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A multiscale model was developed to simulate the rate of landing of a winged insect, the grain aphid, Sitobion
avenae F. At a large scale (kilometric scale), it is convenient to use a deterministic model of their dispersion,
based upon diffusion–advection–reaction partial derivative equations. At a small scale (hectometric scale),
the process of site selection (‘landing’) is only partially understood, but is known to include the perception
of field colour and landscape characteristics. Several hypotheses on aphids' behaviour were tested to simulate
the rate of landing: the simulation was done by a cellular automata submodel under five different hypotheses
on the precise organisation of the landing behaviour. We found a strong interaction between the effect of the
proportion of wheat crops in the landscape and their spatial organisation. The spatial correlation between the
places occupied by wheat crops appears crucial to determine the global rate of landing of the aerial insect
stock. The shape of the response surface of landing rate against the proportion of surface occupied by
wheat, and the spatial autocorrelation of wheat plots, appears very regular and relatively simple to model
by ad hoc mathematical functions. Large scale simulations using the results of the small scale model in a
diffusion–reaction equation solved numerically, showed that, on a real landscape extracted from a GIS on the
whole Brittany region (western France), the spatial pattern of the aphid landing is sensitive to the hypothesis
tested on their landing behaviour. This hierarchicalmodelling combining two different approaches at two differ-
ent scales (mathematical deterministic equations on a largemulti-kilometric scale, and partly stochastic cellular
automata on a small hectometric scale), requiresmethods to validate its results in the field, in the framework of a
decision support system. Such amultiscale model has a wide field of application including not only plant protec-
tion but also management and conservancy of animal species dispersing by flight.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Multiscale analysis in ecology is often viewed as reflecting a natu-
ral hierarchy of ecological scales (Kent et al., 2011; Singh et al, 2011).
It may also reflect merely a convenient nesting of modelling scales
based on different knowledge of the ecological processes at different
scales. We give here an example of such a nesting and of its use.

At large scale, the aerial spread of flying insects is well described
by mathematically explicit diffusion–advection–reaction equations.
The reaction–diffusion equations were introduced by Fisher (1937)
and Kolmogorov et al. (1937) with homogenous coefficients and are
now commonly employed to describe spatially explicit biological
invasions e.g. Berestycki and Rossi (2008), Murray (2003), Okubo
(1980), Shigesada and Kawasaki (1997). Diffusion is suitable to de-
scribe the free flight of small insects in a weak or null wind. Advection
is convenient when the wind is stronger and trails the insects in its di-
rection. The reaction term represents the local population dynamics
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which is strongly influenced by emigration and immigration resulting
from take-off and landing of the aerial stock of insects.

These latter are behavioural events which are themselves determined
at a local scale (i.e. field site selection), typically ranged between some
decametres and some hectometres. Landing, especially, is known to be
governed by two mechanisms: a phototactism (Moericke, 1955) and/or
an optomotor reflex (Kennedy and Booth, 1963). Aphids are primarily
attracted by surfaces reflecting a large proportion of long-wave energy
(e.g. green or yellowing fields), and secondly by colour contrasts in the
landscape due to field edges and alternation of different crops.

This scale mis-match problem is associated with the emergence of a
macroscopic pattern (the rate of landing of a stock of winged aphids),
from individual behaviours (the landing decisions). The multiscale
modelling approaches cited above (Kent et al., 2011; Melbourne-
Thomas et al., 2011; Singh et al., 2011) are increasingly used to address
such issues. We therefore tried to find the rate of landing function
through a microscale algorithmic subpopulation model.

Here we focused on the grain aphid Sitobion avenae, a major agri-
cultural pest in Europe (Dixon, 1987; Fiévet et al., 2007; Pierre and
Dedryver, 1984) causing substantial damage to wheat by sap feeding
in spring. Aphids reproduce parthenogenetically from spring to

http://dx.doi.org/10.1016/j.ecoinf.2012.11.004
mailto:mamadou.ciss@rennes.inra.fr
http://dx.doi.org/10.1016/j.ecoinf.2012.11.004
http://www.sciencedirect.com/science/journal/15749541


60 M. Ciss et al. / Ecological Informatics 14 (2013) 59–63
autumn. During this period they produce alternatively wingless and
winged adult morphs. Wingless ones are mainly adapted to the ex-
ploitation of host plants in situ when winged ones are adapted for
dispersion of the species. Transition from wingless to winged morphs
is due to damaging environmental conditions like resource decrease
or overcrowding (Dixon, 1987). Aphids can disperse over short or
medium distances (several kilometres) by active flight (diffusion)
(Llewellyn and Loxdale, 2003; Loxdale et al., 1993) and/or over long
distances by passive flight, born by wind streams (advection) (Hardie,
1993; Loxdale et al., 1985; Simon et al., 1999).

