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It is notoriously difficult to predict the behaviour of a complex self-organizing
system, where the interactions among dynamical units form a heterogeneous
topology. Even if the dynamics of each microscopic unit is known, a real
understanding of their contributions to the macroscopic system behaviour is
still lacking. Here, we develop information-theoretical methods to distinguish
the contribution of each individual unit to the collective out-of-equilibrium
dynamics. We show that for a system of units connected by a network of inter-
action potentials with an arbitrary degree distribution, highly connected units
have less impact on the system dynamics when compared with intermediately
connected units. In an equilibrium setting, the hubs are often found to dictate
the long-term behaviour. However, we find both analytically and experimen-
tally that the instantaneous states of these units have a short-lasting effect on
the state trajectory of the entire system. We present qualitative evidence of this
phenomenon from empirical findings about a social network of product recom-
mendations, a protein–protein interaction network and a neural network,
suggesting that it might indeed be a widespread property in nature.

1. Introduction
Many non-equilibrium systems consist of dynamical units that interact through
a network to produce complex behaviour as a whole. In a wide variety of such
systems, each unit has a state that quasi-equilibrates to the distribution of states
of the units it interacts with, or ‘interaction potential’, which results in the new
state of the unit. This assumption is also known as the local thermodynamic
equilibrium (LTE), originally formulated to describe radiative transfer inside
stars [1,2]. Examples of systems of coupled units that have been described in
this manner include brain networks [3–6], cellular regulatory networks
[7–11], immune networks [12,13], social interaction networks [14–20] and
financial trading markets [15,21,22]. A state change of one unit may sub-
sequently cause a neighbour unit to change its state, which may, in turn,
cause other units to change, and so on. The core problem of understanding
the system’s behaviour is that the topology of interactions mixes cause and
effect of units in a complex manner, making it hard to tell which units drive
the system dynamics.

The main goal of complex systems research is to understand how the
dynamics of individual units combine to produce the behaviour of the
system as a whole. A common method to dissect the collective behaviour
into its individual components is to remove a unit and observe the effect
[23–32]. In this manner, it has been shown, for instance, that highly connected
units or hubs are crucial for the structural integrity of many real-world systems
[28], i.e. removing only a few hubs disconnects the system into subnetworks
which can no longer interact. On the other hand, Tanaka et al. [32] find that
sparsely connected units are crucial for the dynamical integrity of systems
where the remaining (active) units must compensate for the removed (failed)
units. Less attention has been paid to study the interplay of the unit dynamics
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and network topology, from which the system’s behaviour
emerges, in a non-perturbative and unified manner.

We introduce an information-theoretical approach to
quantify to what extent the system’s state is actually a rep-
resentation of an instantaneous state of an individual unit.
The minimum number of yes/no questions that is required
to determine a unique instance of a system’s state is called
its entropy, measured in the unit bits [33]. If a system state
St can be in state i with probability pi, then its Shannon
entropy is

HðStÞ ¼ $
X

i
pi log2 pi: ð1:1Þ

For example, to determine a unique outcome of N fair coin
flips requires N bits of information, that is, a reduction of
entropy by N bits. The more bits of a system’s state St are
determined by a prior state st0

i of a unit si at time t0, the
more the system state depends on that unit’s state. This quan-
tity can be measured using the mutual information between
st0

i and St, defined as

IðSt; st0
i Þ ¼ HðStÞ $HðStjst0

i Þ; ð1:2Þ

where H(XjY) is the conditional variant of H(X ). As time
passes (t! 1), St becomes more and more independent of
st0

i until eventually the unit’s state provides zero information
about St. This mutual information integrated over time t is a
generic measure of the extent that the system state trajectory
is dictated by a unit.

We consider large static networks of identical units whose
dynamics can be described by the Gibbs measure. The Gibbs
measure describes how a unit changes its state subject to the
combined potential of its interacting neighbours, in case the
LTE is appropriate and using the maximum-entropy prin-
ciple [34,35] to avoid assuming any additional structure.
In fact, in our LTE description, each unit may even be a sub-
system in its own right in a multi-scale setting, such as a cell
in a tissue or a person in a social network. In this viewpoint,
each unit can actually be in a large number of (unobservable)
microstates which translate many-to-one to the (observable)
macrostates of the unit. We consider that at a small timescale,
each unit probabilistically chooses its next state depending on
the current states of its neighbours, termed discrete-time
Markov networks [36]. Furthermore, we consider random
interaction networks with a given degree distribution p(k),
which denotes the probability that a randomly selected unit
has k interactions with other units, and which have a maxi-
mum degree kmax that grows less than linear in the network
size N. Self-loops are not allowed. No additional topological
features are imposed, such as degree–degree correlations or
community structures. An important consequence of these
assumptions for our purpose is that the network is ‘locally
tree-like’ [37,38], i.e. link cycles are exceedingly long.

