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We describe a prioritization scheme for an allocation of a sizeable quantity of vaccine or anti-
virals in a stratified population. The scheme builds on an optimal strategy for reducing the
epidemic’s initial growth rate in a stratified mass-action model. The strategy is tested on
the EpiSims network describing interactions and influenza dynamics in the population of
Utah, where the stratification we have chosen is by age (0–6, 7–13, 14–18, adults). No
prior immunity information is available, thus everyone is assumed to be susceptible—this
may be relevant, possibly with the exception of persons over 50, to the 2009 H1N1 influenza
outbreak. We have found that the top priority in an allocation of a sizeable quantity of sea-
sonal influenza vaccinations goes to young children (0–6), followed by teens (14–18), then
children (7–13), with the adult share being quite low. These results, which rely on the struc-
ture of the EpiSims network, are compared with the current influenza vaccination coverage
levels in the US population.
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1. INTRODUCTION

Prioritization for influenza vaccinations and improve-
ment in coverage levels continue to be the subjects of
investigation (Longini & Halloran 2005; Patel et al.
2005; Halloran & Longini 2006; Dushoff et al. 2007;
Hadeler & Mueller 2007). Until 2008, the priority
groups for influenza vaccination allocation according
to the US Center for Disease Control (CDC) guidelines
were children 0.5–4 years old, adults over 50 as well as
people with certain medical conditions. Data up to 2007
suggest that adults aged 18–49 had coverage levels on
par with children aged 5–17 (CDC 2008). In 2008, all
children aged 0.5–17 were included in the priority
group, with no data available yet on the effect of the
recent prioritization policy on coverage levels. For the
2009 H1N1 vaccination plan, individuals aged 0.5–24
make up one of the priority cohorts for vaccine allo-
cation (CDC 2009).

Motivated in part by the need for evidence-based
guidance on those issues, we have devised a method
to prioritize the allocation of a sizeable quantity of a
vaccine or antivirals in a stratified population. As our
strategy is identical for vaccine and antivirals (see the

electronic supplementary material), we concentrate on
vaccine for the rest of this paper. The setting we
consider in this paper is a large population, where
interactions between people and influenza dynamics
are represented by a network; the explicit example we
use is the EpiSims network describing the population
of Utah (Barrett et al. 2008). The population is strati-
fied (usually by age), and vaccine is distributed
between the strata and then allocated at random
within each stratum—thus, we cannot relate individ-
uals who receive the vaccine to particular nodes on a
network describing the population. We use simulations
on the network to estimate the next generation matrix,
whose entries represent the number of persons in one
stratum infected by an average infectious person in
another stratum during the exponential growth period
of the epidemic. Using this matrix, we present an expli-
cit algorithm for an allocation of a sufficiently large
quantity of a vaccine between the population strata,
namely we specify the (generally unequal) coverage
levels in each stratum as a function of the total vaccine
quantity available. In the process we also determine
prioritization (ranking) for vaccine allocation among
the strata—the available vaccine is distributed simul-
taneously for all strata, but the strata with the higher
ranking get higher coverage levels. The latter prioritiza-
tion may be the most important practical outcome of
our approach given a number of uncertainties related
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to the exact allocation proportions, such as the total
number of people who will get vaccinated, and the
precision with which a network describes a real popu-
lation. We then apply our algorithm to the EpiSims
network for the population of Utah, and test its
optimality by simulations.

The theoretical framework for our strategy is the
optimal vaccination policy for reducing the epidemic’s
reproductive number in a stratified mass-action model.
Equivalently, the initial growth rate of the infection is
minimized when the infection is introduced into a popu-
lation vaccinated (or treated) according to this
allocation—all this is explained in detail in the elec-
tronic supplementary material. We note that the
emphasis is not on the smallest quantity of a vaccine
needed to get the reproductive number below 1 (such
a quantity may be unavailable, and the precise repro-
ductive number of the epidemic may be unknown
before the epidemic starts); rather, the emphasis is on
the policy for distributing some quantity of a vaccine
between the strata to minimize the initial growth rate
of the epidemic. Formulating such a policy with this
approach requires knowledge (up to a scaling factor)
of the next generation matrix, whose entries are defined
as the number of new infections in one stratum caused
by an average infected individual in another stratum
during the exponential growth period of the epidemic;
it also requires knowledge of the initial distribution of
susceptibles among the strata. Our method is appropri-
ate for a ‘sizeable’ (sufficiently large) quantity of
vaccine; the optimal allocation of a ‘small’ quantity
may be different.

A related allocation policy in a stratified mass-
action model appeared before in Cairns (1989); we
have derived our policy following a more general
model introduced in Wallinga et al. (submitted),
which is more flexible and allows for the treatment
of a wider class of next generation matrices and vary-
ing vaccine efficacies among the strata. A key concept
that emerges from the strategy is the least spread line.
This is a line in an N-dimensional space, where N is
the number of strata in the population; points (vec-
tors) on that line represent the distributions of
susceptibles to be left in the strata after an optimal
allocation of a sufficiently large quantity of a vaccine;
movement along the line corresponds to the varying
total amounts of vaccine—see §2.2 for more details.
The least spread line can be found explicitly using
the next generation matrix and the initial distribution
of susceptibles between the strata, by solving several
systems of linear equations—see the electronic sup-
plementary material. One can then compare the least
spread line with the initial distribution of susceptibles,
and devise a prioritization scheme for vaccine
allocation between the strata.