The core aim of the work described in this paper was to develop a
multi-scale model of the landing rate of the grain aphid using
diffusion–reaction for large scale and cellular automata (Banks,
1970; Codd, 1968; Von Neumann and Burks, 1966) for small scale.

2. Methods

Aphidmigration andmultiplication at the country scale, were repre-
sented by a two-dimensional diffusion–reaction system of equations.
Advection by strong winds was not modelled in this initial work.

A discretisation of thismacroscalemodelwas undertaken. Themacro-
scale unit (5 km×5 km)wasdivided in 20×20microscale cells. The rules
for landing ratewere defined for each unit using amicroscale system. The
solution of this microscale systemwas carried out with cellular automata
(Banks, 1970; Codd, 1968; Von Neumann and Burks, 1966). Cellular au-
tomata are open and flexible discrete dynamic models, consisting in a
grid divided into many ‘cells’ which can have different status. The status
of the cells is updated simultaneously using a rule which represents rela-
tionships between each cell and its neighbourhood. By repeating this pro-
cedure, it is possible to simulate many kinds of complex behaviours.

Ad hoc mathematical equations derived from the simulation re-
sults were used to link the microscale and the macroscale models.
The coefficients of the macroscale system were then defined and a
comparison between the different landing rules undertaken.

2.1. The macroscale model

In this system, state variables are, A, the wingless aphids density at
field level and, C, the aerial winged aphids density (Eq. (1)), in the
two dimensional spatial domain Ω:

∂A
∂t ¼ r α1C þ A 1−α2ð Þ½ �
∂C
∂t ¼ D∇2

x C þ C 1−α1ð Þ þ Aα2

8>><
>>:

ð1Þ

where:

• A(t,x) and C(t,x) correspond to the population density of wingless
and winged aphids at time t and at position x=(x1,x2)

• α1(t,x) is the aphids landing rate with 0≤α1≤1
• α2(t,x) is the aphids take-off rate with 0≤α2≤1
• r(t,x) is the observed growth rate, with −1≤r≤1.
• D(t,x) is the diffusion and ∇2

x ¼ ∂2
∂x21

þ ∂2
∂x22

:

For initial and boundary conditions (Eq. (2)):

C 0; xð Þ ¼ C0 xð Þ
A 0; xð Þ ¼ A0 xð Þ
C t; xð Þ ¼ 0 ∀ t; xð Þ∈Г1
A t; xð Þ ¼ 0 ∀ t; xð Þ∈Г1
D∇C t; xð Þ:ν ¼ l ∀ t; xð Þ∈Г2
∇A t; xð Þ:ν ¼ l ∀ t; xð Þ∈Г2

8>>>>>><
>>>>>>:

ð2Þ

where:

• C0(x) and A0(x) are initial conditions of C(t,x) and A(t,x) with
C0(x)≥0 and A0(x)≥0 on Ω.
• Г1 represents marine borders and uncrossable mountains
• Г2 represents land frontiers and crossable mountains
• Г1⋃Г2=Г, Г1∩Г2=Ø, where Г is the boundary domain
• ν is the unit outward normal to Г2 on Ω.

In this paper we focused on the landscape properties of the
north-western French region of Brittany which has a prominent
polyculture and fields of varied sizes. We used field data from 2009
derived from the European Common Agricultural Policy (CAP) to
provide the arrangement of cereals in the fields. We solved partial dif-
ferential equations using a numerical scheme, having a discretisation in
time and space (macroscale unit). For computational issues, discretisation
of themacroscale system leads to a space step K equal to 5 km and a time
step H equal to 24 h. For each unit, p was the proportion of cereals
p∈[0,1].

All the coefficients of our model were obtained deterministically
using field data except the landing rate α1. The shape of this coeffi-
cient is linked to the nature of the aphid landing phase that can
only be represented at a very small scale (a group of fields). In
order to model the mechanism of aphid landing, we defined a micro-
scale system corresponding to the description of aphid population dy-
namics in one macroscale unit.

2.2. The microscale model

Each unit of the macroscale system, named B, was divided into 400
cells bij, i and j representing the position of a cell in the unit. Hence the
microscale space step is k, with k=0.25 km; and bi

j was considered
binary with bi

j=1 if it contained cereals and bi
j=0 otherwise. At

this small scale, we considered two subspaces: an aerial compartment
containing winged aphids and a field compartment containing
wingless aphids. The time step of the macroscale system Hwas divid-
ed in many microscale time steps h. In a given unit, initial conditions
(A0 and C0), growth rate r, take-off rate α2 and diffusion D were con-
stant and homogenous; and at the initial time h0, we considered A0 as
null.

