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Abstract

Background: Confirmed H1N1 cases during late spring and summer 2009 in various countries showed a substantial
age shift between importations and local transmission cases, with adults mainly responsible for seeding unaffected
regions and children most frequently driving community outbreaks.

Methods: We introduce a multi-host stochastic metapopulation model with two age classes to analytically
investigate the role of a heterogeneously mixing population and its associated non-homogeneous travel behaviors
on the risk of a major epidemic. We inform the model with demographic data, contact data and travel statistics of
Europe and Mexico, and calibrate it to the 2009 H1N1 pandemic early outbreak. We allow for variations of the
model parameters to explore the conditions of invasion under different scenarios.

Results: We derive the expression for the potential of global invasion of the epidemic that depends on the
transmissibility of the pathogen, the transportation network and mobility features, the demographic profile and the
mixing pattern. Higher assortativity in the contact pattern greatly increases the probability of spatial containment of
the epidemic, this effect being contrasted by an increase in the social activity of adults vs. children. Heterogeneous
features of the mobility network characterizing its topology and traffic flows strongly favor the invasion of the
pathogen at the spatial level, as also a larger fraction of children traveling. Variations in the demographic profile
and mixing habits across countries lead to heterogeneous outbreak situations. Model results are compatible with
the H1N1 spatial transmission dynamics observed.

Conclusions: This work illustrates the importance of considering age-dependent mixing profiles and mobility
features coupled together to study the conditions for the spatial invasion of an emerging influenza pandemic. Its
results allow the immediate assessment of the risk of a major epidemic for a specific scenario upon availability of
data, and the evaluation of the potential effectiveness of public health interventions targeting specific age groups,
their interactions and mobility behaviors. The approach provides a general modeling framework that can be used
for other types of partitions of the host population and applied to different settings.
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Background
The data collected during and after the 2009 H1N1 pan-
demic has contributed to achieve major insights regard-
ing key factors of the transmission dynamics of the
novel strain of influenza. Two aspects emerging from
surveillance and serological data during the initial phase
of the outbreak became strikingly clear: (i) international

movements of passengers by air travel drove the spatial
dissemination of the pathogen at the global level [1-3],
and (ii) initial local epidemics mainly occurred in
schools [2,4-7]. Country surveillance data from summer
2009 [8-13] show a dramatic difference in the age distri-
butions of imported cases and indigenous cases, with
imported cases on average older than the ones generated
by local transmission (see Figure 1A). This result
strengthens the previous observations and highlights the
presence of an age shift between the seeding events
established by travelers from affected areas – mainly
adults – and the local outbreaks mainly occurring among
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school-aged children. Travel statistics indeed confirm that
the vast majority of passengers flying are aged ≥18 years
(see Figure 1B).
The role of children or adults in driving a major epi-

demic can be assessed with a simplified modeling ap-
proach expressed into two age classes and quantifying
the probability of temporary extinction of seed individ-
uals in each class depending on their mixing patterns
[14]. Here we aim at fully addressing the interplay be-
tween the two factors emerged as empirical evidence
during the initial outbreak of H1N1 pandemic – namely,
age-specific seeding events and age-specific epidemic dy-
namics – by considering a spatially explicit model that
integrates the mobility patterns of flights connecting dif-
ferent populated areas, as well as age-dependent travel
behavior in addition to age-specific mixing. We intro-
duce a multi-host stochastic metapopulation model that
includes heterogeneous features in: the spatial structure
of the population; the travel behavior of individuals de-
pending on their age; the corresponding mixing patterns.
We assume a simple two age-groups classification as this
allows the analytical treatment of the model to obtain the
expression of the conditions for a major epidemic in terms
of the age-specific contacts and travel features. By explor-
ing theoretical contact matrices with varying assortativity
levels (i.e. within-group mixing), we assess the role of
assortativity on the risk of a major epidemic and compare
it to scenarios informed with estimates from the H1N1
pandemic. We find that the assortativity observed in real
data tends to drive the system to extinction, and is
counterbalanced by the heterogeneity of the air mobility
network structure, by the travel behavior of adults and by
the relative proportion of contacts established by adults,
all aspects that favor the virus spread. Through a system-
atic exploration of the role of the various ingredients con-
sidered in the system, the presented results allow the risk
assessment analysis of a specific epidemic scenario and
can be extended to other infectious diseases where the
population partition may play a relevant role.

Methods
Demographic and travel data
We consider a metapopulation framework to simulate
the spread of an infectious disease across subpopulations
of individuals through mobility connections. The ap-
proach is generically applicable to various real-world
systems and here we focus on modeling an emerging in-
fluenza pandemic across urban areas through air travel.
We consider the distinct cases of 8 countries in Europe,
and Mexico, for which data needed to inform the model
are available.
The network specifying the coupling between differ-

ent populations in real systems is in many cases very

Figure 1 Imported vs. indigenous H1N1 cases and age-specific
travel statistics for various countries. (A) Fraction of indigenous
cases and of imported cases during the initial phase of the H1N1
pandemic outbreak in the [0–19] years age class, calculated from
surveillance data for the following countries: The Netherlands [8],
Belgium [9], UK [10], France [11], Japan [13], Italy [12]. (B) Percentage
of air-travel passengers in the younger age classes for a set of
airports around the world. The age classification used by the
demographic statistics vary across countries (Helsinki1, Finland;
Teheran3, Iran; Los Angeles2, USA; Amsterdam5, The Netherlands;
Heathrow4, Gatwick4, Stansted4, Luton4, UK; Venice6, Italy; Hannover7,
Frankfurt8, Hamburg8, Munich8, Germany) with the corresponding
age brackets for the children class (expressed in years): 1=[0,15]; 2=
[0,18]; 3=[0,19]; 4=[0,20]; 5=[0,21]; 6=[0,25]; 7=[0,26]; 8=[0,30]. Sources
of the data are reported in the Additional file 1. The statistics found
for Italy and Germany correspond to larger age brackets. If we
rescale the data as indicated in the Demographic and travel data
subsection, we obtain the following estimates for the percentage of
travelers in the [0–18] years old class: 1.05% (Venice), 0.49%
(Hannover), 2.31% (Frankfurt), 2.31% (Hamburg), and 2.86% (Munich).
These estimated values are consistent with the data.
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heterogeneous, and examples range from transportation
infrastructures to mobility patterns of various type
[15-19]. In the case of air travel the coupling is given
by the direct flights connecting different airports and
the number of passengers flying on those connections.
Analyses of air transportation data have shown the
presence of large variability in the number of connec-
tions per airport, and of broad fluctuations in the traf-
fic handled by each airport or flowing on a given
connection between origin and destination [15,16]. In
the Additional File we report the example of the Euro-
pean air transportation network [20], showing the
probability distributions of the number of connections
k per airport (i.e. the subpopulation’s degree) and of
the flows of passengers wij travelling between any pair
of linked airports i and j. These flows can also be
expressed in terms of the number of connections of
the origin/destination airports, where the average
weight wij along the link connecting airports i and j is
a function of their degrees ki and kj, 〈 wij〉 ∝ (kikj)

θ,
with θ ≅ 0.5 in the worldwide air-transportation net-
work [15]. Such features, obtained from empirical evi-
dence, will be used in the following to define the
metapopulation model, by creating a realistic synthetic
network of mobility connecting a number V of urban
areas.
Since we are interested in exploring how non-homo

geneous travel habits, coupled with non-homogeneous
mixing patterns, may drive the conditions for the spatial
invasion of an epidemic, we collected age travel statistics
across different countries. These are typically obtained
from travel surveys at airports, and collect a variety of
information about passengers and their travel behavior
including demographic data. Figure 1B shows the per-
centage of travelers in the younger age class for a variety
of sources and for different airports in various countries.
If we consider a classification of the younger age group
that includes individuals up to 18–21 years old (where
the upper value of the range depends on the specific
limits imposed by the age classification adopted by each
survey), the fraction of children traveling by air is on
average equal to 7%, with a maximum variation between
0.7% (observed for Teheran airport, Iran) and 9.2%
(Luton airport, UK). Other statistical sources have larger
age brackets, with no breakdown below 25 or 30 years
old, as shown in the Figure. In these cases, we can still
estimate the fraction of traveling individuals in the age
class [0–18] years old, by rescaling the statistics assum-
ing a constant ratio across countries between the per-
centages of travelers in the [0–18] years old and those of
travelers in the [0–24] or [0–29] years old classes, as
obtained from sources with a finer age classification.
The estimated values are reported in the caption of
Figure 1B and are consistent with the data.