This paper shows that these theoretical results can
be proven for a stratified population that interacts via
stratified mass-action-type kinetics, in which individ-
uals within each stratum are exchangeable. Disease
transmission in real populations departs from such
kinetics in several ways. Specifically, the local deple-
tion of susceptibles among the contacts of infectious
persons (owing to the clustering of transmission

within infected households or school classrooms) vio-
lates exchangeability; moreover, an average infected
person differs from an average person, in terms of
their contacts. To test the robustness of the method
to departures from its assumptions, we tested it on an
explicit, individual-based simulation on the EpiSims
platform, in which influenza dynamics were simulated
in the population of Utah, and in which we have focused
on the stratification of the population by age (0–6,
7–13, 14–18, adults). In the absence of information
on prior immunity, we simulate a situation in which
everyone is susceptible—this may be relevant, possibly
with the exception of persons over 50, to the 2009
H1N1 influenza outbreak. To find the least spread
line, one needs an estimate of the next generation
matrix K ¼ (kij), where kij equals the number of persons
in stratum i infected by an average infectious person in
stratum j during the exponential growth period of the
epidemic. To assess K, we have run 100 epidemic
simulations with five randomly chosen persons initially
infected in Utah. There was a large degree of initial sto-
chasticity, but in the early exponential growth period,
the next generation matrices were similar in different
simulations.

We note that the ‘dynamical’ next generation
matrices estimated in this fashion using an exponential
growth period on a ‘large’ network are not rigorously
defined in this paper, in part because there is no explicit
analytical structure describing the network (such as a
community of households)—we consider this issue
further in the discussion. The dynamical next gener-
ation matrices estimated by simulations can be
compared to the more classical ‘static’ stratified
mass-action next generation matrices (Diekmann &
Heesterbeek 2000; Wallinga et al. 2006; Mossong et al.
2008), which are obtained by measuring the number
of contacts in the model between a typical member of
each stratum and the members of all strata, without
any simulation of infection dynamics. The dynamical
matrix differs from the static matrix because as the epi-
demic runs, local structure in the network becomes
involved (infected individuals will cluster, e.g. in house-
holds, so that even at the early phase of the epidemic
many contacts will be with immune persons) and
because within a stratum, an ‘average’ person has differ-
ent characteristics from an ‘average infected person’
(e.g. the average infected person in a stratum is likely
to live in a bigger household than the average person
in the same stratum). To illustrate that point, we
have computed both the dynamical and the static
next generation matrices and formulated ‘optimal’
allocation strategies for both. The matrices were quite
different, giving different prioritization for vaccine
allocation for the strata we have chosen. We have
shown by simulations that the dynamical one is
very nearly optimal, and in particular it gives lower
initial growth rate for the epidemic than for the
static one.

The dynamic estimate of the least spread line in our
simulations consists of all multiples of the vector (0.029,
0.115, 0.041, 0.814). This means that given a number T
of susceptibles left after a vaccine allocation, it is opti-
mal for minimizing the initial growth rate of an
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epidemic to have 0.029T susceptibles in age group 0–6,
0.115T susceptibles in the age group 7–13, etc. This
constitutes a simple, explicit guideline for optimal vac-
cine allocation. The initial distribution of individuals
according to those four age groups in Utah is (0.13,
0.125, 0.094, 0.651). This renders an explicit formula
for optimal coverage levels in the four strata as a func-
tion of the total vaccine quantity to be distributed. In
particular, top priority (highest coverage levels) in an
allocation of a sizeable quantity of seasonal influenza
vaccinations (enough to reach the least spread line,
which in our case means coverage of 20.1 per cent or
more of Utah’s population) goes to young children
(0–6), followed by teens (14–18), then children 7–13,
with the adult share being quite low. We also note
that for a ‘small’ quantity of influenza vaccinations,
with no prior immunity, top priority goes to teens,
who have a disproportionate number of infections in
the early stages of simulated epidemics, with no vaccine
used—see the electronic supplementary material for
more details.

We want to point out that minimizing the initial
growth rate of an epidemic is not equivalent to minimiz-
ing the epidemic’s final size (see Ball & Clancy 1993;
Britton 2001 for relations between the latter and the
reproductive number), though the two are related. We
have tested our ‘optimal initial growth rate’ strategy
by simulations against other vaccination strategies
with the same total quantity of a vaccine used. In one
set of simulations, we have allowed for seasonality in
transmission parameters. One hundred epidemics were
simulated for each vaccination policy, and the functions
C(t) representing the average cumulative number of
persons infected by day t were plotted. We have found
that the ‘optimal’ strategy indeed had the smallest
initial growth rate. Moreover compared to policies
which were ‘far enough’ from it, it did better in terms
of C(t) at all times, and correspondlingly in terms of
the final size. For some of the policies which were
‘close’ enough to the optimal, the function C(t) even-
tually descended below the one for the optimal policy,
with a modest improvement in the final size. Previous
work (e.g. Dushoff et al. 2007) has shown that optimiz-
ing the final size is extremely difficult and sensitive to
small differences in parameter values. Moreover, the
final size calculations (whether or not weighted by
severity) rely on the strong assumptions of fixed con-
ditions (no effects of seasonality, behaviour change,
control measures, etc. and no further availability of
vaccines), which will be violated in practice. Because
these are uncertain, a strategy focused on the present
(minimizing the initial growth rate) may be justified
as more reliable than the one designed to optimize
long-term outcomes.

