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Abstract—Sociological models of human behavior can explain
population-level phenomena within social systems; computer
modeling can simulate a wide variety of scenarios and allow
one to pose and test hypotheses about the social system. Here
we model and examine the spread of information through per-
sonal conversations in a simulated socio-technical network that
provides a high degree of realism and a great deal of captured
detail. To our knowledge this is the first time information spread
via conversation has been modeled against a statistically accurate
simulation of people’s daily interactions within a specific urban
or rural environment, capturing the points in time and space at
which two people could converse, and providing a realistic basis
for modeling human behavior during face-to-face interaction.

We use a probabilistic model to decide whether two people
will converse about a particular topic based on their similarity
and familiarity. Similarity is modeled by matching selected
demographic characteristics, while familiarity is modeled by the
amount of contact required to convey information. We report
our findings on the effects of familiarity and similarity on the
spread of information over the social network. We resolve the
results by age group, daily activities, time, household income,
household size and examine the relative effect of these factors. For
informal topics where little familiarity is required, shopping and
recreational activities predominate; otherwise, home, work, and
school predominate. We find that youths play a significant role
in spreading information through a community rapidly, mainly
through interactions in schools and recreational activities.

I. INTRODUCTION

How is social science aided by mathematical models?
Epstein [1] has addressed this question, indicating different
reasons to build social models: mathematical models could
explain (but not predict) the emergence of collective phe-
nomena, or capture qualitative behaviors of phenomena, or
guide data collection by indicating controlling parameters
underlying certain phenomena. Despite the possible outcomes
and the recent interest in modeling social systems it has been
pointed out that in many cases these models lack realism
and do not take ground realities into account [2], [3]. This is
particularly true in the context of socio-physics where extreme
simplifications relegate the application of models and their
results to a narrow range of circumstances.

Two directions for improvement have been described re-
garding social network models and their intricacy. Although
the discussion here focuses on socio-physics and opinion
formation, these directions for improvement can be extended

also in the context of other agent-based models:

Moving beyond static social networks: Despite significant
progress in describing network models, many models still
consider a static underlying network, or a network changing
according to specific update rules that do not change during
the simulation. This static network approximation is useful in
some cases, such as when we consider pure statistical models,
power grid failures, flows of information on communication
and transportation infrastructures. What distinguishes these
cases is the relative timescale of the dynamical process: the
network changes slowly enough relative to the process that
the network can be assumed fixed. Such an assumption does
not hold for many interesting problems. For time-sensitive in-
formation, such as news spreading at school about a sickness,
or updates for a popular product, the speed with which the
information propagates requires a dynamic social network. In
such cases the topology of the network is evolving in time
with agents’ activities, and is affected by the agents’ activities
in response to their perceptions about the global situation, as
demonstrated in the case of epidemic outbreaks in urban areas
[?].

Richer description for agents and their interactions: When
describing agents’ interactions, we are faced with the problem
of compressed dimensions, leading in many cases to an over-
simplification, e.g., randomly assigning properties to agents.
The interaction between agents is oftentimes reduced to the
change of one or two characteristics of an agent, e.g., its
opinion and its influence over other agents. More accurate
agent-based models would be extended in several directions,
considering more characteristics to change, allowing individual
variations of interaction (specifying internal states of the
agents) and considering the strength of links [3]. A richer
model of the individual and interactions between individuals
would ideally involve a multidisciplinary approach, collecting
data and theories of social interaction, individual behavior, and
other relevant phenomena from all fields of inquiry involved,
and avoiding over-simplification.
Our Contributions: In this article, we address the first
point by introducing a dynamic, interaction-based approach
to describe the spread of information through conversations
between pairs of individuals within a social network, captur-



ing and utilizing the specific times of the interactions. We
incorporate the second point to some extent in describing the
interactions between individuals. We concentrate on informa-
tion spread through conversation because of its importance in
many human affairs. One-on-one conversations are examined
here as a mechanism by which information is spread through
the social network. As such, this phenomenon could shape
political opinion, create awareness, alert community members
to danger, or impact market behaviors. It also exhibits a
resemblance to epidemic processes, allowing us to utilize
much of our group’s prior work in this area.