We show analytically that for this class of systems, the
impact of a unit’s state on the short-term behaviour of
the whole system is a decreasing function of the degree k
of the unit for sufficiently high k. That is, it takes a relatively
short time-period for the information about the instantaneous
state of such a high-degree unit to be no longer present in the
information stored by the system. A corollary of this finding
is that if one would observe the system’s state trajectory for a
short amount of time, then the (out-of-equilibrium) behav-
iour of the system cannot be explained by the behaviour of
the hubs. In other words, if the task is to optimally predict

the short-term system behaviour after observing a subset of
the units’ states, then high-degree units should not be chosen.

We validate our analytical predictions using numerical
experiments of random networks of 6000 ferromagnetic
Ising spins where the number of interactions k of a spin is dis-
tributed as a power-law p(k)/ k2g. Ising-spin dynamics are
extensively studied and are often used as a first approxi-
mation of the dynamics of a wide variety of complex
physical phenomena [37]. We find further qualitative evi-
dence in the empirical data of the dynamical importance of
units as function of their degree in three different domains,
namely viral marketing in social networks [39], evolutionary
conservation of human proteins [40] and the transmission of
a neuron’s activity in neural networks [41].

2. Results
2.1. Information dissipation time of a unit
As a measure of the dynamical importance of a unit s, we cal-
culate its information dissipation time (IDT), denoted D(s). In
words, it is the time it takes for the information about the
state of the unit s to disappear from the network’s state. As
another way of describing it, it is the time it takes for the net-
work as a whole to forget a particular state of a single unit.
Here, we derive analytically a relation between the number
of interactions of a unit and the IDT of its state. Our
method to calculate the IDT is a measure of cause and
effect and not merely of correlation; see appendix for details.

2.1.1. Terminology
A system S consists of units s1, s2, . . . among which some
pairs of units, called edges, E ¼ (si, sj), (sk, sl), . . . interact
with each other. Each interaction is undirected, and the
number of interactions that involve unit si is denoted by ki,
called its degree, which equals k with probability p(k), called
the degree distribution. The set of ki units that si interacts
with directly is denoted by hi ¼ {x : ðsi; xÞ [ E}. The state of
unit si at time t is denoted by st

i, and the collection
St ¼ st

1; s
t
2; . . . ; st

N forms the state of the system. Each unit
probabilistically chooses its next state based on the current
state of each of its nearest-neighbours in the interaction net-
work. Unit si chooses the next state x with the conditional
probability distribution pðstþ1

i ¼ xjht
iÞ. This is also known as

a Markov network.

2.1.2. Unit dynamics in the local thermodynamic equilibrium
Before we can proceed to show that D(s) is a decreasing func-
tion of the degree k of the unit s, we must first define the class
of unit dynamics in more detail. That is, we first specify an
expression for the conditional probabilities pðstþ1 ¼ rjhtÞ.

We focus on discrete-time Markov networks, so the
dynamics of each unit is governed by the same set of
conditional probabilities pðstþ1 ¼ rjhtÞ with the Markov prop-
erty. In our LTE description, a unit chooses its next state
depending on the energy of that state, where the energy land-
scape induced by the states of its nearest-neighbours through
its interactions. That is, each unit can quasi-equilibrate its
state to the states of its neighbours. The higher the energy
of a state at a given time, the less probable the unit chooses
the state. Stochasticity can arise if multiple states have an
equal energy, and additional stochasticity is introduced by
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means of the temperature of the heat bath that surrounds the
network.

The consequence of this LTE description that is relevant to
our study is that the state transition probability of a unit is an
exponential function with respect to the energy. That is, in a
discrete-time description, st chooses stþ1 ¼ r as the next state
with a probability

pðstþ1 ¼ rjhtÞ/ exp
X

sj[h

$eðrjst
jÞ

T
, ð2:1Þ

where T is the temperature of the network’s heat bath andP
j eðrjst

jÞ is the energy of state r given the states of its inter-
acting neighbours st

j [ ht. As a result, the energy landscape
of r does not depend on individual states of specific neigh-
bour units; it depends on the distribution of neighbour states.

2.1.3. Information as a measure of dynamical impact
The instantaneous state of a system St consists of H(St) bits of
Shannon information. In other words, H(St) answers to
unique yes/no questions (bits) must be specified in order to
determine a unique state St. As a consequence, the more
bits about St are determined by the instantaneous state st0

i
of a unit si at time t0 & t, the more the system state St depends
on the unit’s state st0

i .
The impact of a unit’s state st0

i on the system state St at a
particular time t can be measured by their mutual information
IðSt; st0

i Þ. In the extreme case that st0
i fully determines the state

St, the entropy of the system state coincides with the entropy of
the unit state, and the dynamical impact is maximum at
HðStÞ ¼ Hðst0

i Þ ¼ IðStjst0
i Þ. In the other extreme case, the unit

state st0
i is completely irrelevant to the system state St, the

information is minimum at IðSt; st0
i Þ ¼ 0.

The decay of this mutual information over time (as t!1)
is then a measure of the extent that the system’s state trajec-
tory is affected by an instantaneous state of the unit. In
other words, it measures the ‘dynamical importance’ of the
unit. If the mutual information reaches zero quickly, then
the state of the unit has a short-lasting effect on the collective
behaviour of the system. The longer it takes for the mutual
information to reach zero, the more influential is the unit to
the system’s behaviour. We call the time it takes for the
mutual information to reach zero the IDT of a unit.