Finally, our findings were compared to the current
seasonal influenza vaccination coverage levels in the
USA (CDC 2008). Data up to 2007 suggest that
adults aged 18–49 had coverage levels on par with
children aged 5–17. Our simulations/analysis, which
rely on the structure of the EpiSims network, in par-
ticular suggest that if we vaccinated the same number
of people as currently receiving the vaccine, but
reduced the adult share considerably in favour of

children, transmission could be significantly reduced;
moreover, incorporating the existence of prior immu-
nity should only strengthen this conclusion,
assuming that prior immunity on the average
increases with the age for children, and is lower
than the one for adults. For the same reason, our
prioritization of teens as the second most important
compared to 7–13 year olds is questionable, though
both groups should receive attention, and the top pri-
ority should remain with preschool children. In that
context, we are supportive of the CDC decision
(CDC 2009) to include young individuals in the
priority cohort for H1N1 influenza vaccination.

2. METHODS AND RESULTS

2.1. Minimizing the initial growth rate of an
epidemic in a stratified mass-action model

Suppose we have a population, divided into N strata
1, . . . ,N, with deterministic transmission according
to mass-action kinetics between each pair of strata.
A key quantity describing the epidemic spread in a
stratified mass-action model is the next generation
matrix K ¼ (kij). Here kij equals the number of persons
in stratum i infected by an average infected person in
stratum j in the early exponential growth stages of an
epidemic. The quantity kij depends on a number of fac-
tors (see Wallinga et al. submitted and the electronic
supplementary material):

(i) the number si of susceptibles in stratum i,
(ii) the contact rate bij (per unit of time) between an

average person in stratum i and the one in stra-
tum j. We assume reciprocity of contacts, thus
bij ¼ bji (Wallinga et al. 2006; Mossong et al.
2008),

(iii) the total infectivity (the quantity of pathogen
shedding) cj of an average person in stratum j and

(iv) the susceptibility (instanteneous risk of getting
infected per infectious contact) parameter ai for
an average person in stratum i.

Explicitly (see the electronic supplementary material
for more details),

kij ¼ siaibijcj :

The largest eigenvalue of K is the reproductive
number R0 of the epidemic, in the absence of control
measures (Diekmann & Heesterbeek 2000). Suppose
we have a fixed quantity Q of a vaccine, and we
give qi doses to persons in stratum i, with Sqi ¼ Q.
To simplify notation, for the rest of this paper we
deal with a perfect vaccine, though the argument
would also work for a ‘leaky’ vaccine which reduces
susceptibility by a certain factor (which may also
depend on the stratum), or for an antiviral, which
reduces infectivity—see the electronic supplementary
material. Let

T ¼ Ssi " Q

be the total number of susceptibles left after vacci-
nation. We will have si

T ¼ si 2 qi susceptibles in
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stratum i. No other parameters affecting the next gen-
eration matrix have changed. We can ask the following
question:

Question. Given a positive number T, how do we
choose the distribution of susceptibles sT ¼ (s1

T, . . . ,
sN
T), with constraint that the total number of
susceptibles

P
isi
T ¼ T, to minimize the largest

eigenvalue of the new next generation matrix KT ¼
(si

T aibijcj)?
It turns out that the question above has an explicit

answer sT—see theorem 2.2.1 and the remark following
it in the electronic supplementary material, as well as
Cairns (1989) for a slightly less general case. In
addition, sT depends linearly on T. Thus, we have the
least spread line

L ¼ ðsTjT . 0Þ;

which is ideally the target of a vaccination or antiviral
distribution strategy. Finding this line amounts to sol-
ving several systems of linear equations with the
coefficients depending on the next generation matrix
K, and the initial numbers si of susceptibles in each
stratum.

Remark. Here, we concentrate on a vaccine which is
perfect. Data from placebo-controlled trials (Belshe
et al. 1998, 2000; Longini et al. 2000) suggest that
this is a good approximation. Vaccine efficacy for
susceptibility is estimated in the papers above to
be between 83 and 92 per cent depending on the
strain; vaccine efficacy against infectivity of
vaccinated individuals is estimated to be about 80
per cent. Thus, a vaccinated individual would
cause very few infections compared to an
unvaccinated one.

2.2. Prioritization using the least spread line

In this section, we describe how to use the least
spread line to prescribe the optimal allocation strategy
and prioritization for vaccine distribution. We illustrate
this by numerical examples in subsequent sections.

Suppose we have found the least spread line L ¼
span(sL) (all positive multiples of the vector sL),
where the vector sL ¼ (s1

L, . . . , sN
L) is scaled so that the

sum of its components equals 1. Let sinit ¼ (s1
init, . . . ,

sN
init) be the initial distribution of susceptibles, as a pro-
portion of the total, so that the sum of the components
of sinit is also 1.