The diffusion of information in our study is based on two
observations: i) two people are more likely to converse if they
are similar to each other, a correspondence that we estimate
based on demographic information about each person; ii) two
people are more likely to broach a topic given sufficient
time together, and talk about certain topics requires greater
familiarity between people. These are two basic assumptions
in social science and diffusion of innovation theory that allow
the distinction between strong and weak ties between people.
Since our agent-based model takes into account, in great detail,
the mobility and the activities of an agent, the social network
changes every minute and possesses characteristics different
from theoretical ones. Also, the mechanisms by which we
construct the population help to ensure that we are not
lacking in detail and accuracy in the models of the individuals
themselves or the demographics of the region under study.

In this work, our particular contribution is in the interaction
model used, as well as the study and analysis we performed
of this interaction model and its outcomes. Our approach can
thus be considered as responsive to all the major points of
improvement we identified. Numerical simulations for this
study is performed using the EpiFast simulation engine [15].
EpiFast was developed in our research group to simulate
epidemic outbreaks and propagation in large urban or rural
contexts, based on community models formed from merging
together sets of data from different sources, using a method
that provides anonymous, synthetic individuals but a popula-
tion statistically indistinguishable from the real one.
Paper Outline: In Section II, we summarize prior work
on homophilic interaction between people, the strength of
links and rumor spreading. Section III describes our methods,
including the model of information spread over dynamic social
networks via conversations, a description of EpiFast and our
modifications of it, and the social network and community
that we study. The experiments we conduct, the results, and
analysis are presented in Section IV. We conclude and discuss
future directions in Section V.

II. RELATED WORK

The study of information spread and propagation of ideas,
and influence in a social network has a long history in the
social sciences [?], [?], [4]. With the advent of computers
with sufficient storage and computational power, this network
diffusion process has become an emerging research area in
computer science [?], [?], [?], [?], [7], [8]. The research

questions that can be answered include the understanding of
the extent to which people are affected by friends, the extent
to which word-of-mouth information and rumors spread, and
ultimately how the dynamics of adoption are likely to unfold
within the underlying social network.

Rogers, in his book [4], develops a systematic analysis
of all the processes related to the diffusion of information
(or innovations) in a social network. He distinguishes the
particular roles played by agents in the network according
to their positions, elucidates the roles of homophily and
heterophily, and shows imitation as the principal mechanism
for adoption. The theory is supported by a collection of in-field
experience.

Nekovee et al. have modeled rumor spreading where the
population has been divided in three categories: ignorants,
spreaders, and stiflers, using a model similar to an epidemio-
logical one [5]. Contact between an ignorant and a spreader
could increase the number of spreaders, and contact between
a spreader and a stifler increases the number of stiflers, with
some probabilities. They performed a systematic study of
threshold properties of the process on different classes of static
networks.

One of the attempts to consider time-evolving networks and
rumor spreading was the work by Agliari et al. [6]. In their
model, the agents are in a square lattice (grid) and interact with
each other through their random movements within the region.
They showed that, starting from a single informed agent, the
time it takes for information to reach the entire population
has a power law distribution with respect to the size of the
population and the size of the grid, and that the average degree
of information depends on the size of the grid.

Richardson and Domingos [?] studied the network diffusion
process in the context of viral marketing to determine a
cost-effective marketing plan. They present a probabilistic
viral marketing model and apply the model on a knowledge-
sharing web site, Epinions. Further, they posed a well-defined
algorithmic problem: which set of a given number of in-
dividuals (vertices) in a social network should be seeded
with the product information (or the idea) so that it will
be adopted by a large fraction of the network, where the
estimated extents to which individuals influence each other
are given. Kempe, Kleinberg, and Tardos [7] studied this
problem further and showed that it is NP-hard. They also
presented a greedy heuristic-based approximation algorithm
with performance guarantee 63% of the optimal. Randall et
al. [8] studied the feedback effect of social ties and similarity
and their interactions using data from two online communities.
They also examined prediction of an individual’s behavior
using similarity and the social network formed based on
previous interactions and observed that people encounter each
other due to overlap in their interests (similarity). Interestingly,
they found the consequences of these encounters can lead to
further similar interests that are visible many months later.

Due to the difficulty in collecting data about an individual’s
social network and activities, most previous work uses less
complicated and less realistic social networks than we have



used here: online community networks [?], [8], static networks
[4], or networks constructed from simple models [6]. We
therefore study network diffusion processes over a different
sort of network: a large-scale social network modeling a
specific locale—its roads, its buildings, its households, its
people–and in which temporal information about persons’
whereabouts is maintained and used.