2.1.4. Defining the information dissipation time of a unit
At each time step, the information stored in a unit’s state st

i is
partially transmitted to the next states of its nearest-
neighbours [42,43], which, in turn, transmit it to their
nearest-neighbours, and so on. The state of unit s at time t
dictates the system state at the same time t to the amount of

Ik
0 ; IðSt; stÞ ¼ Iðst; stÞ ¼ HðstÞ; ð2:2Þ

with the understanding that unit s has k interactions. We use
the notation Ik

0 instead of Is
0; because all units that have k inter-

actions are indistinguishable in our model. At time t þ 1, the
system state is still influenced by the unit’s state st, the
amount of which is given by

Ik
1 ¼ Iðhtþ1; stÞ: ð2:3Þ

As a result, a unit with k connections locally dissipates its infor-
mation at a ratio Ik

1=Ik
0 per time step. Here, we use the

observation that the information about a unit’s state st, which
is at first present at the unit itself at the maximum amount

H(st), can be only transferred at time t þ 1 to the direct
neighbours h of s, through nearest-neighbour interactions.

At subsequent time steps (t þ 2 and onward), the infor-
mation about the unit with an amount of Ik

1 will dissipate
further into the network at a constant average ratio

Î ¼
X

m
qðmÞ '

Imþ1
1

Imþ1
0

: ð2:4Þ

from its neighbours, neighbours-of-neighbours, etc. This is
due to the absence of degree–degree correlations or other
structural bias in the network. That is, the distribution q(m)
of the degrees of a unit’s neighbours (and neighbours-of-
neighbours) does not depend on its own degree k. Here,
qðmÞ ¼ ðmþ 1Þpðmþ 1Þkml$1 is the probability distribution
of the number of additional interactions that a nearest-
neighbour unit contains besides the interaction with unit s,
or the interaction with a neighbour of unit s, etc., called the
excess degree distribution [44]. As a consequence, the disse-
mination of information of all nodes occurs at an equal
ratio per time step except for the initial amount of infor-
mation Ik

1, which the k neighbour states contain at time
t þ 1, which depends on the degree k of the unit. Note that
this definition of Î ignores the knowledge that the source
node has exactly k interactions, which at first glance may
impact the ability of the neighbours to dissipate information.
However, this simplification is self-consistent, namely we will
show that Ik

1 diminishes for increasing k: this reduces the dis-
sipation of information of its direct neighbours, which, in
turn, reduces Ik

1 for increasing k, so that our conclusion that
Ik
1 diminishes for increasing k remains valid. See also appen-

dix A for a second line of reasoning, about information
flowing back to the unit s.

In general, the ratio per time step at which the infor-
mation about st

i dissipates from t þ 2 and onward equals Î
up to an ‘efficiency factor’ that depends on the state–state
correlations implied by the conditional transition probabil-
ities pðstþ1

k js
t
jÞ. For example, if st

A dictates 20% of the
information stored in its neighbour state stþ1

B , and stþ1
B , in

turn, dictates 10% of the information in stþ2
C , then Iðst

A; stþ2
C Þ

may not necessarily equal 20% ( 10% ¼ 2% of the infor-
mation Hðstþ2

C Þ stored in stþ2
C . That is, in one extreme, stþ1

B
may use different state variables to influence stþ2

C than
the variables that were influenced by st

A, in which case
Iðst

A; stþ2
C Þ is zero, and the information transmission is ineffi-

cient. In the other extreme, if stþ1
B uses only state variables

that were set by st
A to influence stþ2

C , then passing on A’s
information is optimally efficient and Iðst

A; stþ2
C Þ ¼ 10%.

Therefore, we assume that at every time step from time
t þ 2 onward, the ratio of information about a unit that is
passed on is ceff ' Î; i.e. corrected by a constant factor
0 & ceff & 1=Î that depends on the similarity of dynamics of
the units. It is non-trivial to calculate ceff but its bounds are
sufficient for our proceeding.

Next, we can define the IDT of a unit. The number of time
steps it takes for the information in the network about unit s
with degree k to reach an arbitrarily small constant 1 is

DðsÞ ¼ logceff 'Î
1

Ik
1

" #

¼ log 1$ log Ik
1

log ceff þ log Î
: ð2:5Þ

Note that D(s) is not equivalent to the classical correlation
length. The correlation length is a measure of the time it
takes for a unit to lose a certain fraction of its original
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correlation with the system state, instead of the time it takes
for the unit to reach a certain absolute value of correlation.
For our purpose of comparing the dynamical impact of
units, the correlation length would not be a suitable measure.
For example, if unit A has a large initial correlation with the
system state and another unit B has a small initial correlation,
but the halftime of their correlation is equal, then, in total, we
consider A to have more impact on the system’s state because
it dictates more bits of information of the system state.