Demographic data for the age distribution of the
population by country was obtained from Eurostat [20]
for European countries, and from the U.N. database [21]
for Mexico. The data is provided by yearly age groups
for European countries and 5 years age groups for
Mexico, and it allows the calculation of the fraction of
people under a given age, corresponding to the classifi-
cation used in the model. If we consider the younger age
class up to 18 years old, we obtain relative sizes of the
population ranging in Europe from 17.1% for Italy to
22.2% for United Kingdom and Luxembourg, with an
average value of 19.7%. The corresponding value in
Mexico increases to 32.3% [21], with a classification up
to 15 years old for data availability reasons.

Theoretical and data-driven age mixing patterns
In addition to the travel behavior and demographic fea-
tures of the population, we need to consider the mixing
pattern among population classes. For the purpose of
the study, we consider data-driven mixing patterns by
country [2,14,22] and we also define a theoretical con-
tact matrix, dependent on a set of parameters that we
vary in a range of plausible values in order to systematic-
ally explore the behavior of the global invasion under
different mixing conditions.
We consider the population divided into two classes,

children and adults identified by subscripts c and α,
respectively. Our aim is indeed to characterize the im-
pact on the invasion dynamics of the two coupled
phenomena, namely the early phase of the epidemic out-
break locally driven mainly by children and the spatial
dissemination of the epidemic mainly driven by the
adults traveling. While demographic and travel data
allow for the consideration of a larger number of age
classes, our choice of two classes is motivated by the
simpler parameterization of the model in terms of the
mixing patterns that allows us to formulate the invasion
conditions analytically.
Children are assumed to represent a fraction α of the

population N, so that the population size of children is
expressed as Nc = αN; the population size of adults being
thus expressed as Na = (1 - α)N. α is a parameter defined
between 0 and 1, which we assume to be homogeneous
across the metapopulation system. This is a plausible as-
sumption if we consider a metapopulation model applied
to a single country or to regions that are rather homoge-
neous in terms of their demography, as these values are
not expected to substantially vary. In the following sec-
tions we will explore different values of α, and compare
these results to the ones obtained in the case the model
is informed with the data-driven values of α from the
demographic statistics of the European countries under
study and of Mexico.
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We define the contact matrix C = {Cij} capturing the
mixing between different age classes as

Ccc Cca

Cac Caa

! "
¼

pcqc
N
Nc

1" pað Þqa
N
Nc

1" pcð Þqc
N
Na

paqa
N
Na

0

B@

1

CA ;

ð1Þ

where qc and qc are the average number of contacts per
unit time established by individuals in the children and
adult classes, respectively, and pc and pa are the fractions
of contacts that occur between individuals of the same
age class. The variables qc and qa represent a measure of
social activity of the individuals, whereas pc and pa de-
scribe how these contacts are established among classes. A
variety of different assumptions can be done to describe the
social mixing pattern, as the variables of the contact matrix
of the above expression are not uniquely defined and need
to be parameterized through available demographic and
serologic data [23]. Here we focus our attention on assorta-
tive mixing, indicating the tendency of individuals in a
given class to preferably interact with other individuals of
the same class. This is indeed observed in real data where
contacts patterns are found to be highly assortative with
age [22,24,25], with a remarkable similarity across different
European countries [22]. By indicating with εc (εa) the aver-
age fraction of contacts that a child (adult) establishes with
an adult (child), i.e. across age groups, we can simply ex-
press pc (pa) in terms of εc (εa) as pc = 1 - εc (pa = 1 - εa),
thus the contact matrix can be rewritten as

Ccc Cca

Cac Caa

! "
¼ qc

1" εc
α

ηεa
α

εc
1" α

η 1" εað Þ
1" α

0

B@

1

CA ; ð2Þ

where we have used the relation Nc = αN and have indi-
cated with η the ratio between the average contact numbers
per age class, η = qa/qc. Interactions are reciprocal such that
the number of contacts between children and adults is the
same as the number of contacts between adults and chil-
dren, requiring the matrix to be symmetric, i.e. Cca = Cac or
εcα = ηεa(1 − α). We indicate with ε = εcα = ηεa(1 − α) the
total fraction of contacts across age classes, so that the con-
tact matrix finally reads

Ccc Cca

Cac Caa

! "
¼ qc

α" ε
α2

ε
α 1" αð Þ

ε
α 1" αð Þ

η 1" αð Þ " ε

1" αð Þ2

0

BB@

1

CCA ð3Þ

The matrix is fully expressed in terms of the average
number of contacts in the children class, qc, the fraction
of children α, the ratio η between the average number of
contacts in the adult class and the one in the children

class, and the parameter ε. The latter is defined between
0 and min{α, η(1 − α)}, and regulates the degree of
assortativity between the age classes [26], with ε → 0 in-
dicating high assortativity and ε → min{α, η(1 − α)} indi-
cating low assortativity, as schematically shown in
Figure 2. Table 1 reports the list of variables and param-
eters used to introduce the age classes. A more general
modeling framework that include also other mixing pat-
tern types and that is applicable to different social classi-
fications besides age is the object of future work.
To compare the theoretical results to realistic situa-

tions, we estimate the parameters ε and η from data-
driven contact matrices C = {Cij}, obtained from a
population-based prospective survey of mixing patterns
in eight European countries using a common paper-
diary methodology [22]. We used smoothed daily con-
tact rates based on a bivariate smoother [27] defined for

Figure 2 Schematic example of different assortativity levels in
mixing patterns. Throughout the paper we use ε = εcα as the
parameter referring to the assortativity of the mixing pattern, since it
represents the total fraction of across-groups contacts. In this scheme
we show three examples of different assortativity levels.
A: maximum assortativity, corresponding to no mixing between the
two classes (εa = εc = 0); B: intermediate assortativity, i.e. a given
fraction of the children contacts are directed to adults (like e.g. a
random mixing scenario), the others being of the child-child type;
C: no assortativity in the children age class, as all contacts established
by children are directed to the adults class (εc = 1 and thus ε = α).

Apolloni et al. BMC Infectious Diseases 2013, 13:176 Page 4 of 18
http://www.biomedcentral.com/1471-2334/13/176



age classes of 1 year interval, relative to all contacts, i.e.
including both physical and non-physical contacts [22]
(Additional file 1). The European countries considered
include: Belgium (BE), Germany (DE), Finland (FI),
Great Britain (GB), Italy (IT), Luxembourg (LU), The
Netherlands (NL), and Poland (PL).
In addition we also informed our model with the mixing

patterns for Mexico, obtained from studies on the early
outbreak of the 2009 H1N1 pandemic in the country [2].
The values for the parameters {α, η, ε} obtained for all
countries under study are reported in Table 2.