III. THE MODEL

Likeness, or the homophily/heterophily of individuals and
the existence of weak links in a network are all recognized
as fundamental factors for diffusion of informations or idea
in a social network [9]. Homophily represents gradations
of similarity between two individuals; heterophily represent
gradations of difference. In general, two kinds of homophilies
are distinguished [10]— status homophily related to informal
or formal social status, and value homophily based on beliefs,
values and attitudes. Status homophily tends to stratify so-
cieties into groups, mostly according to socio-demographics
characteristics; value homophily is related to internal status.
A well accepted assumption is that homophily enhances
communication, making it more effective, and at the same
time communication increases homophily, or the degree of
similarity. The homophily principle is a well accepted principle
within the scientific community, and it has been validated in
different surveys.

In order to have diffusion in a network, a certain degree
of heterogenity among individuals should be present. In a
society where communication is restricted only to self-similar
individuals, the spread of information is restricted; consider for
example the restrictiveness of the caste system. We can classify
the links formed by highly similar agents as strong links,
and those formed by dissimilar agents as weak links. Weak
links are important because information flows along weak ties.
Consider the contrary: information cannot migrate from one
group to another without conversations between heterogeneous
contacts. Thus, in a highly restricted group everybody shares
the same amount of information, and a prime channel for
gaining new information is an individual’s more dissimilar
acquaintances: they usually have information that individual
does not already possess. This basic mechanism has been
formulated by Granovetter in [11], and classifies the strength
of a link based on the frequency it occurs. Weak links are then
links that seldom appear in the network but allow information
to flow between distant/dissimilar groups. If these links were
removed from the network the result would be a disconnected
set of cliques.

We consider diffusion of information via a simulation of
conversation within a realistic social environment as a proxy
to reality. The social environment includes daily activities of
each individual: where he/she goes, when, with whom he/she
interacts, and for how long. We consider an individual who
has been informed, and continues to spread the information
in the network. The probability that communication can take
place between individuals is biased by the following factors:

• Homophily degree and social influence: Each individual
is associated with a vector of characteristics which is
compared with the neighbor’s characteristics. This is
reminiscent of the Axelrod model [?]. We consider in this
experiment only demographic information. This choice
is related to the data in possession and also because
values, beliefs and attitudes can be derived from this set
of information.

• Temporal order and spatial proximity: Only agents
who are colocated can communicate. We do not consider
the use of cell phone or other communication devices.
The temporal order is derived from the individual’s daily
activities and they continuously interact with others only
at activity locations, in the order defined by their activity
schedule, at particular times when the activity is being
performed, and for durations of the activities. For every
edge between individuals, we associate a liveness func-
tion which reflects the contact time and duration when
the edge is active, determined by the activities of the
individuals.

• Duration of contact: Another important characteristic
influencing the effectiveness of communication, is the
duration of contact—longer contact durations imply a
higher probability for information transmission. Contact
duration also quantifies the strength of the link.

In this paper, we assume that once an individual is informed,
he/she stays informed for the rest of the simulation. Further, a
newly informed individual can spread the information to other
uninformed people immediately.

A. Social Network Generation

In this section, we provide a detailed description of the
social network we create and use for this study. The steps
we use to generate the social network follow:
Step 1: Creation of a synthetic population. A synthetic pop-
ulation consisting of individuals and households is generated
from census data. Locations are assigned to each household
according to the census bloc information and are geolocated
using the NavTeq street data. Demographics are assigned to
each individual in the population based on household data.
Step 2: Creation of activities for the individuals. Using the
data from the activity survey, a sequence of activities—a
time ordered daily schedule of activities—is associated and
classified according to household demographics. Each activity
sequence is then associated to a member of the household
subject to the member’s demographics. Each activity in the
sequence is denoted with a start time and duration for the
activity, location where the activity is performed and an
activity type (work, shop, school etc.). Activity locations
are again derived from the survey based on information
on distance travelled for particular activities. Each location,
based on activity type is assigned within a certain distance
from the household location. An individual’s demographic and
the attractors associated with locations are used to assign a
location for the individual’s activity.



