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Computational 
Epidemiology in a 
Connected World

I
n 1854, a physician named 
John Snow helped end a 
deadly cholera outbreak in 
London’s Soho district. The 

bacterium that causes cholera had 
not yet been identified, and very little 
was known about how the disease 
spreads. 

Snow gathered information about 
the local infrastructure, people’s 
sanitary and social habits, and 
demographic data such as residents’ 
profession, age, and socioeconomic 
status and determined that the most 
likely cause of the outbreak was water 
from a particular pump. He then per-
suaded the authorities to remove the 
pump’s handle, preventing further 
spread of the disease.

Snow’s genius lay in his ability to 
combine all the social, economic, 
geographical, and biological data 
available—though often limited and 
anecdotal—to infer the mode of 
transmission as well as the source 
of the outbreak. His achievement is 
widely considered one of the found-
ing events of modern epidemiology.

Snow’s essential insight, that 
stopping an epidemic requires under-
standing its socioeconomic context, is 
even more relevant in today’s world. 

The medical and public health com-
munities have made tremendous 
strides to detect, respond to, and 
control epidemics—the worldwide 
coordinated efforts that contained 
the 2002-2003 SARS virus are a 
testimony to this. Nevertheless, 
pandemics such as the recent H1N1 
influenza will continue to occur, 
exacerbated by global trends such as 
increasing urbanization, travel, and 
immunocompromise. 

Epidemics place a huge cost upon 
society. The 1918 f lu pandemic 
caused some 50 million deaths world-
wide, and it is estimated that a similar 
pandemic today would result in 150 
million deaths and cost $4.4 trillion.

Epidemiologists and computer 
scientists are developing new 
data-driven, high-performance-com-
puting-powered inference engines 
to model the socioeconomic context 
and strategies necessary to counter 
disease outbreaks.

EPIDEMICS AS COMPLEX 
SYSTEMS

Infectious diseases often spread 
throughout social networks as those 
who are infectious come in contact 
with susceptible individuals. To pre-

dict an epidemic’s course, researchers 
must therefore track the health status 
as well as the movements and interac-
tions of people as they carry out their 
daily activities. 

Social contact networks, however, 
tend to be highly dynamic. Several 
aspects of this change are endog-
enous—people’s daily schedules are 
affected by, among other things, the 
epidemic itself. If a person is ill, he 
might decide to stay home from work; 
conversely, if he fears contracting the 
disease at work, he may decide to stay 
home too. These behavioral adapta-
tions alter social contact networks 
and in turn impact the epidemic’s 
progress.

Pharmaceutical interventions, 
such as antiviral drugs and vaccines, 
and public policy responses, such as 
school closures and social distanc-
ing, likewise affect social contact 
networks. Policies must maintain 
a delicate balance between disease 
control on one hand and normal 
societal functioning on the other. 
Overreactive policies reduce public 
confidence and compliance, while 
delayed actions increase the spread 
of the disease. Thus, an epidemic is 
not simply a diffusion over a network, 
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but a coevolving system of multiple 
networks, dynamic processes (spread 
of disease, fear, and so on), and indi-
vidual behavioral adaptation.

Once the number of infected indi-
viduals crosses a certain threshold 
that depends on complex sociotech-
nical and disease-specific variables, 
it is virtually certain an epidemic 
will occur. Effective epidemiological 
control therefore requires a rapid but 
pragmatic response, given limited and 
highly uncertain information.

For example, the first H1N1 case 
was diagnosed in Mexico on 17 March 
2009, though there is evidence that 
the so-called “swine flu” virus had 
been spreading several months 
before that. By the end of March, the 
disease had already appeared in Cali-
fornia. In April, world public health 
officials recognized the outbreak’s 
severity, though data about transmis-
sibility and mortality rates was still 
unavailable. 