Spatial metapopulation model with age structure
We consider a population of individuals that is spatially
structured into V subpopulations coupled by human
mobility patterns, representing a metapopulation net-
work where nodes correspond to subpopulations where
the infection dynamics takes place, and links corres-
pond to the mobility processes among them. We ini-
tially present this approach considering only one class
of individuals, to highlight its main features and the
assumptions we make, and in the following we will

introduce the age structure of the population. The model
is informed with the statistical laws empirically observed
in real data on human population and mobility by air-
travel, and discussed in the Demographic and travel data
subsection. The metapopulation structure is characterized
by a random connectivity pattern described by an arbi-
trary degree distribution P(k). In the following we will
explore the role of realistic heterogeneous network
structures, adopting power-law degree distributions P
(k) ∝ k−γ for analytical convenience, mimicking in this
way the airline network as drawn from realistic data.
Following the scaling properties observed in real-world
mobility data, we define the number of individuals mov-
ing from the subpopulation of degree k to the subpopu-
lation of degree k' as wkk' = w0(kk

')θ. We fix the
exponent θ to 0.5 and the scaling factor w0 to 1.0, based
on the empirical findings [15]. Smaller values of w0 are
also explored to simulate the implementation of travel-
related intervention strategies such as reductions of the
travel flows following the start of the outbreak.
We model the travel diffusion process to match the

patterns wkk', assuming that travelers are randomly
chosen in the population with the per capita diffusion
rate dkk ' = wkk'/Nk where Nk is a variable indicating the
population size [28].
The variables introduced to define the metapopulation

model solely depend on the degree k of each subpopula-
tion, therefore we introduce a degree-block notation
[29] that assumes statistical equivalence for subpopula-
tions of equal degree [30]. It corresponds to assuming
that all subpopulations having the same number of con-
nections are considered statistically identical regarding
the features of the metapopulation system relevant for
the mobility and disease spreading processes (such as for
instance the population size and the traffic of passen-
gers). While disregarding more specific properties of
each individual subpopulation – that may be related for
instance to local, geographical or cultural aspects – this
mean field approximation is able to account for the
large degree fluctuations empirically observed, to cap-
ture the degree dependence of the system’s properties as
found in the data, and also to allow for an analytical
treatment of the system’s behavior [30]. The full list of
variables used to define the metapopulation model with
one class of individuals is provided in Table 3.
The model defined so far considers a single class of in-

dividuals who homogeneously mix in the population.
Here we introduce the age structure in order to
consider different mixing patterns and travel probabil-
ities depending on the age class, based on the results
presented in the previous subsections. We consider
a simple SIR compartmental model to describe the
infection dynamics of the influenza epidemic, where
individuals are assigned to mutually exclusive com-

Table 1 Variables used to define the age classes in the
epidemic model; c = children, a = adults
Variable Definition

α Children fraction of the population

qa, qc Average number of contacts per unit time established
by individuals in the children and adult classes,
respectively

η = qa/qc Ratio of the average number of contacts

ε = εcα = ηεa(1
− α)

Total fraction of contacts across age classes

r Children fraction of the traveling population

Table 2 Values of the age classes parameters obtained
from country-specific statistics and data (see main text
for references)
Country α η ε

Belgium 0.21 1.13 0.125

Germany 0.18 0.75 0.098

Finland 0.21 0.79 0.091

Great Britain 0.22 0.75 0.115

Italy 0.17 0.62 0.083

Luxembourg 0.22 0.93 0.107

The Netherlands 0.22 0.83 0.094

Poland 0.21 0.97 0.100

Europe (average values) 0.20 0.79 0.097

Mexico 0.32 0.32 0.063

Apolloni et al. BMC Infectious Diseases 2013, 13:176 Page 5 of 18
http://www.biomedcentral.com/1471-2334/13/176



partments – susceptible (S), infectious (I), and recovered
(R) individuals [23]. Susceptible individuals may contract
the infection from infectious individuals and enter the
infectious compartment; all infectious individuals then
recover permanently and enter the recovered compart-
ment. The disease dynamics is encoded in the next gen-
eration matrix R = {Rij} i.e. the average number of
secondary infections in age group j generated by a single
primary case in age group i in a fully susceptible popula-
tion, with i, j ∈ {c, a}. We assume that the infectious
period is exponentially distributed (with average value
μ− 1) and that both transmission rate and recovery rate
are independent of the age group, thus neglecting age-
specific susceptibility or infectiousness, as in [14]. We
consider a fully susceptible population, and also the case
of an age-specific prior immunity, as detailed in the next
subsection. If we assume that disease transmission may
only occur along the contacts captured by the matrix
C = {Cij} [24,31], we can express the generic entry of the
next generation matrix as Ria ¼ β

μCiaα and Ric ¼
β
μCic 1" αð Þ [32,33] with i ∈ {a, c} and Cij the contact

matrix defined in Eq. (1). In the application of the con-
tact matrix of Eq. (3) to the metapopulation model, we
assume that all parameters used to define the partition
of the population into age classes are independent of
spatial features, being therefore constant across sub-
populations (e.g. the children population fraction of a
subpopulation with degree k is given by Nk,c = αNk).
Similarly, we assume that the age-specific travel behav-
ior does not change with the subpopulation of the sys-
tem. The travel behavior is thus modeled by rescaling
the per-capita diffusion rates dkk ' with the correspond-
ing age-specific probability of travel and the population
sizes of the age classes. If we indicate with r the
fraction of children traveling (see Table 1), the per-
capita diffusion rate for children traveling from a

subpopulation with degree k to a subpopulation with
degree k ', dkk 0 ;c, is expressed as

dkk 0 ;c ¼ r
w0 kk

0# $θ

Nk;c
¼ rdkk0

Nk

Nk;c
¼ rdkk 0

α
ð4Þ

Analogously, the per-capita diffusion rate for adults is
given by dkk 0 ;a ¼ 1" rð Þdkk 0= 1" αð Þ . This allows us to
consider different traveling rates depending on the age
classes, and to explore a range of values of r, including
r = 0, i.e. only adults travel, in addition to its real values
obtained from travel statistics.
In the Additional File we also consider a more refined

compartmentalization that incorporates a latency period
of duration τ− 1 to account for the time elapsing from
exposure to infectiousness. This corresponds to a more
accurate approximation for the description of the disease
etiology of influenza. Moreover, it also allows us to ex-
tend the applicability of our modeling framework to
other infectious diseases where this period may last sev-
eral days, therefore being non-negligible, as in the case
of the severe acute respiratory syndrome (SARS) [34].

2009 H1N1 pandemic case study
To clarify the impact of the study’s findings in a practical
situation, we apply our framework to the case study of
the 2009 H1N1 pandemic influenza. We parameterize
the metapopulation model to the available epidemio-
logical estimates of the outbreak, to the demographic
and travel statistics, and to the contact pattern data. We
assume a fully susceptible population, and consider
values of the reproductive number R0 consistent with
the estimations obtained for the pandemic through sev-
eral methods. In particular, we focus on the range from
R0 = 1.05, corresponding to the lower bound of the esti-
mate obtained from global modeling approaches for the
countries in the Northern hemisphere during summer,
once seasonal rescaling is taken into account [3], to R0 =
1.2 corresponding to the estimates available for Japan
[35] and obtained from genetic studies [2], up to R0 ∈
[1.4, 1.6] as estimated from the early outbreak data of
the H1N1 pandemic [2].
The consideration of R0 = 1.05 is also important for

two additional reasons. First, this value is used here to
provide a comparison between the effects that school
holidays may have had in the transmission scenario in
Europe during Summer 2009 due to the altered contact
pattern with respect to school term [36,37]. Indeed, con-
tact data in the UK collected during school term and
school holiday periods for 2009 showed that changing
mixing patterns resulted in a decrease of approximately
25% to 35% in the reproductive number of influenza
during the holidays, considering physical or conversa-
tional contacts, respectively [36]. With an estimated R0

Table 3 Variables defining the metapopulation model
with one class of individuals in the degree-block
approximation
Variable Definition

k Degree of a subpopulation, i.e. number of
airline connections to other subpopulations