Suppose we distribute quantity q of the vaccine
among the strata so that stratum i gets qi doses, withP

qi ¼ q—here and for the rest of this section each
number is viewed as a proportion of the total initial
population. Thus, the resulting distribution of suscept-
ibles left after vaccine allocation is according to the
vector sq ¼ (s1

init 2 q1, . . . , sN
init 2 qN). The optimal allo-

cation aims to get vector sq on the least spread line.
This means that sq is proportional to the spanning
vector sL, namely

sq ¼ psL;

for some p . 0. Summing the components of the vectors
in the equality above, we get that 1 2 q ¼ p. Also,
stratum i received

qi ¼ siniti " psLi ;

vaccine doses. Thus, the proportion of individuals
vaccinated in stratum i is

siniti " psLi
siniti

¼ 1" p
sLi
siniti

: ð2:1Þ

The above gives an explicit strategy for distributing
the vaccine among the strata for the overall coverage
level of the fraction q ¼ (1 2 p) of the population. Our
‘optimal’ vaccination strategy allows for the simul-
taneous coverage of all strata (no time ordering for
coverage). However, the higher is the ratio si

init/si
L, the

higher is the prescribed proportion of persons vacci-
nated (coverage level) in stratum i. Hence, the notion
of prioritization—we order the strata according to the
ratios si

init/si
L for prioritization (higher coverage levels)

for vaccine distribution. Let the order of priority for
the strata be

i1; . . . ; iN :

Here, stratum i1 gets the highest priority (coverage
level) for vaccine distribution (the ratio si1

init/si1
L is the

highest), and the stratum iN has the lowest priority
(coverage level).

Having described the optimal allocation scheme
and prioritization among the strata, let us calculate
the smallest vaccine quantity needed to reach the
least spread line from the initial population of suscep-
tibles. Suppose some vector p0sL on the least spread
line requires the smallest quantity of a vaccine to
reach the least spread line from the initial distribution
of susceptibles. This means that one of the strata got
no vaccine—otherwise, we can increase p0 and
decrease the vaccine quantity needed to reach the
least spread line. As the stratum iN gets the lowest
coverage upon reaching the least spread line, it
must be the stratum which received no vaccine.
Hence, the iN

th component of p0sL must equal the
corresponding component of sinit. In other words,
p0 ¼ siN

init/siN
L, and the smallest vaccine quantity

needed to reach the least spread line is

q0 ¼ 1" p0 ¼ 1"
sinitiN

sLiN
: ð2:2Þ

2.3. Simulation to study the robustness of
optimal allocations

In the sections that follow, we describe simulation
experiments to test whether our approach to defining
optimal vaccination allocations is effective in synthetic
populations which violate some of its assumptions.
Before doing so, we briefly describe the simulation
approach.

Numerical simulations for an influenza epidemic
were performed using two agent-based simulation plat-
forms developed by the Network Dynamics and
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Simulation Science Laboratory (NDSSL) at the Virgi-
nia Bioinformatics Institute: EpiSimdemics and
EpiFast. These two tools fuse data from the US
census, activity surveys, Dun and Bradstreet business
information, and NavTeq map information to build
up an ‘in silico’ society among whose individuals epi-
demics spread. These tools are the improved versions
of the original EpiSims. The overall process consists of
four main steps (Barrett et al. 2008).

(i) Creation of a synthetic population. A synthetic
population of households and persons in these
households is generated from the census data.
Household locations are assigned to each house-
hold according to its census block and
geolocated using the NavTeq street data. Using
the data from the activity survey, a sequence of
activities (i.e. a daily schedule of activities
ordered in time) is associated to a household
according to household demographics. Activities
in the sequence are then associated with
each household member, depending on demo-
graphics. Each activity in the sequence has a
start time, an end time and an activity type
(work, shop, etc.).

(ii) Generation of an interacting network. Activities
are located in areas where they can occur and
an attractor for each possible kind of activity
is associated to each activity location. For
example, the attractor for ‘work’ activities is
related to the number of employees at that
location; the attractor for ‘shop’ activities is
related to the area of retail space. A two-step
gravity model employs these attractors to
assign locations probabilistically for each
activity in the activity sequences. Once all activi-
ties are assigned locations, sublocations are
assigned to represent individual mixing groups
at a single location (i.e. office, single store at a
mall, etc.). The maximum number of persons
simultaneously at the same sublocation is con-
strained by the sublocation size. Different
sublocation sizes can lead to very different
social networks.

(iii) Simulating the epidemic process. Each person in
the simulation is given a state of health, in this
case drawn from the commonly used SEIR (sus-
ceptible, exposed, infectious, removed) disease
model. An epidemic is then simulated as a
dynamic process that traverses this social net-
work. Nodes (i.e. people) begin the simulation
as susceptible to this infectious process. Nodes
can be selected at random or by their character-
istics as candidates for initial infections. Infected
nodes are assigned an incubation period and
infectious period from a specifiable distribution.
After the incubation period has expired, the
node becomes infectious. During the infectious
period, all connected nodes experience a daily
probability of infection that depends on the dur-
ation of the contact that the edge represents.
Infections occur stochastically based on these
probabilities. After the infectious period expires,

the node becomes removed and is no longer a
member of network.