2.2. Diminishing information dissipation time of hubs
As a function of the degree k of unit s, the unit’s IDT satisfies

DðsÞ/ constþ log Ik
1; ð2:6Þ

because Î, c and 1 are independent of the unit’s degree. Here,
the proportionality factor equals $ðlog ceff þ log ÎÞ$1, which is
non-negative, because the dissipation ratio ceff ' Î is at most 1,
and the additive constant equals 2log1, which is positive as
long as 1 , 1. Because the logarithm preserves order, to show
that the IDT diminishes for high-degree units, it is sufficient
to show that Ik

1 decreases to a constant, as k!1, which we
do next.

The range of the quantity Ik
1 is

0 & Ik
1 &

X

stþ1
j [htþ1

i

Iðstþ1
j ; st

iÞ; ð2:7Þ

due to the conditional independence among the neighbour states
stþ1

j given the node state st
i . In the average case, the upper bound

can be written as k ' kIðstþ1
j ; st

iÞlkj
; and we can write Ik

1 as

Ik
1 ¼ UðkÞ ' k ' TðkÞ, where

TðkÞ ¼ kIðstþ1
j ; st

iÞlkj
; ð2:8Þ

where T(k) is the information in a neighbour unit’s next state
averaged over its degree, and U(k) is the degree of ‘uniqueness’
of the next states of the neighbours. The operator k ' lkj

denotes
an average over the degree kj of a neighbour unit sj, i.e. weighted
by the excess degree distribution q(kj 2 1). In one extreme, the
uniqueness function U(k) equals unity in case the information

of a neighbour does not overlap with that of any other neighbour
unit of st

i , i.e. the neighbour states do not correlate. It is less than
unity to the extent that information does overlap between neigh-
bour units, but is never negative. See §S3 in the electronic
supplementary material for a detailed derivation of an exact
expression and bounds of the uniqueness function U(k).

Because the factor U(k) . k is at most a linear growing func-
tion of k, a sufficient condition for D(si) to diminish as k!1
is for T(k) to decrease to zero more strongly than linear in k.
After a few steps of algebra (see appendix), we find that

Tðk þ 1Þ ¼ a ' TðkÞ, where a & 1: ð2:9Þ

Here, equality for a only holds in the degenerate case
where only a single state is accessible to the units. In
words, we find that the expected value of T(k) converges
downward to a constant at an exponential rate as k!1.
Because each term is multiplied by a factor a & 1, this conver-
gence is downward for most systems but never upward even
for degenerate system dynamics.

2.3. Numerical experiments with networks of
Ising spins

For our experimental validation, we calculate the IDT D(s) of
6000 ferromagnetic spins with nearest-neighbour interactions
in a heavy-tailed network in numerical experiments and find
that it, indeed, diminishes for highly connected spins. In
figure 1, we show the numerical results and compare them
with the analytical results, i.e. evaluating equation (2.5).

The analytical calculations use the single-site Glauber
dynamics [45] to describe how each spin updates its state
depending on the states of its neighbours. In this dynamics,
at each time step, a single spin chooses its next state accord-
ing to its stationary distribution of state, which would be
induced if its nearest-neighbour spin states would be fixed
to their instantaneous value (LTE). We calculate the upper
bound of D(s) by setting U(k) ¼ 1, that is, all information
about a unit’s state is assumed to be unique that optimizes
its IDT. A different constant value for U(k) would merely
scale the vertical axis.
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Figure 1. The dynamical impact D(s) of a ferromagnetic Ising spin s as function of its connectivity ks, from evaluating the analytical D(s) in equation (2.5) as well as from
numerical experiments. For the analytical calculations, we used Glauber dynamics to describe the behaviour of the units; for the computer experiments, we used the Metro-
polis – Hastings algorithm. For the latter, we simulate a network of 6000 spins with a power-law degree distribution p(k)/k21.6; the plots are the result of six realizations,
each of which generated 90 000 time series of unit states that lead up to the same system state, which was chosen randomly after equilibration. The grey area is within two
times the standard error of the mean IDT of a unit with a given connectivity. (a) T ¼ 2.0, (b) T ¼ 2.5, (c) T ¼ 2.75, (d) T ¼ 9.0, (e) T ¼ 12 and (f ) T ¼ 14.
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We perform computer simulations to produce time series
of the states of 6000 ferromagnetic Ising spins and measure
the dynamical importance of each unit by regression. For
each temperature value, we generate six random networks
with p(k)/ k2g for g ¼ 1.6 and record the state of each spin
at 90 000 time steps. The state of each unit is updated using
the Metropolis–Hastings algorithm instead of the Glauber
update rule to show generality. In the Metropolis–Hastings
algorithm, a spin will always flip its state if it lowers the inter-
action energy; higher energy states are chosen with a
probability that decreases exponentially as function of the
energy increase. Of the resulting time series of the unit
states, we computed the time di where Iðstþdi

1 ; :::; stþdi
N ; st

iÞ ¼ 1

of each unit si by regression. This is semantically equivalent
to D(si) but does not assume a locally tree-like structure or a
uniform information dissipation rate Î. In addition, it ignores
the problem of correlation (see appendix A). See section S1
in the electronic supplementary material for methodological
details; see section S2 in the electronic supplementary material
for results using higher values of the exponent g. The results
are presented in figure 1.