Mexico City authorities began clos-
ing down schools and public places, 
as did officials in Texas. Despite these 
efforts, H1N1 spread rapidly. Epidemi-
ologists issued their first evaluation 

of the outbreak’s seriousness in early 
May, and the following month the 
World Health Organization declared 
a global pandemic. Thus, by the time 
researchers had hard data about 
H1N1, people throughout large parts 
of the world were already infected. 

Most pandemic responses thus 
focus on mitigation rather than pre-
vention. However, school closings 
and other such efforts can often 
have unforeseen consequences. For 
example, when schools close, parents 
might simply send their children to 
daycare instead, which does not serve 
the intended goal of reducing contact 
between children.

This combination of complex 
evolving social interaction, limited 
and delayed information, and unfore-
seen consequences of interventions 
makes computational epidemiology 
among the hardest problems in sci-
ence and policy.

TRADITIONAL APPROACH
Mathematical epidemiology has 

traditionally relied on rate-based 
differential-equation models. In this 
approach, researchers partition a 

population into subgroups based on 
various criteria, such as demographic 
characteristics and disease states, and 
use the models to describe disease 
dynamics across these groups.

One of the earliest analyses was 
by R. Ross, who studied the spread of 
malaria in the late 19th century. W.O. 
Kermack and A.G. McKendrick further 
developed this technique in the 1920s 
and 1930s to investigate short-term 
diseases like measles and influenza. 
They showed that disease dynam-
ics are characterized by a parameter 
R0, the basic reproduction number—
defined as the number of secondary 
infections caused by a single infective 
into a wholly susceptible population. 
If R0 < 1, the infection will die out; if 
R0 > 1, an epidemic will occur. 

This approach has been tremen-
dously successful in informing public 
health policy. Nevertheless, a poten-
tial weakness is its inability to capture 
the complexity of human interaction 
and behavior.

MEASURE-PROJECT-
INTERVENE CYCLE

Effective epidemiology is not just 
about prediction, but also about 
anticipation and adaptation. The dif-
ference is akin to that between golf 
and basketball. A golf course is essen-
tially static, and golfers must carefully 
evaluate the prevailing conditions 
such as wind speed and direction, as 
well as the topography, before hitting 
the ball. Importantly, the act of hitting 
the ball doesn’t change the course 
conditions. In basketball, on the 
other hand, each player is constantly 
in motion, and decisions about pass-
ing, shooting, and other movements 
depend on all the players’ current and 
anticipated future actions.

Epidemic planning and response 
similarly does not involve measur-
ing the disease conditions and then 
acting once. Rather, as Figure 1 
shows, there is a continuous measure-
project-intervene cycle not unlike the 
sense-evaluate-act cycle of a cognitive 
agent.
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Figure 1. Measure-project-intervene cycle. Epidemiologists use data gathered from 
surveillance to seed computer simulations of an epidemic’s progression. They then 
use these simulations to evaluate a range of possible interventions and establish 
intervention priorities. Data from intervention outcomes in the real world is then 
gathered for the next cycle.
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models for representing and 
evaluating interventions, public 
policies, and individual behav-
ioral adaptations.

The biggest strengths of the SIE 
approach are its scalability and its 
extensibility. An epidemiologist 
using the system can easily design 
a new intervention and run the cor-
responding simulation for a large 
urban area like Los Angeles in min-
utes. From data analysis she can find 
critical pathways as well as assess 
the indirect effects—for example, the 
economic impact—of certain policies.

SIMDEMICS
The Network Dynamics and Sim-

ulation Science Laboratory (NDSSL) 
at Virginia Tech’s Virginia Bioin-
formatics Institute has developed 
Simdemics, an integrated modeling 
environment that aids state, local, 
and federal public health officials 
in pandemic planning, response, 
and control. Simdemics’ computer 
models embody all four SIE compo-
nents. NDSSL team members are also 
developing Isis, a service-oriented 
computing environment that lets 
users seamlessly access Simdemics 
using today’s Web technology.