(iv) Representing interventions. Interventions
designed to disrupt the flow of infections across
the network can be represented by altering the
edges between different classes of nodes. As the
edges convey the risk of infection, the absence
of the edge prevents infection between two for-
merly connected nodes, and the scaling of the
weight along this edge can represent the
decreased probability of infection owing to a par-
ticular intervention. For instance, the simple
case of 100 per cent effective vaccinations can
be represented by removing all the edges of the
vaccinated node, while the use of a leaky vacci-
nation will result in a scaling of the weight of
all the links. A social distancing measure can
be represented by eliminating all the edges
between individuals in the same activity
location, or just some portion if one presumes
that some out-of-activity contacts will persist
despite the closure. In the case of school closure,
all the links among children attending the same
school will be removed except those arising
from out-of school activities (i.e. recreational
activities, shopping).

EpiSimdemics can process this data structure to cal-
culate efficiently the second-by-second interactions of
all the agents in the population and output the social
network. Although EpiSimdemics can be used to simu-
late epidemic outbreaks in the social network, we used a
much more efficient EpiFast simulation. EpiFast gains
efficiencies through novel graph analytic techniques
(for more details, Bisset et al. 2009) allowing large-
scale individual simulations in a fraction of the time
required by the more flexible EpiSimdemics modelling
platform. EpiFast supports dynamic interventions
that can be triggered based on the time or level of infec-
tion in the simulation and can be applied
probabilistically to the members of specified popu-
lations. Simulations were conducted on a large cluster
(112 four-core 2.2 GHz cpus for HPL performance of
1.471 TFlops). Running on 20 blades, a set of 100 simu-
lations for the Utah population would take 130 min
of wall-clock time, and produce 40 MB to 1.2 GB of
raw output.

2.4. Finding the next generation matrix

Entries of the next generation matrix are defined as the
number of new infections in one stratum caused by an
average infected individual in another stratum during
the early, exponential growth period of the epidemic.
One way of estimating those entries is through simu-
lations on a network describing interactions and
disease dynamics in a population. Another, more classi-
cal method, which ignores the network’s local structures
and assumes stratified mass-action mixing, is to esti-
mate the ‘static’ next generation matrix using the
contact data in a population (Wallinga et al. 2006;
Mossong et al. 2008). In this section, we define the
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two next generation matrices and describe how their
entries may be estimated for real populations (in the
static case) and for synthetic populations (in both cases).

2.4.1. Static next generation matrix. We define the
‘static’ next generation matrix as the matrix of poten-
tially infectious contacts from persons in stratum j to
persons in stratum i, which is defined up to a multi-
plicative constant that reflects the transmissibility of
the agent and the duration of infectiousness. This is
exactly the matrix measured by survey and diary
studies, in which the individuals of various strata
(age groups) were asked to estimate the number of
contacts they had over a fixed period of time with
others in each of the age groups (Wallinga et al.
2006; Mossong et al. 2008). Entries of this matrix
measure the expected number of persons in one stra-
tum to be infected by an average individual in
another stratum, in a completely susceptible popu-
lation (Diekmann & Hoesterbeek 2000). This matrix
is often used as the next generation matrix for a
mass-action model.

The ‘dynamical’ next generation matrices, counting
the number of infections in one stratum caused by an
average infected person in the other stratum during
exponential growth periods of epidemics, are a bit
different. For one thing, as the epidemic runs, local
structure in the network becomes involved (infections
cluster in households and other transmission groups).
Also, the average infected adult in the early stage of
the epidemic will differ from the average adult; for
example, she s/he will tend to have more children in
the household (hence be at higher risk of infection).
We will estimate the ‘dynamical’ next generation
matrices for the population of Utah using simulations
in the next section. In §2.5.2, we will also compare the
results of optimal vaccination strategies for the ‘static’
and the ‘dynamical’ next generation matrices.

The static next generation matrix is of the form

K st ¼ ðkstij Þ with kstij ¼ q % D % tij
sj
:

Here, tij is the total amount of time spent in a
common location between all persons in strata i and j
during a time unit (say one day), sj is the number of
persons in stratum j, D is the mean duration of an
individual infectiousness period, and q is the
transmissibility parameter. We can also write

kstij ¼ q % D % si % bij ;

where the symmetric matrix B ¼ (bij) ¼ (tij/sisj)
measures the rate of contact between average persons
in strata i and j. Such matrices were already considered
in Cairns (1989). With the Utah synthetic population
and the transmissibility parameter chosen, one gets
the static matrix

K st ¼

0:351 0:328 0:069 0:089
0:316 0:896 0:287 0:06
0:05 0:216 1:051 0:056
0:444 0:313 0:388 0:597

2

664

3

775:

The initial distribution of susceptibles in Utah by age
groups (as proportions of the total population) is

sinit ¼

0:130
0:125
0:094
0:651

2

664

3

775:

The least spread line for the matrix Kst and the
initial distribution of susceptibles can be found from
equation (2.2.5) in the electronic supplementary
material, with Ei ¼ 1. It is spanned by the vector

sstL ¼

0:070
0:032
0:022
0:876

2

664

3

775:

Note that we chose a spanning vector whose sum of
coordinates equals 1. Thus, given a quantity T of sus-
ceptibles left after vaccine allocation, it is optimal for
minimizing the initial growth rate of an epidemic to
have 0.07.T susceptibles in age group 0–6, 0.032.T
susceptibles in age group 7–13, etc.