2.4. Empirical evidence
We present empirical measurements from the literature of the
impact of units on the behaviour of three different systems,
namely networks of neurons, social networks and protein
dynamics. These systems are commonly modelled using a
Gibbs measure to describe the unit dynamics. In each case,
the highly connected units turn out to have a saturating or
decreasing impact on the behaviour of the system. This
provides qualitative evidence that our IDT, indeed, character-
izes the dynamical importance of a unit, and, consequently,
that highly connected units have a diminishing dynamical
importance in a wide variety of complex systems. In each
study, it remains an open question which mechanism is
responsible for the observed phenomenon. Our work pro-
poses a new candidate explanation for the underlying cause
for each case, namely that it is an inherent property of the
type of dynamics that govern the units.

The first evidence is found in the signal processing of
in vitro networks of neurons [41]. The denser neurons are
placed in a specially prepared Petri dish, the more connec-
tions (synapses) each neuron creates with other neurons. In
their experiments, Ivenshitz and Segal found that sparsely

connected neurons are capable of transmitting their electrical
potential to neighbouring neurons, whereas densely con-
nected neurons are unable to trigger network activity even
if they are depolarized in order to discharge several action
potentials. Their results are summarized in figure 2. In
search for the underlying cause, the authors exclude some
obvious candidates, such as the ratio of excitatory versus
inhibitory connections, the presence of compounds that
stimulate neuronal excitability and the size of individual
postsynaptic responses. Although the authors do find tell–
tale correlations, for example, between the network density
and the structure of the dendritic trees, they conclude that
the phenomenon is not yet understood. Note that in this
experiment, the sparsely connected neuron is embedded in
a sparsely connected neural network, whereas the densely
connected neuron is in a dense network. A further validation
would come from a densely connected neuron embedded in
a sparse network in order to disentangle the network’s
contribution from the individual effect.

Second, in a person-to-person recommendation network
consisting of four million persons, Leskovec et al. [39] found
that the most active recommenders are not necessarily the
most successful. In the setting of word-of-mouth market-
ing among friends in the social networks, the adoption rate
of recommendations saturates or even diminishes for the
highly active recommenders, which is shown in figure 3 for
four product categories. This observation is remarkable,
because in the dataset, the receiver of a recommendation
does not know how many other persons receive it as well.
As a possible explanation, the authors hypothesize that
widely recommended products may not be suitable for
viral marketing. Nevertheless, the underlying cause remains
an open question. We propose an additional hypothesis,
namely that highly active recommenders have a diminishing
impact on the opinion forming of others in the social net-
work. In fact, the model of Ising spins in our numerical
experiments is a widely used model for opinion forming in
social networks [14–16,18,20]. As a consequence, the results
in figure 1 may be interpreted as estimating the dynamical
impact of a person’s opinion as function of the number of
friends that he debates his opinion with.

The third empirical evidence is found in the evolutionary
conservation of human proteins [40]. According to the neutral
model of molecular evolution, most successful mutations in
proteins are irrelevant to the functioning of the system of
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Figure 2. The level of activity of a set of neurons under a microscope as function of time, after seeding one neuron with an electrical potential (black line). The
activity was measured by changes in calcium ion concentrations. These concentrations were detected by imaging fluorescence levels relative to the average flu-
orescence of the neurons (activity 0) measured prior to activation. In the sparse cultures with few synapses per neuron, the stimulated neuron evokes a network
burst of activity in all other neurons in the field after a short delay. By contrast, in the dense cultures with many synapses per neuron, only the stimulated neuron
has an increased potential. The data for these plots were kindly provided by Ivenshitz & Segal [41]. (a) Low connectivity and (b) high connectivity.
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protein–protein interactions [46]. This means that the evolutio-
nary conservation of a protein is a measure of the intolerance of
the organism to a mutation to that protein, i.e. it is a measure
of the dynamical importance of the protein to the reproduci-
bility of the organism [47]. Brown & Jurisica [40] measured
the conservation of human proteins by mapping the human
protein–protein interaction network to that of mice and rats
using ‘orthologues’, which is shown in figure 4. Two proteins
in different species are orthologous if they descend from a
single protein of the last common ancestor. Their analysis
reveals that the conservation of highly connected proteins is
inversely related with their connectivity. Again, this is consist-
ent with our analytical prediction. The authors conjecture that
this effect may be due to the overall high conservation rate,
approaching the maximum of 1 and therefore affecting the
statistics. We suggest that it may indeed be an inherent property
of protein interaction dynamics.

3. Discussion
We find that various research areas encounter a diminishing
dynamical impact of hubs that is unexplained. Our analy-
sis demonstrates that this phenomenon could be caused
by the combination of unit dynamics and the topology of
their interactions. We show that in large Markov networks,
the dynamical behaviour of highly connected units have a
low impact on the dynamical behaviour of the system as
a whole, in the case where units choose their next state
depending on the interaction potential induced by their
nearest-neighbours.