During an aphid flying period, there are in average seven re-
petitive flights lasting more than 1 min (Kennedy and Booth,
1963). However, the first uninterrupted flight lasts about 75%
of the total time spent flying (Johnson, 1969). According to the
literature, long-term landing is unlikely to happen after the
first flight. Hence, we considered that this first flight is a transit
flight between cells and is not to be included in our microscale
model. For that reason, we only modelled the six last subsequent
flights.

We applied the formula given by Shigesada and Kawasaki (1997)
to estimate precisely the diffusion coefficient D, generally used for ap-
proximation of the diffusion coefficient (for example by Robinet,
2006 and Roques, 2004):

D ¼ d2

Πh
¼ v2maxh

Π
ð3Þ

where d is the mean displacement by an individual's ‘random
walk’ during time h. The speed of aphid movements was set to
be the aphid flight speed estimated to be 0.9 m/s (3.24 km/h)
(Compton, 2002) which leads to the diffusion coefficient equal-
ling 0.223 km/h2.

According to estimation from Johnson (1969), the microscale
time step h equals 4 min. During h, the growth rate and the
take-off rate are negligible and are set to 0. For each macroscale
unit, we needed to define the disposition of cereals linked to their
proportion of the cropping area. There are several kinds of indices
to define correlation between different patches (Gardner et al.,
1987; Keitt, 2000; and Roques and Stoica, 2007). We utilised an
index of correlation between two different patches (developed by
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Suzuki and Sasaki, 2011), denoted as η, which varies between −1
and 1:

η ¼
Cov bji; b

j
0

i

� �

√Var bji
� �

Var bj
0

i

� � ¼ xss 0ð Þ− 1−pð Þ
p 1−pð Þ ð4Þ

where xss(0) is the probability of two cereal cells to be adjacent in a
Von Neumann neighbourhood. Spatially correlated configurations
for a non zero η were generated by a Metropolis Hastings algorithm
by optimizing η (Suzuki and Sasaki, 2011).

The link between aerial and field domains is established with five
hypothetical landing rules for β1. We also specified a criterion of land-
ing quality which is defined as the proportion of landing aphids over
the whole simulation:

βj
1i ¼

∑hfinal
k¼h0

Ak

∑hfinal
k¼h0

Ak þ∑hfinal
k¼h0

Ck

: ð5Þ

We supposed 5 hypothetical rules for β1:

• β1
1: aphids land once they have perceived a cereal field, indepen-

dently of η
• β1

2: the landing rate is linked to landscape discontinuances
(e.g. field edges). If flying aphids are over a cell bij with cereals
(bij=1) then the landing probability increases with the number of bij

neighbour cells without wheat. For example, if bij has only one neigh-
bour cell without wheat then β1

2 equals 1/4, β1
2=1/2 if there are 2

neighbour cells without wheat, and so on… If wheat constitutes
100% of the unit (p=1), there is no aphid landing (β1

2=0 for all
cells of the unit).

• β1
3: in opposite of β1

2, the landing rate is inversely linked to landscape
discontinuances. If an aphid flies over the cell bij with cereals (bij=1)
and there is only one neighbour cell without wheat then they land
with a probability of 3/4, 1/2 if there are 2 neighbour cells without
cereals, and so on…

• β1
4: if p≤0.5 the landing rule considered is item 2: β1

2 and else if
p≥0.5 the landing rule considers the item 1: β1

1.
• β1

5: if p≤0.5 the landing rule considered is item 3: β1
3 and else if

p≥0.5 the landing rule considers the item 1: β1
1.

In order to determine the effect of the landing rule on the criterion
of landing quality, numerical experiments are undertaken for the mi-
croscale model, and the five β1 rules implemented.

The experimental design incorporated a uniform contrast step vari-
ation of the proportion of cereals p and the coefficient of correlation η:
p∈[0,1] per 0.1 step and η∈ [−1,1] per 0.1 step. The resolution of the
microscale system was carried out with cellular automata (Banks,
1970; Codd, 1968; Von Neumann and Burks, 1966) using Netlogo soft-
ware program (Wilensky, 1999).