To formulate the prioritization scheme as in §2.2, we
look at the ratios sinit(i)/sL

st(i) of the entries of the
vector sinit and the corresponding entries of the vector sL

st:

sstratio ¼

1:865
3:894
4:332
0:743

2

664

3

775:

Higher values for those ratios correspond to higher
priority strata, in terms of receiving a disproportionate
quantity of a vaccine—see equation (2.1). The ratios
suggest that top priority in an allocation of a sizeable
quantity of seasonal influenza vaccinations (enough to
reach the least spread line) goes to teens (14–18), fol-
lowed by children (7–13), then young children (0–6),
then adults. Finally, the minimal quantity of a vaccine
needed to reach the least spread line is 1–0.743 ¼ 0.257
(see equation (2.2)), or the coverage of 25.7 per cent of
the Utah population. Any additional ‘optimal’ coverage
beyond the 25.7 per cent of the population should go pro-
portionally to the vector sL

st—thus, we descend along the
least spread line after reaching it. For instance, vaccine
doses at the total coverage level of 30 per cent of the
population should be distributed according to the vector

sinit " 0:7 % sstL ¼

0:081
0:103
0:079
0:037

2

664

3

775:

2.4.2. Dynamical next generation matrix. In this section,
we describe how to estimate the ‘dynamical’ next gener-
ation matrix for the synthetic population, and use this
matrix to find the least spread line. The dynamical
next generation matrix counts the number of infections
in one stratum caused by an average infected person in
another stratum during the exponential growth period
of an epidemic. We have used two methods to assess
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the next generation matrix—one more classical, and one
using infectivity ratios.

In the first case, for each day t and for each simulated
epidemic, we have found the Xj(t) persons in stratum j
who got infected on day t. We have found the Yij(t)
persons in stratum i whom those Xj(t) persons have
subsequently infected. We have estimated the next
generation matrix K(t) ¼ (kij(t)) with

kijðtÞ ¼
YijðtÞ
XjðtÞ

:

The practical disadvantage of such a definition is
that it requires epidemic conditions (exponential
growth) to persist for the subsequent infectious
period of individuals who got infected on day t. As a
result, the stability of such matrices does not persist
for too long in simulations; we have found that kij(t)
begins to decline in the end of the exponential growth
period of the epidemic, representing future infections
which happen under the saturation of susceptibles.

A more computationally convincing method involves
infectivity ratios. Conveniently, individual infectious-
ness profiles on EpiSims take a whole number of days,
with constant infectivity during the infectious period.
For each day t, we have found the X 0

j(t) persons in stra-
tum j who were infectious on day t. We then found
the Y 0

ij(t) persons in stratum i who got infected by
those X 0

j(t) persons on day t. We have estimated the
next generation matrix to be K2(t) ¼ (kij

2(t)) with

k2ijðtÞ ¼
Y 0

ijðtÞ
X 0

j ðtÞ
% D:

Here, D is the mean duration of an individual infec-
tious period (which is 4.2 days on EpiSims). Thus,
kij
2(t) would equal the mean number of infections in
stratum i caused by the infected individuals in stratum
j during one day (namely day t), times the mean dur-
ation of the infectious period. If the conditions related
to epidemic’s progression stay constant over the infec-
tious period of individuals in stratum j who got
infected on some day t, the mean number of infections
in stratum i subsequently caused by them (kij

1(t))
would equal kij

2(t); thus, the next generation matrix
K2(t) equals the next generation matrix K(t). In prac-
tice, the period when the two matrices coincide in a
simulation is rather brief; we found the infectivity
ratio definition to be more computationally stable,
though in principle, for an ‘infinite’ network, the two
definitions are the same for the ‘infinite’ exponential
growth period.

There was a large degree of initial stochasticity in
the entries of K(t), but in the exponential growth
period, the next generation matrices K(t) were similar
in different simulations. We have estimated the next
generation matrix during the exponential growth
period to be

Kdyn ¼

0:362 0:30 0:077 0:187
0:430 0:824 0:273 0:113
0:086 0:274 1:313 0:104
0:830 0:382 0:375 1:104

2

664

3

775:

Using this matrix, the initial distribution of suscepti-
bles and equation (2.2.5) in the electronic
supplementary material, we have found the least
spread line to be L ¼ span(sL

dyn) with

sdynL ¼

0:029
0:115
0:041
0:814

2

664

3

775:

To formulate the prioritization scheme using the
dynamical next generation matrix, we look, as in §2.2,
at the ratios sinit(i)/sL

dyn(i) of the entries of the vector
sinit and the corresponding entries of the vector sL

dyn

sratio ¼

4:507
1:083
2:280
0:799

2

664

3

775:

The ratios suggest that top priority in an allocation
of a sizeable quantity of seasonal influenza vaccinations
goes to young children (0–6), followed by teens
(14–18), then children 7–13, then adults. The minimal
quantity of a vaccine needed to reach the least spread
line is 1–0.799 ¼ 0.201, or the coverage of 20.1 per
cent of the Utah population.