V, Vk Total number of subpopulations, number of
subpopulations with degree k

Nk Population size of subpopulations with degree k

wkk ' = w0(kk
')θ Number of passengers flying from a subpopulation

with degree k to a subpopulation with degree k’

w0 Mobility scale

dkk ' = wkk '/Nk Diffusion rate of passengers flying from a
subpopulation with degree to a subpopulation
with degree k’
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for the UK in the range [1.4, 1.6] when schools were
open, such reductions would thus correspond to ap-
proximately R0 = 1.05 during school holidays [36]. A
second reason for considering the value R0 = 1.05, is also
for testing scenarios where a higher value of R0 may
have been reduced following the application of interven-
tion strategies that do not alter the interaction or travel
behaviors of individuals, such as e.g. through vaccination
or antiviral treatment.
For each value of R0 considered, the transmission rate

β is calculated from the dominant eigenvalue of the next
generation matrix [38], where we set the infectious
period μ− 1 to 2.5 days [3].
In addition to the value w0 = 1, corresponding to the

estimate for the mobility scale regulating the travel
fluxes obtained from the air mobility network, we also
explore w0 = 0.5 to simulate the travel-related controls
imposed by some countries associated with the self-
imposed travel limitations that contributed to a decline
of about half the international air traffic to/from Mexico
following the international alert in April 2009 (see [39]
and references therein).
Results are obtained for eight European countries for

which demographic, travel, and contact data are available,
and for Mexico, this latter case informed with the age-
dependent transmission matrix of Refs. [2,14]. The chil-
dren age class is defined up to 18 years old for Europe and
up to 15 years old for Mexico, to match available data.
We also consider the case of pre-existing immunity in

older population and parameterize our model based on
the serological evidence indicating that about 30 to 37%
of the individuals aged ≥ 60 years had an initial degree
of immunity prior to exposure [40-42]. We assume that
33% of individuals aged ≥ 60 years are immune and
completely protected against H1N1 pandemic virus. We
use the data from the different national age profiles [20]
to estimate the corresponding fraction of the adult age
class of each country with pre-exposure immunity.

Results and discussion
Calculation of the global invasion threshold
The reproductive number R0 provides a threshold condi-
tion for a local outbreak in the community; if R0 > 1 the
epidemic will occur and will affect a finite fraction of the
local population, otherwise the disease will die out [23].
The condition for global invasion is however made more
complicated by the interplay between the local transmission
dynamics and the mobility process that is responsible to
seed non-infected subpopulations. Even in the occurrence
of a local outbreak, given R0 > 1, the epidemic may indeed
fail to spread spatially if the mobility rate is not large
enough to ensure the travel of infected individuals to other
subpopulations before the end of the local outbreak, or if

the amount of seeding cases is not large enough to ensure
the start of an outbreak in the reached subpopulation due
to local extinction events. All these processes have a clear
stochastic nature and they are captured by the definition of
an additional predictor of the disease dynamics, R* > 1,
regulating the number of subpopulations that become
infected from a single initially infected subpopulation
[28,43-46], analogously to the reproductive number R0 at
the individual level. An expression for R* has been found
in the case of metapopulation epidemic models with
different types of mobility processes, including homo-
geneous, traffic-driven, and population-driven diffu-
sion rates [28,46], commuting-like processes [47,48]
and origin–destination processes with adaptive behav-
ior [49] or heterogeneous length of stay at destination
[50]. In all those cases the population is assumed to
mix homogeneously and to travel according to rates
that are uniform across individuals. Here we go beyond
those assumptions and examine the relationship be-
tween the occurrence of a global outbreak and the age-
dependent transmission dynamics coupled with the
age-specific travel behavior, through the calculation of
the global invasion threshold R*.
Let us consider the invasion process of the epidemic

spread at the metapopulation level, by using the subpopula-
tions as our elements of the description of the system. We
assume that the outbreak starts in a single initially infected
subpopulation of a given degree k and describe the spread
from one subpopulation to the neighbor subpopulations
through a branching process approximation [51]. We de-
note by Dn

k the number of infected subpopulations of de-
gree k at generation n, with D0

k being the initially seeded
subpopulation, D1

k the subpopulations of degree k of gener-
ation 1 directly infected by D0

k through the mobility
process, and so on. By iterating the seeding events, it is pos-
sible to describe the evolution of the number Dn

k of infected
subpopulations as follows:

Dn
k ¼

X

k 0
Dn"1

k 0 k
0 " 1

% &
Pðk k

0'' Þ 1"
Xn"1

m¼0

Dm
k

Vk

 !

⋅

Ωk0k λk0k;c; λk0k;a
% &

ð5Þ

The r.h.s. of equation (5) describes the contribution of
the subpopulations Dn"1

k 0 of degree k ' at generation n − 1
to the infection of subpopulations of degree k at gener-
ation n. Each of the Dn"1

k 0 subpopulations has k' − 1 pos-
sible connections along which the infection can spread.
The infection from Dn"1

k 0 to Dn
k occurs if: (i) the connec-

tions departing from nodes with degree k' point to
subpopulations with degree k, as ensured by the condi-
tional probability P(k|k'); (ii) the reached subpopulations
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are not yet infected, as indicated by the probability

1"
Xn"1

m¼0

Dm
k

Vk

% &
, where Vk is the number of subpopula-

tions with degree k; (iii) the outbreak seeded by λk 0 k;c
and λk 0 k;a infectious individuals, children and adults, re-
spectively, traveling from subpopulation k’ to subpopula-
tion k takes place, and the probability of such event is

given by Ωk 0k λk 0 k;c; λk 0 k;a
% &

. The latter term is the one that

relates the dynamics of the local infection at the individual
level to the coarse-grained view that describes the disease
invasion at the metapopulation level. It also provides the
contribution of children and adults age classes, thus in-
cluding the effects of non-homogeneous travel behaviors
and mixing patterns. The numbers of infectious individ-
uals of each type flying from a subpopulation with degree
k' and arriving to a subpopulation with degree k during
the entire duration of the outbreak are given by:

λk 0 k;c ¼ dk 0 k;c⋅
zc Nk

0
;c

μ
¼

rdkk
0

α
⋅
zc αNk

0

μ

¼ rdkk
0
zc Nk

0

μ
ð6Þ

λk 0 k;a ¼ dk 0 k;a⋅
za Nk

0
;a

μ
¼ 1" rð Þdkk

0
za Nk

0

μ

i.e. the final proportion zi of the Nk 0 ;i hosts who con-
tract the infection and diffuse with rate dk 0 k;i during their
infectious period, with i = c, a. zc and za indicate the
attack rates in the children and adult age classes, re-

spectively, and they are given by the solution to 1" zi ¼

exp "
X

j
Rijzj

% &
[52]. Figure 3A shows the behavior of

the final attack rates zc and za as a function of the repro-
ductive number R0, considering the partition of the
population in children and adults observed in the 8
European countries of the Polymod dataset [22] and
their mixing properties. Variations between countries,
depending on the age profile and the mixing patterns,
are observed. Countries are generally predicted to have
significantly larger epidemic sizes in children, as shown,
for example, by the case of Italy. This would correspond,
on average, to a larger number of individuals in the chil-
dren class that could potentially seed other subpopula-
tions and sustain the spatial invasion. However this
effect is counterbalanced by the age-specific traveling
probabilities that are much lower in the children class.
In the case of Belgium the final epidemic sizes in the
two classes are found to be almost equal, with the size
of the epidemic in the adult population being slightly
larger than the one in the children population. This is
the only country in the dataset under consideration that