2.3. The link between the macroscale model and the microscale model

From the macroscale model to the microscale model, the landing
rate α1 is defined as the response function of the criterion of landing
quality depending on p, η and β1

j , j∈{1,2,…,5}, rule. In order to ex-
plore the relationship between the response (α1) and the explanatory
variables (p and η), Generalized Additive Models (GAM, Hastie and
Tibshirani, 1990) have been used. These are statistical models for
blending properties of Generalized Linear Models (GLM, McCullagh
and Nelder, 1989) with additive terms. They have the advantage of
being able to deal with linear, highly non-linear and non-monotonic
relationships between the response and the set of explanatory
variables using smoothing functions (Zuur et al., 2009).
After exploring the shape of the relation between αi
j, β1

j , p and η,
we constructed an ad-hoc non-linear model. The regression model
had the form β1i

j = f(pi,ηi, Q)+εi for i∈ [1,n], where β1i
j are responses

corresponding to the landing rule, f is a known function, pi the pro-
portion of cereals, ηi the autocorrelation term, Q the parameter vector
and εi are random errors. The unknown parameter vector Q was esti-
mated from the data by non-linear least squares.

3. Results

From each landing scenario within the microscale simulation, a
clear bivariate function emerged. Despite the random arrangement
of wheat fields in the macroscale units, the resulting landing rate, as
a function of spatial autocorrelation and wheat proportion, was rather
smooth. The points obtained were easily approached by ad hoc func-
tions with very high determination coefficients. All landing rules but
one (β1

2), resulted in a monotonic relation between wheat proportion
and landing rate. In three cases the rate of landing reached or almost
reached 1 when p=1 (rules β1

1, β1
3, β1

4) while, in two cases it stayed
lower than 1 (β1

2, β1
5). The landing rate was also sensitive to the

autocorrelation coefficient and its response was sigmoidal and
approached by an arc-tangent function. The inflexion point is
obtained for zero correlation. Practically, the effect of the autocorrela-
tion coefficient was to group wheat units in large areas (η≈1), ran-
domly on the domain (η≈0) or in a quasi regular arrangement
(η≈−1). This simulates different farming structures: very large
fields in intensive wheat production areas at one end, and dispersed
small fields in polycultural systems at the other.

3.1. Relationship between the response variable, the proportion of wheat,
and spatial autocorrelation

In order to study the landing rate, 5 models were defined, one for
each landing rule β1

j . For each rule, we generated artificial landscapes
with a variation of two parameters: the proportion of wheat p and the
spatial autocorrelation index η; p from 0 to 1 by a step of 0.1 and η
from −1 to 1 by a step of 0.1.

Model 1 α1
1 ¼ log a1 þ a −p2 þ p

� �
atan kηð Þ þ a2p

� �

Model 2 α2
1 ¼ a4 exp pð Þ þ a5 log 1þ pð Þ

1−a1 atan kηð Þ þ exp a2 p−a3ð Þð Þ

Model 3 α3
1 ¼ log a2 þ a1 p−p2

� �
atan kηð Þ

� �
þ a3p

Model 4 α4
1 ¼ log a2 þ a1 p−p2

� �
atan kηð Þ þ a3p

� �

Model 5 α5
1 ¼

log a2 þ a1 p−p2
� �

atan −kηð Þ þ a3 p
� �

if p < 0:5

log a2 þ a1 p−p2
� �

atan kηð Þ þ a3p
� �

if p≥ 0:5

8<
:

where p=the proportion of wheat, η=the spatial arrangement of
wheat and a1, a2, a3, a4 and k are the coefficients; log(.) is the logarith-
mic function and atan(.) is the arctangent function. All these models
explained a large proportion of variance with a goodness of fit r2

greater than 95% (Table 1). See also Figure S1 in the supplementary
material.

3.2. Landing rate in the macroscale model

We observed a heterogeneous distribution of the wheat fields in
Brittany: the main landing fields are located in the mid southeast
and mid northern parts of Brittany. The different models above
resulted in different spatial distributions of the landing rate. The



Table 1
Model fits for α1

j , j={1,…5}.

Model df AIC BIC LogLik r2

α1
1 4 −988.2113 −971.7198 499.1057 0.9949

α1
2 6 −708.8230 −685.7348 361.4115 0.9976

α1
3 4 −677.5959 −661.1043 343.7979 0.9823

α1
4 4 −953.0862 −936.5946 481.5431 0.9895

α1
5 if pb0.5 4 −360.5057 −348.5956 185.2529 0.9496

α1
5 if p≥0.5 4 −598.0683 −584.1308 304.0341 0.9695
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final result was thus sensitive to the chosen landing rule. Roughly
speaking, the spatial distributions obtained could be classified in
three categories (see also Figure S2 in the supplementary material):

1. With the function α1
2 the landing distribution is very similar to the

proportion of wheat.
2. With functions α1

1 and α1
4 the landing rate is slightly higher than

the proportion of wheat. This was due to the negative convexity
of both functions which favours landing for medium ranges of p.