Step 3: Creation of the social network. The social network is
created by using the interactions of the synthetic population
at the activity locations. We use the activities to determine
the occupancy of each location and model sub-locations to
model the interactions within each location. The number of
sub-locations is determined by the occupancy of the location
at every unit of time and we assume a certain occupancy
for every sub-location (for example, 25 individuals per sub-
location). The schedules specify the start and duration of
contact for each link that is formed between individuals in
each sub-location. Currently, we are assuming that all the
individuals within the same sub-location form a clique.

Although, we can create different social networks by vary-
ing the number of individuals in each sub-location, this is
not the focus of this paper. Since our model considers that
interactions occur when individuals are co-located in each
sub-location, the synthetic activities cause a side-effect. We
have long durations during late evening when all house-
hold members can potentially interact for extended durations,
sometimes from 11 PM untill 6 AM. This is a result of
our inheriting network construction methods that model such
things as aerosolized pathogens, which can be transmitted from
person to person while they sleep; however, people do not
converse while they sleep. Ignoring this discrepancy would
create unrealistic information spread occurring at odd times
of the day. Therefore, we add a model of sleep intervals for
the synthetic population to capture this sleep effect as outlined
in [12]. Individuals have particular cyrcadian periods, with
different sleep times and duration and they depend on factors
such as age, genetics, job, and social factors. Sleeping time
and duration are considered as independent characteristics and
are functions of age and sex. Links are considered inactive if
at least one of the two individuals is sleeping.

B. Modeling Interactions

Based on their activity profiles, if two individuals are
present at the same place at any time, then a time-dependent
interaction exists between the two. If, however, there is no
common location, then no information is passed between the
two individuals. Given that two individuals coexist at some
time, the probability that an informed individual conveys in-
formation to a receptive individual is determined by similarity.
Although, the synthetic population is endowed with all the
demographic characteristics provided by Census, just three of
them are used to quantity the similarity between two individu-
als: income and size of the household in which the individual
resides, and the individual’s age. The choice has been made
because all of the other demographic characteristics are related
to these three as a linear combination, and also because it has
been found that reaction to external information (i.e., for health
related issues) depends on an individual belonging to these
groups [13], [14]. For each pair of interacting individuals, the
probability p of information transfer is specified as 1/3 for
each parameter that they have in common. The weight of an
edge wij between nodes i and j of the network is the sum
of the probabilities contributed from the 3 parameters; i.e.,

wij =
P3

k=1 pk. For example, if we consider the interaction
between a parent and child of the same household, then
wij = 2/3. If two individuals share the same group for all
three parameters, then wij = 1. Two individuals in different
groups for all three parameters never transfer information,
regardless of the number of times they interact, and hence
wij = 0.

C. The Simulator
To study information spread in the social network created

as outlined above, we use a modified version of EpiFast [15].
EpiFast is a discrete time parallel simulator and implements
the Reed-Frost [16] model of diffusion, with four states
corresponding to the epidemiological states of susceptible,
exposed, infectious, and removed of the SEIR model. The
epidemiological states (used for human epidemics) become
receptive, incubating, transmitting and removed, respectively,
for studying information diffusion. For this study, we only
use the receptive and transmitting states; i.e., once a receptive
(uninformed) node receives the information, it retains the
knowledge and can convey it immediately through all of its
interactions for the remainder of the simulation.

In the context of information dissemination, a couple of
important aspects need to be considered and required modifi-
cations to the original EpiFast implementation. EpiFast is re-
quired to incorporate time-dependent edge profiles, resulting in
a dynamic network topology. Secondly, receiving information
from any source takes a certain amount of time. For example,
it takes individuals to be interacting for a certain duration
before conveying information. We model this by considering
an interaction threshold (referred as ndt in the rest of the
paper). EpiFast was modified to include this feature for the
study. For example, the effect of ndt = 40 minutes, is that
interactions between informed and uninformed individuals that
lasts 40 minutes, do not propagate information along that edge,
even with wij = 1.

IV. EXPERIMENTS AND RESULTS

In this section, we outline the details of the experimental
evaluations for studying information dissemination in realistic
environments. The use of Epifast allows us the flexibility to
perform detailed analysis of the rumor spreading process—
demographic stratum, time and current activity when an in-
dividual is informed. Further, using such simulation studies,
we can determine the effect when a certain group(s) are
better informed in comparison with others. We follow a top-
down approach in describing the results. First, we present the
overall spread characteristics. Second, we present the results
of the information flow in different groups (according to age,
household income, and size). Third, we present the importance
of each activity location type on the spread process. Finally,
we evaluate a special case where we inform a certain group,
youngsters (age 0-18 years) to study the activity locations
where they acquire the information. The same kind of study
can be conducted for other groups, but this analysis is not
presented in this paper.