For highly connected units, this type of dynamics enables
the LTE assumption, originally used for describing radiative
transport in a gas or plasma. To illustrate LTE, there is no
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Figure 3. The success of a person’s recommendation of a product as function of the number of recommendations that he sent. A person could recommend a product
to friends only after he purchased the product himself. The success is measured as a normalized rate of receivers buying the product upon the recommendation. The
normalization counts each product purchase equally in terms of the system’s dynamics, as follows: if a person receives multiple recommendations for the same
product from different senders, a ‘successful purchase’ is only accounted to one of the senders. The grey area is within 1 s.e.m. The total recommendation network
consists of four million persons who made 16 million recommendations about half a million products. The subnetworks of the books and DVDs categories are by far
the largest and most significant, with 73% of the persons recommending books and 52% of the recommendations concerning DVDs. The data for these plots were
kindly provided by Leskovec et al. [39]. (a) DVD, (b) books, (c) music and (d) video.
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Figure 4. The fraction of evolutionary conservation of human proteins as a
function of their connectivity k. The fraction of conservation is measured as
the fraction of proteins that have an orthologous protein in the mouse (circles)
and the rat (crosses). The dashed and dot-dashed curves show the trend of the
conservation rates compared with mice and rates, respectively. They are calcu-
lated using a Gaussian smoothing kernel with a standard deviation of 10 data
points. To evaluate the significance of the downward trend of both conservation
rates, we performed a least-squares linear regression of the original data points
starting from the peaks in the trend lines up to k ¼ 70. For the fraction of
orthologues with mice, the slope of the regression line is 20.00347+
0.00111 (mean and standard error); with rats, the slope is 20.00937+
0.00594. The vertical bars denote the number of proteins with k interactions
in the human protein – protein interaction network (logarithmic scale). The
data for these plots were kindly provided by Brown & Jurisica [40].
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single temperature value that characterizes an entire star: the
outer shell is cooler than the core. Nonetheless, the mean free
path of a moving photon inside a star is much smaller than
the temperature gradient, so on a small timescale, the pho-
ton’s movement can be approximated using a local
temperature value. A similar effect is found in various sys-
tems of coupled units, such as social networks, gene
regulatory networks and brain networks. In such systems,
the internal dynamics of a unit is often faster than a change
of the local interaction potential, leading to a multi-scale
description. Intuitive examples are the social interactions in
blog websites, discussion groups or product recommendation
services. Here, changes that affect a person are relatively slow
so that he can assimilate his internal state-of-mind (the unit’s
microstate) to his new local network of friendships and the
set of personal messages he received, before he makes
the decision to add a new friend or send a reply (the unit’s
macrostate). Indeed, this intuition combined with our
analysis is consistent with multiple observations in social
networks. Watts & Doods [48] numerically explored the
importance of ‘influentials’, a minority of individuals who
influence an exceptional number of their peers. They find
counter to intuition that large cascades of influence are
usually not driven by influentials, but rather by a critical
mass of easily influenced individuals. Granovetter [49]
found that even though hubs gather information from differ-
ent parts of the social network and transmit it, the clustering
and centrality of a node provide better characteristics for dif-
fusing innovation [50]. Rogers [51] found experimentally that
the innovator is usually an individual in the periphery of the
network, with few contacts with other individuals.

Our approach can be interpreted in the context of how
dynamical systems intrinsically process information [42,43,
52–56]. That is, the state of each unit can be viewed as a
(hidden) storage of information. As one unit interacts with
another unit, part of its information is transferred to the
state of the other unit (and vice versa). Over time, the infor-
mation that was stored in the instantaneous state of one unit
percolates through the interactions in the system, and at the
same time it decays owing to thermal noise or randomness.
The longer this information is retained in the system state,
the more the unit’s state determines the state trajectory of
the system. This is a measure of the dynamical importance
of the unit, which we quantify by D(s).

Our work contributes to the understanding of the behav-
iour of complex systems at a conceptual level. Our results
suggest that the concept of information processing can be
used, as a general framework, to infer how dynamical units
work together to produce the system’s behaviour. The
inputs to this inference are both the rules of unit dynamics
as well as the topology of interactions, which contrasts with
most complex systems research. A popular approach to
infer the importance of units in general are topology-only
measures such as connectedness and betweenness-centrality
[28,30,57–62], following the intuition that well-connected or
centrally located units must be important to the behaviour
of the system. We demonstrate that this intuition is not
necessarily true. A more realistic approach is to consider
to simulate a simple process on the topology, such as the
percolation of particles [63], magnetic spin interactions
[3,6,14,20,37,64–72] or the synchronization of oscillators
[37,60,73–80]. The dynamical importance of a unit in a
such model is then translated to that of the complex system

under investigation. Among the ‘totalistic’ approaches that
consider the dynamics and interaction topology simul-
taneously, a common method to infer a unit’s dynamical
importance is to perform ‘knock-out’ experiments [29–31].
That is, experimentally removing or altering a unit and
observing the difference in the system’s behaviour. This is a
measure of how robust the system is to a perturbation, how-
ever, and care must be taken to translate robustness into
dynamical importance. In case the perturbation is not part
of the natural behaviour of the system, then the perturbed
system is not a representative model of the original system.
To illustrate, we find that highly connected ferromagnetic
spins hardly explain the observed dynamical behaviour of a
system, even though removing such a spin would have a
large impact on the average magnetization, stability and
critical temperature [81,82]. In summary, our work is an
important step towards a unified framework for understand-
ing the interplay of the unit dynamics and network topology
from which the system’s behaviour emerges.
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Appendix A
A.1. Limiting behaviour of pðstþ1