Figure 3 Final size, extinction probability, and global invasion threshold vs. R0. A-B: Final sizes and extinction probabilities per age class as
functions of the reproductive number R0. The various curves for the eight European countries under study are shown by means of a shaded area,
with the exception of Belgium, see below. The maximum value for the epidemic size in children (and minimum for the epidemic size in adults) is
obtained for Italy; the opposite is obtained for Poland. The situation is reversed for the extinction probabilities – the maximum value for the
extinction probability in children (and minimum for the extinction probability in adults) is obtained for Poland; the opposite is obtained for Italy.
In both plots, Belgium is a standalone example, with zc > za and πc > πa, differently from all other countries and due to the fact that it is the only
population in the dataset to have η > 1, as discussed in the main text. The dashed line represents the case of homogeneous mixing when no
partition of the population is considered (in panel B it corresponds to the function R0

− 1). C: Global invasion threshold R% as a function of the
reproductive number R0, for different values of the parameters describing the mobility process. Air mobility networks having degree distributions
P(k) ∝ k− γ with γ = 2 and γ = 3 are shown to consider different levels of heterogeneity. The results obtained in the two cases are compared to
the scenarios with homogeneous diffusion rates dkk ' = w0(kk

')θ obtained for θ = 0. All curves are obtained by setting the fraction of passengers in
the children class equal to the observed data, i.e. r = 7%, and informing the model with the European average values for α, η, ε.
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has a ratio η larger than 1, indicating a larger average
number of contacts established by adults with respect to
children, likely induced by the specific survey method-
ology adopted [22].
If we indicate with πc (πa) the probability of extinction

given that a single infected individual of class C (α)
is introduced in the population, the probability

Ωk 0k λk 0 k;c; λk 0 k;a
% &

that λk 0 k;c and λk 0 k;a infectious indi-

viduals traveling from subpopulation k’ to subpopulation
k would start an outbreak can be expressed as

Ωk 0k λk 0 k;c; λk 0 k;a
% &

¼ 1" πc
λ
k0 k;cπa

λ
k0 k;a . Here the two pro-

cesses are considered as independent since we assume a
multi-type branching process approximation. The probabil-
ities of epidemic extinction given the introduction of a sin-
gle case are determined as the solutions of the quadratic
system dependent on the elements Rij of the next gener-
ation matrix [14], πi = [1 + Rii(1 − πi) + Rji(1 − πj)]

− 1, with
i = c, a. If R0 < 1, the only solution is πc = πa = 1, i.e. the
epidemic dies off. Otherwise, the system has solutions
(πc, πa) in the range [0,1], as shown in Figure 3B. All coun-
tries (except Belgium) display a larger probability of extinc-
tion related to the introduction of a single adult case in the
population, with respect to the introduction of a single in-
fectious child. Given the mixing patterns, children are
therefore more likely to start an outbreak than adults. πa
ranges between 96.5% in the case of Italy and 99% in the
case of Poland for R0 = 1.05, and between 83.5% and 88%
for R0 = 1.2, showing that there were small chances for the
H1N1 pandemic outbreak to start in the summer in those
countries, in agreement with the observed unfolding [53].
In general, a large dependence of the probability of extinc-
tion on the reproductive number is observed. Analogously
to the behavior discussed for the epidemic size, also for the
probability of extinction Belgium represents a special case
for which πc is slightly larger than πa, again induced by the
larger average number of contacts in the adult class, differ-
ently from all other countries for which the data is available.
Finally, in the case of homogeneous mixing in a non-
partitioned population, we recover the probability of extinc-
tion to be equal to R0

−1 (dashed line in the figure).
The quantities reported in panels A,B of Figure 3 repre-

sent the ingredients to assess the risk of a global epidemic
as driven by the partition of the population into age clas-
ses and the non-homogeneous mixing pattern considered,
as also discussed in Ref. [14]. The additional role of the
non-homogeneous travel behavior is considered explicitly
by modeling the invasion process through Eq. (5). To
solve the system analytically, we simplify the recursive re-
lation of Eq. (5) in the assumption of mild epidemics
(i.e. in the limit of R0 close to 1), introduced or emerged
in the system through a localized seeding event (so that
the number of infected subpopulations can be neglected

at the early stage of the spatial invasion), and considering
the case of a mobility network lacking topological correla-
tions (in this approximation the conditional probability P
(k|k') can be simplified, see the Additional file 1). By ma-
nipulating the Equation (see the Additional file 1 for the
full details of the calculation), we obtain a condition
allowing the increase of the number of infected subpopu-
lations and a global epidemic in the metapopulation sys-
tem only if

R% ¼ 1" πcð Þrzc þ 1" πað Þ 1" rð Þza½ (w0

μ

k2þ2θ
( )

" k1þ2θ
( )

kh i
> 1

ð7Þ

thus defining the global invasion threshold of the
metapopulation system. Equation (7) defines the threshold
condition for the global invasion: if R% assumes values
larger than 1, the epidemic starting from a given subpopu-
lation will reach global proportion affecting a finite frac-
tion of the subpopulations of the system; if instead R% < 1,
the epidemic will be contained at its source and will not
spread further to other locations. The global invasion
threshold is a complex function of the disease history pa-
rameters, and of the parameters describing the age-
specific mixing patterns and travel behavior through πc,
πa, r, zc, za. Its dependence on the population spatial struc-
ture is embodied by travel fluxes and the topology of the
mobility network, through w0, θ, and the degree moments
hkai. However it is important to note that this indicator
does not depend on the number of subpopulations V of
the system, therefore it may be applicable to a variety of
countries for which data is available, independently of
their size. In the following we explore the dependence of
R% on these multiple factors, examine their role in driving
the pandemic extinction or invasion, and provide possible
applications examples for a set of countries considering
the 2009 H1N1 pandemic.

Impact of air mobility
The term w0(k

2 + 2 θ − k1 + 2 θ)/k represents the contribu-
tion of the air mobility network to the global invasion
threshold, with w0 and θ regulating the travel fluxes, and
the various moments of k, 〈km〉 ¼

X
k
kmP kð Þ, expressing

the dependence on the network structure as encoded in
its degree distribution P(k) = k− γ. The large degree fluctua-
tions found in real transportation systems and mobility
patterns [15-19] constitute one of the mechanisms re-
sponsible for driving R% to considerable high values,
even when small values of the reproductive number are
considered. Figure 3C shows the dependence of R% on
the reproductive number accounting for changes in the
topological heterogeneity of the mobility network (γ = 2
and γ = 3) and in the traffic heterogeneity along the air
connections (θ = 0.5 and θ = 0, the latter being the
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homogeneous traffic case). The larger degree fluctua-
tions obtained in the case γ = 2 strongly increase the
ratio (k2 + 2 θ − k1 + 2 θ)/k, leading to values of R% ranging
from ~10 for R0 = 1.05 up to approximately 103 for R0 =
2, a value of the reproductive number consistent with
the estimate for the 1918–1919 pandemic [54]. It is
important to note that, besides the threshold condition
R% > 1, the absolute value of the estimator R% provides a
quantitative indication of the effective reduction that
needs to be reached through public health interventions
in order to bring R* below its threshold value, i.e. the
difference R% − 1. The R% values for γ = 2 are roughly
one order of magnitude greater than the values recov-
ered in the case γ = 3, and in addition the condition for
the epidemic invasion is more sensitive to variations in
R0 in the case of larger heterogeneities in the air mobil-
ity patterns (γ = 2 vs. γ = 3).
For both network topologies considered, the epidemic is

above the threshold value of 1, and the outbreak is pre-
dicted to spread globally in the system for all diseases con-
sidered (R0 ≥ 1.05), consistently with the H1N1 influenza
virus invasion at the global level. The partition into clas-
ses, though lowering the epidemic sizes and increasing the
probability of extinction [35,55,56], is not able to drive the
system below the threshold of the global invasion for the
range of values explored. In addition, the contribution of
the topological heterogeneity of the mobility network
(k2 + 2 θ − k1 + 2 θ)/k in increasing the value of R% is so large
that it cannot be easily counterbalanced by reductions of
the mobility scale w0 corresponding to interventions
through air travel restrictions. This was already observed
in numerical results obtained from data-driven modeling
approaches and in analytical predictions based on simple
homogeneous mixing among individuals within the sub-
population of the system [28,46,50,57-60]. We will see in
the following subsections how differences across countries
may impact the conditions for invasion, and will quantita-
tively assess within this framework the role of travel reduc-
tions consistent with the traffic drop observed in the
traffic to/from Mexico.
Epidemic containment is instead reached for R0 < 1.2

when exploring homogeneous traffic flows (i.e. θ = 0
differently from the realistic scenario θ = 0.5) in the case
γ = 3 (see Figure 3C), showing how the large variations
observed in the traffic flows along air travel connections
represent an additional element favoring the spatial
spread of the pathogen. On the other hand, extensive
measures aimed at radically altering the amount of pas-
senger traveling or the distribution of traffic on the air
connections can hardly be achieved in reality.