Fig. 1. Number of links created as a function of time during one day, showing
three differeint minimum contact duration thresholds, ndt/10.

A. Experiment Setup

Synthetic Population: We chose the population of Mont-
gomery County in Virginia for study. The dataset for the
county contains 74,376 individuals. The population consist of
almost 70% adults and young adults (age between 19 and
64 years) while younsters constitute 20% of the population.
Households mostly consist of couples or couples with just one
child. About 66% of the households have annual incomes of
at most $50,000.

Fig. 2. Cumulative degree distribution (log-log scale). The degree of each
node is the number of total contacts during a day.

During a day of activity almost 1,800,000 links are created,
during which conversations can occur. Most of them last at
most one hour, and almost 80% of the total are created while

people are shopping or doing recreational activities. Figure 1
shows the number of links existing at different times during the
day. We notice that at the beginning of the day few links are
present, while most of the links are active during working and
school time (9 A.M. to 3 P.M.). Due to the different activities
many links are still alive at midnight. The effect of variation
in ndt is a reduction in links from 9 A.M. till midnight, but
it does not qualitatively change the behavior. The effect of
modeling sleep causes a reduction in the duration of night
time links. So, when ndt value is increased, the number of
night time links reduce.

TABLE I
MAJOR DEMOGRAPHIC STRATA

Age % Hh Income % Hh Size %
0-18 20 0-25 k 33 1 11

18-35 39 25-50 k 30 2-3 52
35-64 32 50-75 k 20 > 4 37
>64 9 >75 k 17

The cumulative degree distribution is shown in Figure 2.
The degree for an individual is the number of co-located
people in the sub-location. The cumulative degree clearly
follows a power law distribution.
Population Stratification: We divide the population into
strata based on the major demographic factors: age, household
income and household size. For each factor, we consider a
value range to establish the similarity between two potential
conversants. Table I (Hh refers to household throughout the
paper) shows the value ranges for each factor and group size as
a percentage of the population. We combine the value ranges
across all demographic factors to derive 48 different groups.

Fig. 3. Final informed size probability among different groups with different
seed conditions.

Study Description: We define outbreak and outbreak size
as the extent to which information spreads in the network.
We observe this as an outcome of selecting certain param-



eter values. A seed indicates an individual or individuals
who initially acquire the information from mass media, or
other means. We choose the seed randomly (oblivious to
the group the individual belongs to), or seed an individual
from a particular group. The experiments are conducted by
considering a normative day—activities remain the same for
all days—with links in the locations randomized for each
day. The discrete time unit (tu) of 10 minutes is used in
EpiFast for this study (six time increments in a simulation
represent an hour). All simulations started at midnight, and
most simulations were 3 days in length, or 432 tu. The activity
profiles obtained by Step 2 in Section III-A were discretized
into 10 minute intervals, and interactions of 5 minutes or less
were ignored. Hence, the discrepancy can be as great one
tu. The experiments are performed with varying ndt values
of 1, 10, 20 tu corresponding to 10, 100 and 200 minutes,
respectively. We repeat the simulations for 100 iterations; i.e.,
for a set of initial conditions, 100 diffusion processes were
executed for sampling purposes. The process of information
diffusion from an informed node i to an uniformed node j,
at a particular time t in the simulation, requires the following
conditions be met: (1) the edge weight wij is greater than a
randomly generated number between 0 and 1; (2) the edge
(i, j) exists at time t; and (3) the duration of the current
interaction is greater than or equal to the ndt value of node
j. If any of these conditions is not met, then the information
is not transfered.

B. Results
Effect of changing seed and ndt on final informed size. Figure
3 shows the final outbreak size for different iterations for
varying ndt and seed conditions. The line styles indicate the
ndt values and line color indicates the seed conditions. Green
indicates a randomly selected seed; blue corresponds to a seed
selected from adults, and red indicates a youngster selected as
the initial infected.

