT,
- DPM,
- FAO,
- AWA Survey
- A VPA was conducted with catch and biological data (input for the model)


## Methodology



## RESOURCES

- Two main species : round sardinella (S. aurita) and flat sardinella (S. maderensis)
- Migrating stocks (mainly for S. aurita) shared between neighboring EEZs (Mauritania, Senegal and Guinea Bissau (?)
- Seasonal spatial repartition varying among species
- Great sensitivity of population dynamics to environment parameters (upwelling, CC)


## Methodology

## FLEETS

- Fishing methods: artisanal purse seine , artisanal encircling gillnet, industrial pelagic gear (?)
- The fleet have differences in costs , catchability and in targeted markets.
- Fleets : sets of boats, defined by fishing methods and specific costs.
- Fleets will be spatially redistributed a each time step. Spatial fleet behavior modeling is exposed later.



## Methodology

## MODELING CHOICES

- Time step : month
- Simulation length : up to 20 years
- Age structured model (month)
- Two species (S aurita and S. maderensis)
- Multi gears (Purse seines, encircling gillnets, industrial gears targeting sardinellas)



## Methodology

## MODELING CHOICE

- Market :Fishery is price taker (constant prices). Exogenous prices are defined by species
- Cost functions specified by fleet
- Fixed costs : insurance, depreciation, maintenance, fishing license fees...
- Variable costs :
- energy, food (linked to time at sea)
- labor (linked to yield value)


## Methodology

## Control variables

- Policy parameters
- Initial fleet numbers (with possibility of effort multiplier varying during simulation)
- Licenses
- Spatial/seasonal closures
- Limits in landed quantities
- Taxes /subsidies
- Economic parameters
- Costs
- Markets parameters (price )


## Methodology

- Resources parameters
- Structured by age (age class = month)
- Catchability defined par species and gears
- Von Bertalanffy growth curves
- Natural mortality constant per species
- Spatial monthly repartition per species is due to migration between zones and fishing effort in zones
- Monthly migration matrix defining exchanges between zones


## Methodology

Spatial and temporal resource behavior
Number of fish in a cohort :

$$
\begin{aligned}
& \boldsymbol{N}_{i, c, z t}=\boldsymbol{R}_{i, G, z} \\
& t=t r_{\text {c }} \\
& \boldsymbol{N}_{i, G, z t}=0 \quad t<t r_{\text {。 }} \\
& N_{i, G, 2 t}=N_{i, G, 2 t-1}-D_{i, G, 2, t-1}+M_{i, G, 2, t-1}-X_{i, c, 2, t-1} \quad t>t r_{c}
\end{aligned}
$$

Mortality in number

$$
D_{i, c, z, t}=N_{i, c, z, t} \cdot\left(1-e^{-z} i_{i, c, z, t}\right)
$$

Mortality

$$
Z_{i, c, z, t}=F_{i, c, z, t}+\operatorname{Mortn}_{i}\left(a_{c, t}\right)
$$

## Methodology

Effort time dynamic

- For each end of year there are investment or disinvestment

$$
\begin{array}{ll}
\text { IVT }_{e, a}=\text { PROFCF }_{e a} \cdot t \mathrm{txi} & \text { PROFCF } \geq 0 \\
\text { IVT }_{e, a}=\text { PROFCF }_{e a} \cdot \text { txi1 } & \text { PROFCF }<0
\end{array}
$$

- New UP=NUP ${ }_{e, a}=I V T_{e, a} / \operatorname{PrUP}_{e} \quad a=a 1, a 2 \ldots, a 20$
- Total UP zone

$$
U P_{e, a}=U P_{e, a-1}+N U P_{e, a-1} \quad a=a 1, a 2 \ldots, a 20
$$

$$
U P_{e a} \leq M a x U P_{e}
$$

## Methodology

## Spatial and temporal resource behavior

Fishing mortality:

$$
\begin{aligned}
F_{i, c, z s e n, t} & =\sum_{e} F f_{i, c, e, z s e n, t} \\
F_{i, c, z, t} & =\sum_{e} F f i x_{z} \\
z & \in\{\text { Nordext, G, Sudext }\}
\end{aligned}
$$

With

$$
F f_{i, c, e, z, t}=F l a_{e, z, t} \cdot q_{e, i}
$$

Migration

```
FMM \({ }_{i, c, \text { ori, dest, } n \text { mois }, t}=N_{i, c, z, t}\). ParamMigr \(_{i, \text { ori, dest, } n \text { mois }}\)
\(F M M_{i, c, \text { ori, dest, nmois }, t}=0\)
nmois \(=\) mois1, mois2.., mois12
mois \(=1,2, \ldots, 12\)
```