Impact of the contacts ratio η
The global invasion threshold is a function of the extinc-
tion probabilities and of the epidemic sizes per age class

Figure 4 Impact of contacts ratio η. Global invasion threshold R*
as a function of the contacts ratio η, for the case of a mobility air
network structure having P(k) ∝ k− γ with γ = 2 (panel A) and γ = 3
(panel B). Each plot considers three values of the reproductive
number – R0 = 1.05, 1.2, 1.4. The various curves for the eight
European countries under study are shown by means of a shaded
area, for the sake of visualization. The distribution of the population
into the children class is set to the average European value for all
countries, whereas the assortativity level is left country-specific.
Maximum assortativity (and thus minimum ε) is reached for Italy, the
opposite observed for Belgium. Here we assume that r = 0. The
dashed line indicates the threshold condition R* = 1.
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for which an explicit solution cannot be obtained in the
general case. An approximate solution can be recovered
for small ε and in the two limit cases of the contacts ra-
tio η = qa/qc: η → 0, i.e. a regime in which almost all
contacts are established by children, and η → 1, i.e. a
situation that is almost homogeneous in the distribution
of the number of contacts per individual. The approxi-
mate solutions are reported in the Additional file 1.
Besides these two limit cases, we investigate in Figure 4

the behavior of R* as a function of the contacts ratio η,
exploring the interval [0.25,1] to include the estimates
from the Polymod data (range from 0.62 to 0.97,
Belgium excluded as discussed before) and to satisfy the
existence condition on ε. The value of α is fixed to the
European average, α = 0.197, whereas each country is
represented with its corresponding assortativity parameter
ε, ranging from ε = 0.083 in Italy to ε = 0.125 in Belgium.
The global invasion threshold is predicted to increase

with η, showing how a larger number of contacts
established by adults, regardless of the across-groups
mixing, would favor the spatial propagation. The varia-
tions observed among countries are induced by the
country-specific assortativity profiles and decrease with
η. Therefore, if R% reaches its critical level for relatively
small values of η, for which variations across countries
are still large, we may reach a heterogeneous outbreak
situation in which some countries would experience
spatial transmission, while others would be able to con-
tain the outbreak simply due to the role of country-
specific age profiles and of the level of assortativity in
each population. This may be for example the case with
γ = 3 and R0 < 1.2 (Figure 4B). Results are consistent
with the numerical evidence obtained from a data-driven
agent-based model in Europe [61].

Countries characterized by particularly low values of η,
for cultural, behavioral, and/or social reasons, would be
at a lower risk of invasion. Therefore control measures
aimed at reducing the contacts ratio η of a specific
country may represent an effective policy option to con-
sider. This could be achieved through the application of
workplace interventions, including for instance working
at home, reducing or avoiding work meetings, and
shifting the working timing to reduce overlap at work-
places and at break hours, as well as crowding on trans-
ports [62].
Finally, we report on the effects of the inclusion of the

latency period in the compartmental model. The results
reported in the Additional file 1 uncover the dependence
of the global invasion threshold on the generation time
of the disease, i.e. the sum of the latency and infectious
periods in the compartmental approximation consid-
ered. A simple addition of the latency period to the de-
scription of the disease would therefore increase the
generation time and, consequently, the global threshold
parameter R%, while keeping the qualitative picture un-
changed (Additional file 1). Individuals would indeed
have a longer time span available to travel and poten-
tially spread the disease while carrying an infection.

Impact of assortativity and age profile
We now examine the dependence of the critical condi-
tion for the global invasion on the assortativity level of
the population partition, by plotting in Figure 5 R* as a
function of the parameters ε and η, where we have set
the children fraction α equal to the European average
value, α = 0.197. R% is an increasing function of the
across-groups mixing ε, indicating that a decrease in the
assortativity level of the mixing pattern (corresponding to

Figure 5 Impact of assortativity and of school term vs. school holidays. Global invasion threshold R% as a function of the across-groups
mixing ε and of contacts ratio η, for the reproductive number estimated during school holidays (R0 = 1.05, panel A) and school term (R0 = 1.4,
panel B), based on contact data in the UK [62]. Here we fix the children fraction of the population α to its European average value. The grey area
indicates the extinction phase where R% < 1, whereas the colored area refers to the region of the parameter phase space that is above the
threshold condition. The rectangular box indicates the area corresponding to the European intervals for the parameters ε and η. The cases for
Italy (ε = 0.08, η = 0.62), United Kingdom (ε = 0.11, η = 0.75), and Finland (ε = 0.09, η = 0.79) are highlighted.
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an increase of ε) favors the spatial invasion. If a larger frac-
tion of contacts is indeed established between adults and
children, the local transmission dynamics mainly driven
by children is able to spread to a larger fraction of the
adult population, thus increasing the chances for the
spatial dissemination of the pathogen. Here we study a
situation in which r = 0, i.e. only adults travel, in order to
isolate the effect of changes in the local transmission while
neglecting the role of children in the mobility process.
The rectangle shown in the panels indicates the ranges

of the country values for ε and η in Europe. A variation
of η from the smallest to the largest of the country
values produces a stronger effect on R* with respect to a
variation of ε within the European range. As such, η rep-
resents an important source of country heterogeneity in
the epidemic outcome, as already discussed.
The two panels differ for the value of the reproduct-

ive number considered that takes into account the ef-
fective reduction in the transmission potential
observed during school holidays (panel A, correspond-
ing to R0 = 1.05) with respect to school term (panel B,
R0 = 1.4). These values are estimated for the UK on the
basis of contact data for the country in the two periods
[36], as illustrated in detail in the Methods section, and
here we generalize this result to all countries under
study to provide a comparison between school opening
and school closure in terms of the predicted risk of a
major outbreak. During school holiday period (panel
A), European countries are found to be close to the
critical level, with a portion of the parameter space for
Europe in the extinction region, thus confirming the
results presented before regarding variations in the
country-specific risks of major epidemics. These find-
ings are compatible with the heterogeneous transmis-
sion of H1N1 influenza virus in summer 2009 that was
not sustained across continental Europe [53] and identify
the main mechanisms responsible of these effects in the
interplay between demographic/mixing features and the
seeding during school holidays (due to similar school cal-
endars, with the exception of the UK). If instead we con-
sider that the influenza pandemic arrived in the UK during
school term, our predictions indicate that the risk of a
major epidemic with community and spatial transmission
was expected to be very high even during summer period
(Figure 5B), as observed in the country. Other factors un-
doubtedly played a role in producing the different trans-
mission across countries, and they include humidity
conditions [53], and the timing and magnitude of the
coupling of the European continent to Mexico and the
United States through international travel [3], both factors
being country-specific and not considered here.
Additional countries with similar age profile may be