3. With functions α1
3 and α1

5 the landing rate was clearly lower than
the wheat proportion. This is mainly due to the convexity of the
two functions, especially in the range of negative spatial correla-
tions. As a consequence, the landing concentrates only on areas
of Brittany where the proportion of wheat was both the highest
and the more aggregated.

To summarise, the result of these resolutions of the macroscale
model depends strongly on the sign of the convexity of the response
functions.

4. Discussion

The fitting by empirical functions was sufficient to achieve the
goals of the present modelling, although the case where p>0.5 is
very unlikely in Europe where crop rotations are at least biennial
and where the largest size of a field seldom exceeds 1 km2. A strong
decrease of landing for high wheat proportions as described by the
rule β1

2 seems also biologically unlikely.
We found in this study, a well-known effect of transfer functions:

the key effect arises from their convexity (a classic effect of Jensen's
inequality). When considering the shape of the fitted functions, α1

1,
α1
2 and α1

4 were always negatively convex with respect to p, for all
values of η. Function α1

5 was positively convex, whatever η in the
range 0≤p≤0.5∩−1≤η≤0, and negatively convex outside this
range.

The sensitivity of the macroscale model to the convexity of the
landing rate function provides a guide for further investigations
attempting to validate such large scale models. Obviously, we have
to study the shape of this function. Although the task is awkward,
we have some tools which can be used later to achieve it. Since
2001, we have at hand (Plantegenest et al., 2001) a comprehensive
deterministic model able to estimate the maximum rate of increase
of the aphids in the fields, and by difference, the rate of local immigra-
tion. We also have at hand a database associating aerial aphid catches
(Hullé et al., 1987) and field population dynamics of aphids (Ciss et
al., 2011). We can therefore study the relationship between aerial cap-
tures and the estimated immigration. Moreover, the fields under study
were easily characterised by their local environment in a 5×5 km2. In-
formation on proportion and distribution of wheat fields at such a spa-
tial resolution is readily available, for example from low level satellite
images, which should allow us to determine p and η for our model.
Contrasted replications of the observations in different geographic con-
texts, would further help to determine the adequate function.

These results clearly showed that aphid landing rates at a regional
scale could strongly differ in function of the biological hypotheses
made on their landing behaviour at field scale. Aphid landing
behaviour is very difficult to study and available results are scarce
and sometimes contradictory (Irwin et al., 2007). The two main hy-
potheses on the causes of aphid alighting are attraction by long-wave
light from the crops, and optomotor reaction due to perception of
wave-length changes linked to alternation of plant and soil or fields
and edges. However, since the work of Kennedy and Booth (1963),
there is a consensus for considering that these two hypotheses are not
antagonistic and refer to successive steps of the same complex
phenomenon. If this is true, α1

2 and α1
4 are probably closer to biological

reality than the other responses, particularly α1
3 and α1

5.
In the past, some authors opposed formally defined mathematical

models and numerical algorithmic models. This opposition took a
special strength with the development of the Individual BasedModels
(IBM), whose advocates insisted on their bottom–up feature as com-
pared to the top–down approach of the mathematical population
models (DeAngelis et al., 1994; Grimm, 1999). In this study, we com-
bined both, exploiting an algorithm to describe a semi-complex eco-
logical behaviour and replacing its results in a mathematical model
susceptible of numerical resolution and mathematical analysis. This
was done at two different ecological scales, a nesting increasingly re-
quired in the analysis of complex systems.

The present work is part of research on modelling the dispersion of
grain aphid S. avenae in relation to temperature, host plant phenology
and global warming. Ultimately, we plan to use this global model, by in-
tegrationwith long termnational survey onwinged andwingless aphids
(Agraphid network of France and neighbourhood), in order to estimate
the validity of all its parameters, including the landing rate.

In a more general context, aerial dispersal, i.e. the movements of
winged organisms away from their parental source (Nathan, 2001),
has widespread consequences on the spatial ecology of many animal
species, especially those inhabiting ephemeral habitats, whose suc-
cess strongly depends on their ability to colonize new patches and
to subsequently multiply. As a consequence, taking into account dis-
persal processes is necessary for species management and their conser-
vancy (e.g. birds and beneficial insects), as well as for crop protection
against plant feeders. However, dispersal often remains a ‘black box’ in
our knowledge of many animal species, due to its difficulty of direct as-
sessment. In the above study, we exemplify how mathematical model-
ling of one dispersal step (landing) may provide an alternation for
studying of insect dispersal in the absence of direct observation.
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