2.5. Testing prioritization schemes by
simulations

2.5.1. Prioritization strategy using the dynamical next
generation matrix. In this section, we use simulations
to compare the ‘optimal’ allocation strategy obtained
from the dynamical next generation matrix against sev-
eral alternative strategies at the 20.1 per cent coverage
level. In the next section, we compare the ‘optimal’
strategies obtained from the dynamical and the static
next generation matrices, and show that the
‘dynamical’ one gives a lower initial growth rate.

Figure 1 plots several allocation strategies with 20.1
per cent total coverage, in addition to the no coverage
scenario (top graph). A hundred simulations were run
with each vaccination strategy and five randomly
chosen individuals initially infected. Outbreaks that
did not become epidemics (under 3000 infected in
total) were discarded. Each graph C(t) represents the
average cumulative number of people infected up to
day t for a given vaccination strategy. We see that
there is a decreasing order for the graphs as we
approach the ‘optimal’ strategy. The strategy with 55
per cent going to adults roughly corresponds to the cur-
rent proportions for seasonal influenza vaccinations.
Our main emphasis is on moving in the direction of
the least spread line, rather than whether the least
spread line is indeed optimal in terms of minimizing
the final size—the latter question is addressed in the
electronic supplementary material.

In the electronic supplementary material, we also
consider the strategies in figure 1 with seasonality
added to the transmission parameters. There, all
transmission parameters are multiplied by a factor of

sðtÞ ¼ 1þ 0:5 sinðpt=180Þ:
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Here, t is time (in days) since the seeding on the five
initially infected. The optimal dynamical strategy will
still have the smallest initial growth rate; however, the
strategy of 55 per cent going to adults will catch up in
the final size.

2.5.2. Comparing the strategies obtained from the
dynamical and the static next generation matrices. In
this section, we have considered allocation strategies
with 26 per cent coverage for the Utah population.
Optimal ‘dynamical’ allocation at this coverage level
corresponds to the vector sinit 2 0.74sL

dyn, and the opti-
mal ‘static’ allocation goes according to the vector
sinit 2 0.74sL

st. We have compared these allocation strat-
egies by simulations, using the same protocol as in
§2.5.1. The results are plotted in figure 2, where
random allocation at the 26 per cent coverage level as
well as no vaccination is also considered. We see that
both ‘optimal’ strategies are better than random allo-
cation in all regards. Comparing the ‘dynamical’ and
‘static’ optimal allocations, we see that the dynamical
one has an initial advantage, yet the static one catches
up and eventually has a slightly smaller final size—such
a phenomenon is seen further in some simulations in the
electronic supplementary material. We want to point
out that the actual influenza transmission coefficients
are highly seasonal, with real epidemics waning earlier
than the simulated ones (which have no seasonality in
transmission coefficients), and the modest gain in the
final size should be further mitigated and perhaps
even reversed.

3. DISCUSSION

We have described a prioritization scheme for an allo-
cation of a sizeable quantity of a vaccine or antivirals
in a stratified population. The scheme builds on an opti-
mal strategy for reducing the epidemic’s initial growth

rate in a stratified mass-action model. The strategy is
tested on the EpiSims network describing interactions
and influenza dynamics in the population of Utah,
where the stratification we have chosen is by age
(0–6, 7–13, 14–18, adults). Under the assumption
that all individuals are susceptible, we have found
that top priority in an allocation of a sizeable quantity
of seasonal influenza vaccinations goes to young
children (0–6), followed by teens (14–18), then chil-
dren 7–13, with the adult share being quite low. The
latter assumption of a fully susceptible population
may be relevant, possibly with the exception of persons
over 50, to the 2009 H1N1 influenza outbreak.

Some of our findings overlap with the papers men-
tioned in the first paragraph of the introduction, in
terms of setting up an optimization procedure to mini-
mize certain quantities related to epidemic’s spread,
and emphasizing the role of children in the spread of
communicable diseases, particularly influenza. At the
same time, our emphasis is different from much of the
previous work, which concentrated on the epidemic’s
final size, and the computational methods (such as a
genetic algorithm or hill climbing) for minimizing it.
As it was noticed before (Dushoff et al. 2007), such opti-
mal strategies are very sensitive to the parameters in
the models. In particular they are not scalable,
namely they depend on the infectivity parameter,
which may be a priori unknown and may change
owing to seasonality. Moreover, other conditions related
to an epidemic’s progression (such as people’s behav-
iour, availability of additional vaccine and other
control measures) affect the final size a great deal and
make a strategy based on the final size minimization
questionable. Our approach, which strives to minimize
the epidemic’s initial growth rate, may provide a more
practical alternative. We believe that our strategy
(which is scalable) is novel in the usage of the network
to estimate dynamically the next generation matrix, the
explicit analytical formula for the optimal coverage
levels and the unified framework it provides for
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Figure 1. Each of the five graphs plots the average cumulat-
ive number of people infected up to each day for a given
vaccination strategy. Black, no vaccination. The other
four graphs represent different allocations with the coverage
level of 20.1 per cent of the population. Blue, random
allocation. Purple, 55 per cent going to adults, 45 per
cent to children (distributed at random). Green, 40 per
cent going to adults, 60 per cent to children. Red, optimal
(dynamical) allocation.
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Figure 2. Each of the four graphs plots the average cumulat-
ive number of people infected up to each day for a given
vaccination strategy. Black, no vaccination. The other
three graphs represent different allocations with the cover-
age level of 26 per cent of the population. Blue, random
allocation. Red, optimal static allocation. Green, optimal
dynamical allocation.
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addressing practical questions such as prioritization for
vaccine allocation in real populations.