mapped onto the two-dimensional plots of Figure 5 to
gather immediate analytical insight regarding the risk of a

major epidemic for the pathogen under consideration,
given data availability on the country-specific demo-
graphic profiles and mixing habits. This would provide
valuable predictions on the conditions for spatio-temporal
transmission and informed recommendations for effective
control strategies at the start of an outbreak. As an
example, we also explored the situation for the United
States, considering synthetic information on individual
contact networks built from activity surveys and simula-
tions for the city of Portland [25]. By assuming the validity
of this synthetic information for the whole country, we
can compare the global invasion threshold in the US with
the one studied in Europe from real country-specific data.
Similar properties are found in the air transportation net-
works of the two regions, and the slight differences in the
age partition (α = 0.24 in the US vs. α = 0.20 in Europe)
do not lead to great discrepancies in the behavior of the
global threshold as a function of the parameter η
(Additional file 1).
If we assume that children travel according to the sta-

tistics obtained from travel data (i.e. r is set to 7%), the
increase in r leads to an increase of R*, as expected,
given that a fraction of the individuals driving the local
outbreaks also represent potential seeds in new locations
not yet affected by the epidemic (see Figure 6A). Such a
small change in r may also be enough to drive the sys-
tem from the extinction phase to the major epidemic
phase, for certain values of the other parameters. For ex-
ample, an epidemic starting in a subpopulation in Italy,
where the across-groups mixing is equal to ε = 0.08,
would reach pandemic proportion if a small fraction of
children would travel by air, with respect to the case in
which such fraction is neglected (see the vertical line in
Figure 6A). Given the specific seeding role of children
vs. adults, age-targeted entry screening of travelers at
airports may be envisaged in an attempt to prevent
spatial transmission. The mild and self-limiting nature of
most influenza infections, in addition to the presence of
asymptomatic infections, is however likely to prevent a
perfect identification and notification of cases at entry
ports. Given that even a small percentage of children
traveling would considerably increase the risk of spatial
transmission, leading only to small delays in the invasion
process [63], such interventions should be evaluated
with respect to their actual efficacy in specific epidemic
emergencies and balanced against the resources required
for their implementation.
Besides mixing patterns and travel statistics, countries

also differ for their age profiles (considered in the model
through the parameter α), an easy to access statistics for
all countries in the world [21]. The country seed of the
2009 H1N1 pandemic, Mexico, has for instance a larger
fraction of the population in the younger age class com-
pared to the population of Europe, α = 0.32 vs. α = 0.20
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(where the age classification used for Mexico is up to 15
years old instead of up to 18 years old as adopted in
Europe, due to data availability) and is characterized by
a larger number of contacts established by children with
respect to adults (η = 0.32 vs. η = 0.79). Our predictions
indicate that, for the same assortativity values, there ex-
ists a range of values of the epidemic transmission po-
tential that is compatible with epidemic containment in
Mexico, whereas Europe may experience spatial propa-
gation of the disease (see Figure 6B for R0 = 1.05). Re-
markably, the increase of the fraction of children and
the change in the contact ratio, with no change in the
across-groups mixing pattern (i.e. same ε), is able to
drive the system in the Mexican scenario to the extinction
phase, reducing of 94% the global invasion threshold
obtained for Europe if we consider a pathogen with a
transmission potential compatible with the seasonal esti-
mates of the H1N1 pandemic in Europe during summer
2009 [3]. Such results would be particularly important
when considering the country where a new epidemic may
emerge, as predictions obtained from previous works con-
sidering hypothetical seeding countries would be hardly
applicable if demographic features are different. National
preparedness plans may be informed by country-specific
recommendations through the present approach, and an
extensive exploration of the model’s results in terms of
classes of demographic and contact pattern features would
help in providing more general insights on classes of
seeding scenarios.
In the case of R0 = 1.4, i.e. the lower bound of the esti-

mate of the reproductive number for Mexico based on
the early outbreak of the 2009 H1N1 pandemic [2], our
model predict that the country would be above the crit-
ical value, thus in agreement with the spatial spread that
was observed.

Effect of pre-existing immunity and travel reductions
If we consider pre-existing immunity in the population,
calculating the fraction of individuals in the adult age
class that corresponds to the estimated values from sero-
logical data available after the 2009 H1N1 pandemic
[40-42], we find that immunity reduces the condition for
the global invasion threshold, as we could expect since a
fraction of the population is now modeled to be fully
protected against the virus. Figure 7 addresses the compari-
son between the two cases, immunity and no-immunity, by
showing the two corresponding critical curves R% = 1 in the
α, ε plane for Europe and Mexico (panels A and B, respect-
ively). The effect of pre-existing immunity in reducing the
probability of a global epidemic spread is shown by the in-
crease in the value of ε corresponding to the invasion con-
dition R% = 1; a larger mixing across age classes is therefore
needed for the pathogen to spatially propagate in case a
fraction of the older age class is immune, whereas a more

Figure 6 Impact of age-specific travel behavior and age profile.
A: Global invasion threshold R% as a function of the across-groups
mixing ε for the cases of Italy, United Kingdom, and Finland, assuming
R0 = 1.05. The solid colored lines correspond to the cases when only
adults travel (r = 0) and the dashed colored lines to the cases when a
percentage of 7% of passengers belongs to the children class. The
continuous horizontal line indicates the threshold condition R% = 1.
B: Global invasion threshold R* as a function of the across-groups
mixing ε: comparison between Europe (α = 0.20, η = 0.79) and Mexico
(α = 0.32, η = 0.32). Here we consider R0 = 1.05 and R0 = 1.4, assuming
r = 0.
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assortative population is predicted to be able to contain the
emerging epidemic. The effect is very small for the case of
Mexico, while for Europe it is more visible given that the
considered European population is, on average, older than
the Mexican one, and thus a larger fraction of the adult
population is assumed to be immune in Europe with re-
spect to Mexico (9.6% in Europe vs. 4.4% in Mexico). The
points (α, ε) parameterized with the average European data
and with Mexican data (corresponding dots in the Figure 7)
both lie in the spatial invasion phase when we consider
R0 ≥ 1.2 in Europe and R0 ≥ 1.4 in Mexico.
As an additional factor, we also consider the effect

resulting from the application of travel reductions. We
simulate the travel controls applied by some countries in
addition to the self-reaction of the population avoiding
travel to the affected area that was observed during the
early stage of the 2009 H1N1 pandemic [39], by setting
w0 = 0.5, i.e. a uniform reduction along all travel connec-
tions, independently of the age of travelers. Such reduc-
tions reduce the phase space of parameters leading to
global invasion, as expected, however they would not be
able to lead to a containment of the disease once the
model is fitted to the Mexican and European data and to
the H1N1 pandemic scenario, confirming previous find-
ings [28,39,46,57-60].