## Methodology

Fleets spatial behavior : a free ideal distribution approach

- Fleet redistribution at every time step depend to the attractiveness of the zones who is based on resources abundance in the past in the zones.
- The fleet can now redistributed between zones

$$
U P Z_{e, z s e n, t}=U P_{e, t} \cdot A T R Z_{z s e n, t}
$$

## Results: Model outputs

## Biomass per species per area <br> - High variability for round sardinella <br> Round sardinella biomass per area <br>  <br> Fin masse totale par esp et zone BII[SI,GC] = temp0 <br>  

-Biomass flat sardinella high in PC


[^0]Hionsse totale par esp et zone BT[SPPC] teqp

## Results: Model outputs

Catches per species per area
-about 150,000 tons ₹ observed catches (aurita)

- About 100,000 tons ₹ observed catches (maderensis)
- Variablity
- Catch $\mathrm{PC}>\mathrm{GC}>$ Cas


## Catches per species per area



Capt ann metes par esp et onne[si,GC] : temp0
(1)


Catch flat sardinella per area


[^1]
## Results: Model outputs

Simulation1: Endogenous effort (fishing effort depends on the profit) vs constant effort -UP increase

UP


## Results: Model outputs

## Simulation1: Endogenous effort (fishing effort depends on the profit) vs constant effort - Income and rent decrease

Biomasse totale senegal BIS


Binmasse thate senegal $\mathrm{BI}[\{p]$ : temp0

## Results: Model outputs

Simulation2: Tax increase (licenses)+ endogenous effort vs endogenous efforts only -Result: UP decrease


## Results: Model outputs

Simulation2: Tax increase (licenses)+ endogenous effort vs endogenous efforts only
-Result: income decease and rent and biomass increase

Biomasse totale senegal BIS


## Results: Model outputs

Simulation3: Forced effort (reduction of 30\% after 10 years) vs Reference situation - Income rent and biomass increase


Biomasse tutale senegal $\mathrm{BIS}[\mathrm{s}]$ : temp3
Biomasse tutale senegal $\mathrm{BLS}[\mathrm{s}]$ : temp0

Binmasse totale senegal BIS[sp]: temp3
Binmasse tutale senegal $\operatorname{BIS}[$ sp] : temp0

## Results: Model outputs

Simulation4: $3 \%$ annual growth rate of the price vs Reference situation
-Income and rent increase, biomass decrease.


Biomasse totale senegal $\mathrm{BIS}[\mathrm{x}]$ : trmp0
Biomasse tutale senegal BIS[s] : cuispix10

Biomasse tutale senegal $\mathrm{BIS}[$ sp] : temp0
Biomasse tutale senegal BLS[sp]: coispixis 10

## Results: Model outputs

Simulation5: Closing a fishing area ( $50 \%$ of GC) with endogenous effort

Fishing effort moved in order area


## Conclusion

-The model is calibrated and runs well
-Spatial behavior of resource and fleet is quite realistic
-The results of the model are fairly close to results observed

- Between 92 and $96 \%$ for the catch
- Positive profits for ST and zero profits see negative for FME as observed previous studies
-Rent positive but very low ( $\approx 0$ ) for the FME


## Conclusion

- Open access: endogenous effort: Bad for fisheries
-Profit, rent, biomass decrease
-Tax with open access: better to tax fisheries with endogenous effort
-UP and profit decrease but rent increase
-Reduction in fishing effort: Good for this fishery
-Profit, rent, and biomass increase
-Increase of demand or the price: bad for open access fisheries
-Profit, rent Up increase and biomass go down
-Closing area with open access is not better because fishing effort moves in other areas


## Conclusion

- The model run only with Senegalese data. It would be better to have the data of all the countries that sharing the resources
- The model is very sensitive to the catch of external areas
- It would be better for the sustainability of the exploitation of this resources to strengthen cooperation between countries (CSRP).


## Perspectives

- Test the stock-recruitment relations (Because recruitment is independent of biomass in the model)
- Making scenario involving several managements policies
- Introduce uncertainly in the model on biological and economical parameters (Monte Carlo simulation)
- Include the data of other country if possible



[^0]:    Bin asse totaie par esp et zone BITsp,GC] : temp 0

[^1]:    Capt anmmeles par esp et zone[sp, $G C]$ : temp0
    Capt an mespar
    