When ndt = 1 the variation of the outbreak size is
independent of the seed—in all cases the entire population
is informed. Increasing ndt causes the following effects: (1)
raises the variability of the final outbreak size across iterations,
(2) amplifies the difference between seeds, and (3) changes
the probability that the information spread even takes off. The
variability can be ascribed to choosing 1 informed individual
initially and is not observed in the case for ndt = 1. Increasing
ndt splits the social network (Figure 1 shows link numbers for
different ndt), reducing the probability that the spread even
takes off in some cases. For example, when a random seed
(oblivious of the group) is chosen with ndt=20, this probability
is approximately 0.4.
Effect of ndt on the information spread. Figure 4 shows the
new infections for different values of ndt over a three day
period. Even though the overall informed numbers are the
same, there is considerable variation within each of the three
runs across all iterations (due to single seed). For ndt = 1,
clearly, most people are informed during the first day with the
peak during the second half of the day. This number decreases,

a smaller peak is observed during the second day and, few
people are informed during the third day.

Figure 5 shows the number of newly informed people
with respect to the activity type. Increasing ndt changes the
way people receive information due to the pruning of weak
links. When ndt = 1, a majority of people are informed
while recreating, shopping or at home (Figure 5(a)). Increasing
ndt causes information spread at school, home, and work to
predominate. Further, increasing ndt shifts the peak of newly
informed to Day 2 and 3, and Figures 5(b) and 5(c) show
this effect at various locations. Increasing ndt prunes weak
links formed at recreation and shopping locations, resulting
in a smaller subset of people informed during day 1. These
people get informed later—on Day 2 or 3—at home, work and
school, where ties are strong.

Figure 6 shows the fraction of people informed in each
demographic factor as a function of time. For ndt = 1 all the
people present within the value range for each demographic
factor are informed after ⇡ 40 hours. Further, age and Hh
income show a similar trend for all value ranges, whereas
Hh size = 1 has a slower spread. Similarity across value
ranges in Figure 6(b) indicates that Hh income does not play a
differentiating role in the process. For ndt = 10 or ndt = 20,
there are still some uninformed individuals in all value ranges.
In Figure 6(a) the spike in the spread for youngsters on the
second and third day is due to interaction in schools and a
reservoir of informed students built up during the previous day.
A similar spike is not observed in Figure 6(b) because of the
equal distribution of youngsters across varying income ranges.
The effect of the distribution of youngsters in the Hh with size
> 1 is the origin of the disperate spreading characteristics
(Figure 6(c)).

Effect of activity location on information spread in youngsters.
As seen from Figure 6(a), youngsters play a important role
in information flow. Figure 7 shows the fraction of informed
younsters at different activity locations. For youngsters, com-
munication occurs mostly at school, independent of the ndt
values. So, more youngsters get informed at school than
at home. This is due to the fact that the probability of
interaction with similar individuals is higher, and the duration
of interaction is long enough to spread the information (strong
ties).

V. CONCLUSIONS

In this article, we have presented an interaction-based ap-
proach for studying the spread of rumors in a synthetic pop-
ulation under realistic conditions. Individuals in the synthetic
population are endowed with demographic characteristics and
a daily routine that creates a dynamic social network. We
develop a interaction model based on similarity between
communicating agents and the duration of contact. While the
former allows us to model the homophily principle, the latter
can be related to the importance/strength of the links.

We make the following conclusions from the study we
present in this paper. If the information can be transmitted



(a) ndt=1 (b) ndt=10 (c) ndt=20

Fig. 4. Comparison epicurves for different values of ndt=1,10,20

(a) ndt=1 (b) ndt=10 (c) ndt=20

Fig. 5. Newly informed people distributed according to activity

(a) Age (b) Household Income (c) Household Size

Fig. 6. Fraction of informed people in each value range of all the demographic factors (age, Hh income and Hh size.)



Fig. 7. Informed youngsters distribution according to activity

during a short conversation (say, with duration 10-20 min-
utes), recreation and shopping are activities where information
spread is greatest. Otherwise, locations having stronger ties,
such as home, work, and school, predominate the other loca-
tions in spreading the information. We also find that youngsters
get informed mostly at school.

Our future works include the study of propagation of spe-
cific types of information, such as fashion, political opinion,
and health related issues. The nature of information can affect
the dynamics of adoption by the agents. For example, political
opinion may be important to adults, whereas fashion or product
usage may be more appealing to youngsters.
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