i ¼ qÞ as
k!1

Using equation (2.1), the prior probability of a unit’s state can
be written as

pðstþ1
i ¼ qÞ ¼

X

r;fr1 ;:::;rkg[Sk

pðht
i ¼ rÞ ' e

$
Pk

j¼1
eðq;rjÞ=T

' Z$1
k , ðA 1Þ

where Zk is the partition function for a unit with k edges. As
k) jSj; the set of interaction energies starts to follow a
stationary distribution of nearest-neighbour states, and the
expression can be approximated as

pðst
i ¼ qÞ ¼ e$kkeql=T ' Z$1

k . ðA 2Þ

Here, keql is the expected interaction energy of the state q with
one neighbour, averaged over the neighbours’ state distri-
bution. If an edge is added to such a unit, the expression
becomes (the subscript k þ 1 denotes the degree of the node
as a reminder)

pkþ1ðst
i ¼ qÞ ¼ e$ðkþ1Þkeql=T ' Z$1

kþ1

¼ e$keql=T ' e$kkeql=T ' Z$1
kþ1: ðA 3Þ

In words, the energy term for each state q is multiplied by a
factor e$keql=T that depends on the state but is constant with
respect to k. (The partition function changes with k to suitably
normalize the new terms, but it does not depend on q and so
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is not responsible for moving probability mass.) That is, as k
grows, the probability of the state q with the lowest expected
interaction energy approaches unity; the probabilities of all
other states will approach zero. The approaches are exponen-
tial, because the multiplying factors do not depend on k.
If there are m states with the lowest interaction energies
(multiplicity m), then each probability of these states will
approach 1/m.

A.2. Deriving an upper bound on a in
T(k þ 1) ¼ a . T(k)

First, we write T(k) as an expected mutual information between
the state of a unit and the next state of its neighbour, where the
average is taken over the degree of the neighbour unit:

TðkÞ ¼ kHðst
iÞ $Hðst

i js
tþ1
j Þlkj

: ðA 4Þ

We will now study how T(k) behaves as k grows for large
k. By definition, both entropy terms are non-negative, and
Hðst

i js
tþ1
j Þ & Hðst

iÞ. In §A.1 of this appendix, we find that the
prior probabilities of the state of a high-degree unit exponen-
tially approach either zero from above or a constant from
below. In the following, we assume that this constant is
unity for the sake of simplicity, i.e. that there is only one
state with the lowest possible interaction energy.

Hðst
iÞ ¼ $

X

q[S

pðst
i ¼ qÞ log pðst

i ¼ qÞ;

¼ $
X

q[Sþ
ð1$ b$k

q Þ logð1$ b$k
q Þ $

X

q[S$
b$k

q log b$k
q ;

¼ $
X

q[Sþ
ð1$ b$k

q Þ logð1$ b$k
q Þ þ k

X

q[S$
b$k

q log bq;

* k
X

q[S$
b$k

q log bq;

¼ Oðk ' x$kÞ:
ðA 5Þ

In words, the first entropy term eventually goes to zero
exponentially as function of the degree of a unit. Because
this entropy term is the upper bound on the function T(k),
there are three possibilities for the behaviour of T(k). The
first option is that T(k) is zero for all k, which is a degenerate
system without dynamical behaviour. The second option is
that T(k) is a monotonically decreasing function of k, and
the third option is that T(k) first increases and then decreases
as function of k. In both cases, for large k the function, T(k)
must approach zero exponentially.

In summary, we find that for large k

Tðk þ 1Þ ¼ a ' TðkÞ;where a , 1: ðA 6Þ

The assumption of multiplicity unity of the lowest inter-
action energy is not essential. If this assumption is relieved,
then in step 3 of equation (A 5), then the first term does not
become zero but a positive constant. It may be possible that
a system where T(k) equals this constant across k is not degen-
erate, in contrast to the case of multiplicity unity, so in this
case, we must relax the condition in equation (A 6) to include
the possibility that all units are equally important, i.e. a & 1.
This still makes it impossible for the impact of a unit to keep
increasing as its degree grows.

A.3. Information flowing back to a
high-degree unit

In the main text, we simplify the information flow through the
network by assuming that the information at the amount Ik

1
stored in the neighbours of a unit flows onward into the net-
work, and does not flow back to the unit. Here, we rationalize
that this assumption is appropriate for high-degree units.

Suppose that at time t þ 1, the neighbour unit sj stores
Iðst

i ; stþ1
j Þ bits of information about the state st

i . At time
t þ 2, part of this information will be stored by two variables:
the unit’s own state stþ2

i and the combined variable of neigh-
bour-of-neighbour states fs j1; :::; s jkjg. In order for the IDT
D(si) of unit si to be affected by the information that flows
back, this information must add a (significant) amount to
the total information at time t þ 2. We argue however that
this amount is insignificant, i.e.