Researchers validate and verify 
complex software environments such 
as Simdemics using composite valid-
ity and adequacy. Standard validation 
techniques based on matching histor-
ical data are usually not meaningful 
in this context.

We have used Simdemics to 
explore numerous impor t a nt 
research questions. For example, a 
recent study of the socioeconomic 
impact of various intervention 
strategies aimed at controlling an 
influenza-like illness showed that 
a combination of school closures, 
individual context-based behavioral 
adaptation, and targeted antiviral 
distribution can reduce the disease’s 
overall impact by 87 percent and 
income loss by 82 percent as com-
pared to the base case (C.L. Barrett 

INTERACTION-BASED 
APPROACH

The measure-project-intervene 
cycle motivates an interaction-based 
approach that involves accurate mod-
eling of social interaction networks 
and disease dynamics (C.L. Barrett, S. 
Eubank, and M. Marathe, “An Interac-
tion-Based Approach to Computational 
Epidemiology,” Proc. 23rd Nat’l Conf. 
Artificial Intelligence, vol. 3, AAAI Press, 
2008, pp. 1590-1593). This approach 
combines endogenous representations 
of individuals with explicit interactions 
among them to generate and capture a 
disease’s spread across the social inter-
action network. 

The interaction-based approach 
goes beyond traditional mathemati-
cal modeling techniques, which 
assume homogeneous interactions 
within each population segment. It 
also raises new technical difficulties: 
It is impossible to obtain accurate, 
detailed, time-varying, urban-scale 
social contact networks by simple 
measurement. Nevertheless, recent 
advances in computing technology, 
machine learning, data mining, and 
network science make it possible to 
develop new approaches for produc-
ing reasonable estimates of such 
networks.

We have developed one such 
computational approach that uses 
synthetic information environments. 
An SIE consists of 

a statistical model of the popu-
lation of interest, known as a 
synthetic population;
an activity-based model of the 
social contact network;
models of disease progression; 
and 

The measuring step involves 
gathering surveillance data from 
healthcare agencies. Usually, only 
partial information is available from 
such agencies, leading to Bayesian 
inference problems in determining 
the epidemic’s source and current 
state.

Unfortunately, the systems of 
interest have extremely large state 
spaces—a social contact network 
modeling a moderate-size city with 
a million inhabitants must efficiently 
process a state space with 21,000,000 

states. This is clearly infeasible and 
motivates further research on graphi-
cal models for Bayesian inference 
that can take the problem semantics 
into account to reduce the effective 
state space. 

An alternative approach uses 
agent-based models as part of the 
predictive filter for situation assess-
ment. The projection step involves 
doing hundreds of simulations of 
possible intervention scenarios to 
find the one with the highest likeli-
hood of steering the system in the 
right direction. The interventions 
are adaptive as a result of constant 
behavioral changes and thus are 
naturally represented as Markov 
decision problems. 

Huma n exper t s design the 
intervention scenarios, choose 
the initial conditions, and incor-
porate the noisy, delayed, and 
incomplete surveillance data. The 
computational system provides 
a quantitative assessment of each 
strategy’s strengths and weaknesses. 
Policymakers use this assessment in 
conjunction with various complex 
socioeconomic constraints to select 
and implement the final strategy. 
The measure-project-intervene cycle 
then continues.

Recent public health policies and 
their modifications pertaining to 
school closures and vaccine allo-
cations in the context of the H1N1 
outbreak are good examples of this 
model-based reasoning process at 
work.

The biggest strengths of 

the synthetic information 

environment approach 

are its scalability and its 

extensibility.
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trolling them requires considerable 
experience and a willingness to com-
promise, necessitating increasingly 
sophisticated models and computa-
tional support for years to come. 
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A 
century and a half after 
Snow helped found the 
science of epidemiology, 

his ideas apply even more broadly. 
Today policymakers must minimize 
the economic and social impact of an 
epidemic as well as the disease itself. 
Epidemics are complex systems, 
and as such their behavior is often 
unintuitive. Planning for and con-
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