Limitations of the study
Our study is based on a multi-host stochastic meta-
population model that considers several simplifying as-
sumptions that we discuss in this subsection.
The partition of the population into children and adult

classes is clearly very schematic, especially if we consider
that finer level classifications are available for demo-
graphic data at the global scale, and for contacts data,
though in a very small set of countries that are the ones
considered in this study. Similar considerations arise in
the case of additional heterogeneities to be included in
the model, as for instance differing patterns of transmis-
sion between households, schools, and workplace set-
tings. A higher level of structuring of the population
into classes is expected to decrease the epidemic sizes
per comparable groups of classes, and to increase the
probability of extinction of the epidemic, with respect to
our predictions (see for instance the discussions in
[35,55,56] and references therein). The inclusion of such
features would prevent an analytical treatment of the
model and therefore push the study towards an agent-
based approach [61,64,65], for which numerical simula-
tions would represent the only available methodology.
Another assumption concerns the exponentially dis-

tributed infectious period. More realistic descriptions of
the infectious period – including constant, gamma-
distributed or data-driven infectious periods – were found
to alter the model results by reducing the probability of

Figure 7 Case with immunity. Threshold condition R* = 1 as a
function of the across-groups mixing ɛ and of the children fraction α
for Europe (panel A) and Mexico (panel B): comparison of the no-
immunity case with the case of pre-existing immunity and of travel
reduction, modeled by setting w0 = 0.5, consistently with the
empirically observed drop to/from Mexico during the early stage of
the 2009 H1N1 pandemic [37]. Here we consider: R0 = 1.2 in Europe
and R0 = 1.4 in Mexico, i.e. the lower bound of the reproductive
number estimated for the country from the initial outbreak data [2].
All travelers are adults (r = 0). The three lines, continuous red,
dashed red and continuous blue, correspond to pre-existing
immunity, no-immunity and travel reduction, respectively. Global
epidemic invasion region is above each critical curve. The patterned
gray area refers to the region of parameter values that do not satisfy
the consistency relation ɛ < min {α, η(1 − α)}.
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extinction. Such findings were however obtained in a sin-
gle population model with homogeneous mixing [66] and
in a two-population model coupled by mobility, where, on
the other hand, individuals were allowed only one trip, i.e.
to change only one time their subpopulation [67]. Such
modeling approaches and corresponding results are not
applicable to our case, and a systematic understanding of
the impact of the infectious period distribution on the
probability of extinction in a metapopulation model is still
missing.
Our analytical approach also assumes that the import-

ation or the emergence of an infectious disease is highly
localized at the beginning of the outbreak, so that it is
possible to approximate the spatial spreading process in
terms of a branching process evolving in a set of sub-
populations not yet affected by the disease. This is simi-
lar to the approximations used to calculate the basic
reproductive number in a fully susceptible population,
and it is required to treat the model analytically. While
this assumption can generally be considered as a good
approximation to describe the early phase of an out-
break, more complicated seeding events may occur that
would require numerical approaches able to explicitly
take into account the initial conditions and assess the
epidemic risks.
Our model is fit to demographic statistics of a set of

countries and it is informed with H1N1 epidemic esti-
mates to provide quantitative information on the risk for
the pandemic invasion in such countries. However, in all
our predictions we assume the same population structure
(α), contacts and mixing profiles (ε, η), and travel behavior
(r) across all subpopulations of the metapopulation sys-
tem, as informed by the data for a given country. We con-
sider this approximation a reasonable one for regions
characterized by population features that are quite uni-
form across space, for instance if we consider the subpop-
ulations within a given country; already at the European
level we noticed how small variations in demographic fea-
tures and mixing patterns may be responsible for diverse
outcomes regarding extinction or invasion, and additional
layers of heterogeneities need to be considered when
variations among populations within the system are larger
(e.g. regarding travel behavior per age class, as shown in
Figure 1B). This could be achieved by considering
subpopulation-dependent variables {αi, εi, ηi, ri} (with i in-
dicating the subpopulation), however preventing an ana-
lytical treatment to solve the system due to the additional
complications considered, thus requiring the use of nu-
merical approaches.
Recent work relying on large-scale transmission

models has explored the ability of these approaches to
predict the timing of spread of the 2009 A/H1N1
influenza pandemic around the world [68]. Differently
from these numerical approaches that can describe the

geotemporal propagation of the infectious disease in the
population, our model does not provide any temporal
information on the epidemic unfolding in that all dy-
namical aspects are synthetically summarized in a
branching process leading to the condition for global in-
vasion. On the other hand, given the relevance of demo-
graphic profiles, mixing patterns and age-specific travel
resulting from the present study, it would be important
to further extend large-scale spatial transmission com-
putational models to include such features. While com-
putationally feasible, the main limitation nowadays is
represented by the availability of mixing data and travel
behavior for a large set of countries, given a global level
objective. This further supports the need to have mul-
tiple modeling frameworks that can complement each
other in providing important information to characterize
an emerging epidemic and its associated risks and impact.
Finally, we note that changes in time of population be-

havior as a response to the ongoing outbreak cannot be
dynamically incorporated in the model. These may refer
for example to changes in the contact patterns due to
self-awareness or changes at the community level due to
the implementation of intervention strategies to control
the epidemic [49,69-73]. On the other hand, these sce-
narios can be separately studied with the model, assum-
ing each of these features to be constant in time, in
order to assess the effect of such changes on the corre-
sponding risk of a major epidemic. As possible applica-
tion examples we provided model predictions for
different mixing patterns related to school terms and
school holidays during H1N1 pandemic, as well as uni-
form travel restrictions that may result from self-
impositions, national guidelines or travel bans. Future
studies will focus on other historical epidemics, like e.g.
the case of the 2002–2003 SARS outbreak, in order to
explore which mechanisms, among the ones included in
this approach and related to the applied interventions
or to individual’s self-adaptation, hindered a fully global
transmission of the disease.

Conclusions
The 2009 H1N1 pandemic represents an example of the
important role that age classes have on the local and
global spread of the disease during its early stage; the
local outbreaks being mainly driven by children leading
to epidemics in schools, whereas the adults were mainly
responsible for the international dissemination by means
of air travel. We introduced and solved a multi-host sto-
chastic metapopulation model to quantify these aspects
and characterize the conditions of the population parti-
tion and heterogeneous travel behavior that lead to the
pandemic global invasion. Notwithstanding the high
level of assortativity observed in contact patterns data by
age, that increase the probability of pandemic extinction,
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the model explains the spread at the global level ob-
served in the 2009 H1N1 pandemic as induced by the
interplay between the heterogeneity of the air mobility
network structure, favoring the spread, and the popula-
tion partition. A major epidemic is always achieved for
R0 ≥ 1.2 even in the case children are assumed not to travel,
when the model is parameterized with European countries
data and statistics. Results are also consistent with the oc-
currence of sporadic outbreaks in continental Europe dur-
ing summer 2009 and widespread transmission in the UK,
once the model is informed with the substantial reduction
in transmission associated to school holidays.
Despite the presence of various other epidemiological fac-

tors that may influence the epidemic outcome, our results
suggest that the variations of demographic and mixing pro-
files across countries are an important source of heterogen-
eity in the epidemic outcome. This applies in particular to
the contacts ratio that is observed to vary significantly and
to have a large impact on the invasion potential. Such find-
ings calls for the need to develop further studies in order to
identify the social factors that affect this parameter and de-
sign targeted interventions, such as work-related measures,
that may lower it, thus reducing the risk of an outbreak.
Given the availability of data regarding demographic,

mixing and travel profiles, the model results can be used
to assess the risks of a given outbreak scenario in a spe-
cific country for a newly emerging pathogen. Collecting
data on population partitions and mixing matrices or de-
veloping alternative methods to estimate the contact pat-
terns based on the demographic information available
[25,74] is therefore important to make this approach
applicable to a larger range of scenarios, as shown with
the example of the US integrating synthetic contact in-
formation [25].
Though based on simplifying assumption, the model

is able to account for the heterogeneities in the spatial
distribution of the population, in the mixing patterns
and in the travel behavior, and provide a solution to as-
sess the risk of a major epidemic. We considered a def-
inition for the children age class up to 15 or 18 years
old, justified by the available data and statistics, however
the approach is transparent to this choice and analo-
gous results to the ones presented can be reached by
informing the model with a different definition of clas-
ses, as long as statistics informing the groups-specific
parameters α, ε, η, and r are available. The approach
represents a general framework that can be applicable
to other case studies and host population partitions that
do not depend on age, such as for instance mixing pat-
terns and travel behaviors depending on socio-
economic aspects, or contact profiles and mobility
within specific settings where classes correspond to pro-
fessional roles or conditions of individuals (e.g. health-
care workers and patients in hospitals).
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