Iðst
i ; Stþ2Þ $ Iðst

i ; fs
tþ2
j1 ;:::; stþ2

jkj
gÞ

¼ Iðst
i ; stþ2

i jfs
tþ2
j1 ;:::; stþ2

jkj
gÞ !ki!1

0: ðA 7Þ

The term Iðst
i ; stþ2

i jfs
tþ2
j1 ;:::; stþ2

jkj
gÞ is the conditional mutual

information. Intuitively, it is the information that stþ2
i stores

about st
i which is not already present in the states

fstþ2
j1 ;:::; stþ2

jkj
g.

The maximum amount of information that a variable can
store about other variables is its entropy, by definition. It fol-
lows from sections A.1 and A.2 of appendix that the entropy
of a high-degree unit is lower than the average entropy of a
unit. In fact, in the case of multiplicity unity of the lowest inter-
action energy the capacity of a unit goes to zero as k!1. For
this case, this proves that Iðst

i ; stþ2
i jfs

tþ2
j1 ;:::; stþ2

jkj
gÞ, indeed, goes

to zero. For higher multiplicities, we observe that the entropy
Hðstþ2

i Þ is still (much) smaller than the total entropy of the
neighbours of a neighbour Hðstþ2

j1 Þ þHðstþ2
j2 js

tþ2
j1 Þ þ ' ' ' There-

fore, the information Iðst
i ; stþ2

i Þ that flows back is (much)
smaller than Iðst

i ; fs
tþ2
j1 ;:::; stþ2

jkj
gÞ, and the conditional variant

is presumably smaller still. Therefore, we assume that also in
this case, the information that flows back has an insignificant
effect on D(si).

A.4. A note on causation versus correlation
In the general case, the mutual information Iðst

x; st0
y Þ between the

state of unit sx at time t0 and another unit’s state sy at time t is the
sum of two parts: Icausal, which is information that is due to a
causal relation between the state variables, and Icorr, which is
information due to ‘correlation’ that does not overlap with the
causal information. Correlation occurs if the units sx and sy

both causally depend on a third ‘external’ variable e in a similar
manner, i.e. such that I(e; ðst

x; s
t0
y Þ

T) , Iðe; st
xÞ þ Iðe; st0

y Þ. This can
lead to a non-zero mutual information Iðst

x; st0
y Þ among the two

units, even if the two units would not directly depend on each
other in a causal manner [83,84].

For this reason, we do not directly calculate the depen-
dence of IðSt; st0Þ on the time variable t in order to calculate
the IDT of a unit s. It would be difficult to tell how much
of this information is non-causal at every time point. In
order to find this out, we would have to understand exactly
how each bit of information is passed onward through the
system, from one state variable to the next, which we do
not yet understand at this time.
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To prevent measuring the non-causal information present
in the network, we use local single-step ‘kernels’ of infor-
mation diffusion, namely the Ik

1=Ik
0 as discussed previously.

The information Ik
0 is trivially of causal nature (i.e. non-

causal information is zero), because it is fully stored in the
state of the unit itself. Although, in the general case, Ik

1 may
consist of a significant non-causal part, in our model, we
assume this to be zero or at most an insignificant amount.
The rationale is that units do not self-interact (no self-
loops), and the network is locally tree-like: if sx and sy are
direct neighbours, then there is no third sz with ‘short’ inter-
action pathways to both sx and sy. The only way that non-
causal (i.e. not due to sx

t influencing stþ1
y ) information can

be created between st
x and stþ1

y is through the pair of inter-
action paths st0

z ! ' ' '! st$1
y ! st

x and st0
z ! ' ' '! stþ1

y ,
where t’ , t 2 1. That is, one and the same state variable st0

z
must causally influence both st

x and stþ1
y , where it can reach

sx only through sy. We expect any thusly induced non-

causal information in Iðstþ1
y ; st

xÞ is insignificant compared
with the causal information through st

x ! stþ1
y , and the

reason is threefold. First, the minimum lengths of the two
interaction paths from sz are two and three interactions,
respectively, where information is lost through each inter-
action due to its stochastic nature. Second, of the
information that remains, not all information Iðst0

z ; st
xÞ may

overlap with Iðst0
z ; stþ1

y Þ, but even if it does, then the ‘corre-
lation part’ of the mutual information Iðstþ1

y ; st
xÞ due to this

overlap is upper bounded by their minimum:
min {Iðst0

z ; st
xÞ; Iðst0

z ; stþ1
y Þ}. Third, the mutual information due

to correlation may, in general, overlap with the causal infor-
mation, i.e. both pieces of information may be partly about
the same state variables. That is, the Icorr part of Iðstþ1

y ; st
xÞ,

which is the error of our assumption, is only that part of the
information-due-to-correlation that is not explained by (con-
tained in) Icausal. The final step is the observation that Ik

1 is the
combination of all Iðstþ1

y ; st
xÞ for all neighbour units sy [ hx.
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