We want to point out that the actual optimal pro-
portions for vaccine allocation among the strata
depend on the network used for simulations. Even for
a specific network, these proportions vary with
changing coverage levels, as seen in §2.2, while in rea-
lity, we do not know in advance how many people will
get vaccinated. Moreover, the next generation matrix,
assessed during the exponential growth period of a
simulation, varies somewhat with simulations; this
variability is amplified in some simulations owing to
the spatial aspects in the case of Utah. Thus, the
main result reported here is the development of the
prioritization scheme for vaccine allocation, rather
than the precise numbers reported for the simulated
Utah population. These qualitative results may
create awareness about the vulnerable strata, poten-
tially increasing the total number of vaccinated and,
at the same time, attaining a more efficient distribution
of a vaccine.

We did not assess the next generation matrix statisti-
cally as we did not use averaging over simulations, a
small portion of which do not have a pronounced expo-
nential growth period when an epidemic in Utah does
not pick up soon enough in Salt Lake City. Instead,
we took an exponential growth period of one arbitrarily
chosen simulation and selected the next generation
matrix from it. We have checked that the incidence
vector during the exponential growth period was very
close to a leading eigenvector of the selected next gener-
ation matrix. Moreover, the next generation matrices in
other simulations which exhibited clear exponential
growth were similar to the one chosen. Once the next
generation matrix for the network is assessed, the ‘opti-
mal’ strategies prescribed by it can be tested for
optimality in terms of minimizing the initial growth
rate by simulations (as they were in our paper). If
they perform well (as they do in our simulations), ulti-
mately the original source of their derivation (the next
generation matrix) becomes unimportant.

The dynamical next generation matrices used here
are not rigorously defined. In fact, it is unclear how to
proceed with such a definition for a large but finite
network of significant complexity, such as a real popu-
lation. It may be possible to define a next generation
matrix for an infinite, self-similar network. Self-
similarity means that a finite number of distributions
(such as household/classroom/workplace sizes, school/
work/commuting times) are used to generate an infi-
nite, synthetic population. We have not pursued this
theory as developing a mathematical theory of self-
similar networks probably requires a separate paper,
and the proof of the existence of a next generation
matrix for such a network sheds no light on how to
estimate it for a given network.

We also want to point out that prioritization orders
for the strata resulting from dynamical and static next
generation matrices are different. Simulations have
shown that the vaccination strategy derived using the
dynamical next generation matrix gives a lower initial
growth rate for the epidemic than the vaccination strat-
egy at the same coverage level obtained from the static

next generation matrix. Moreover, in our case, the
dynamical next generation matrix puts more emphasis
on young children (0–6); if prior immunity were incor-
porated (and assumed to be increasing with age), this
conclusion should only be strengthened. All this further
suggests that while contact matrices (Wallinga et al.
2006; Mossong et al. 2008) can suggest good schemes
for allocating interventions (the static matrix allocation
is far better than random allocation), network models—
if realistic—can provide better estimates than those
based on the contact matrix alone, because they incor-
porate the effects of local depletion of susceptibles
owing to the clustering of transmission. We have
found in other recent work that incorporating clustering
leads to changes in the estimates of reproductive
numbers and control efforts required, relative to the
estimates from pure mass-action models. Once again,
the differences are subtle, but suggest that the use of
network information can improve the estimates of
control measures (Goldstein et al. 2009).

Finally, we can compare our findings with the
current influenza vaccination coverage situation. Our
main reference for this is CDC (2008). In 2008, CDC
adopted new guidelines which include all children
aged 0.5–17 in a priority group for influenza vacci-
nations (previously only children 0.5–4 were in that
group, in addition to adults over 50 and persons with
certain medical conditions). No information is available
yet about the effect of this measure on coverage levels.
The 2006–2007 data on influenza vaccination coverage
(before the new guidelines were enacted) are given in
table 1.

Our model/simulations, which rely on the EpiSims
network, suggest a very modest role for adult vacci-
nation in reducing influenza spread, even under the
conservative assumption that all persons are equally
susceptible. If immunity on average increases with
age, as one would expect for seasonal influenza, then
the role of adults should be even smaller. For the
same reason, our prioritization of teens over 7–13
year olds is questionable, though both groups should
receive attention, and the top priority should remain
with preschool children. In that context, we are suppor-
tive of the CDC decision (CDC 2009) to include young
individuals in the priority cohort for H1N1 influenza
vaccination.

This work is supported by the US National Institutes of
Health cooperative agreement 5U01GM076497 ‘Models of
Infectious Disease Agent Study’ (M.L. and E.G.); the
RAPIDD Program of the Science & Technology Directorate,
Department of Homeland Security, and the Fogarty
International Center, National Institutes of Health (J.C.M.).

Table 1. Influenza vaccination coverage levels in 2006 and
2007, for different age groups.

age group/year 2006 (%) 2007 (%)

6–23 months 32.2 NA
2–4 years 26.4 37.9
5–17 years 12.4 17.5
18–49 years 13.4 15.3
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