170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 50 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 ## 170553 60 = \$35050 Aspartic protease in leaves of common bean (*Phaseolus vulgaris* L.) and cowpea (*Vigna unguiculata* L. Walp): enzymatic activity, gene expression and relation to drought susceptibility Maria H. Cruz de Carvalho^a, Agnès d'Arcy-Lameta^a, Harold Roy-Macauley^b, Monique Gareil^a, Hayat El Maarouf^a, Anh-Thu Pham-Thi^{a,c}, Yasminc Zuily-Fodil^{a,*} * Suboratoù e de Biochemia et Physiologie de l'Adaptation Végétale. Université Paris 7 Denis Diderot. 2 place Jussieu euro ** 10, 7525 (P. 11). Conce place France CERAASICORAF BP 3320, Thins Senegal CMR 2832 CNPS UFF les Sciences de la Vic Université Pierre et Marie Carle à place Justieu 25252 Paris Cedex 25 Diane. Received 31 January 2001, accepted 19 February 2001 First published online 2 March 2001 Edited by Marc Van Montagu Abstract Four cultivars of related species, common bean and cowpea, which exhibit different degrees of drought resistance, were submitted to water stress by withholding irrigation. Drought induced an increase in endoproteolytic activity, being higher in susceptible cultivars (bean) than in tolerant ones (cowpea). An aspartic protease activity was found to be strongly induced especially in bean. From a cowpea leaf cDNA library, a full length aspartic protease precursor cDNA was obtained. Transcript accumulation in response to water stress indicated that the expression of the gene was constitutive in cowpea and transcriptionally up-regulated in bean. The results showed that crought-tolerant and drought-susceptible bean plants differ regarding aspartic protease precursor gene expression. 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved Vey weres. Drought stress, Endoproteolytic activity. Aspartic protease precursor cDNA, Cowpea (Vigna erguiculata L. Walp), Common bean (Phaseolus vulgur y U.) ### Introduction Aspartic proteases (APs, EC 3.4.23) are members of a class of endopeptidases with acidic pH optima that are inhibited by pepstatin A. APs include animal pepsin, renin and cathepsin D, fungal penicillopopsin, yeast protease A, and HIV protease. They have a conserved three dimensional structure with a obstrate binding cleft between the two lobes of the structure. Two conserved Asp residues are specifically involved in the latalytic cleavage of peptide bonds between amino acid residues with large hydrophobic side chains (1,2). APs are synthesized as zymogens and they are self-processed to yield the active enzyme [1]. Lattic is known about the biological function of APs in plants [2,4]. It has been suggested that an AP could be included in the digestion of insects in Neparther [5], in the deg- radation of plant proteins in response to pathogens [6, 7], during development processes [8-10] and senescence [11,12]. In mammahan cells, the lysosomal pathway is responsible for the enhanced protein degradation observed under stress conditions [13] Protease activities involved in plant response to vater stress have received little attention particularly in legiones. Taking this into account, we have used a previously developed plant system [14,15] to check whether or not endoproreases (protease) are involved in water stress plant response and if so to determine if it is related to plant drought susceptibility. The plant system consists of related bean plants (common bean and cowpea) which show different drought resistance capacities under field conditions [14]. Previous physiological studies have shown that the cowpea cultivars establish adaptive strategies under drought which are absent in the more susceptible bean species [16,17]. Drought resistance for susceptibility) of these plants correlated well with their telerance at the cell level, in terms of membrane integrity [14] and membrane lipid degradation [18,19]. Water deficit results in a loss of proteins in soluble, membrane and chioroplast cell fractions, being dependent on the intensity of water stress and being higher in susceptible bean cultivars than in tolerant cowpea cultivars [15]. Proteolysis during plant senescence is well documented [20,21], but little is known about the nature of endoproteases involved in water stress response [15,22], and their physiological significance. In order to characterize the endoproteases we have assayed specific endoproteolytic activities in soluble leaf extracts using class-specific inhibitors. The results showed that an AP is involved in the degradation process induced by water stress. To identify the gene, a cONA library from competal leaves [19] was screened. A cDNA encoding a putative latteright AP precursor was isolated. The accumulation of the competal aspartic precursor mRNA was studied in the case of the four cultivars of the plant system, submitted to various degrees of water deficit. "Corresponding author, Fox. (33-1-44276068, show different drought resistance capacities under field conditions, namely two cultivars of cowpea - Vigna unguiculata L. Walp cv. EPACE-1 and cv. IT83D and two cultivars of common bean - Phaseolus vulgaris L. cv. Carioca and cv. IPA. Cowpea cultivars are more tolerant than bean cultivars: EPACE-1 > IT83D > IPA > Carioca (15,16) Plants were grown in green house as previously described [15]. Drought stress was induced by withholding watering for 7-10 days in 21 day old plants. Experiments were carried out on the second fully expanded leaf. Three stress levels of water deficit were defined: S_1 , S_2 , S_3 : $\psi_{\infty} = -1.0$, -1.5, -2.0 MPa, respectively (control plants C: $\psi_{\infty} = -0.3$ MPa). They were measured using a pressure chamber (PMS ECS Instruments) [23]. In recovery experiments, S_2 plants were re-hydrated (R) and harvested 24 h later ($\psi_{\infty} = -0.3$ MPa). Abscissic acid (ABA) treatment was carried out on detached leaves with petiole soaked in 0.1 mM ABA, 10 mM Tris buffer pH 7.0 for 24 h, control in buffer [24] ### 2.2. Endoproteolytic activity Leaves (1 g) were frozen in liquid nitrogen with insoluble polyvinylpyrrolidone (0.2 g g ¹ FW), homogenized in 5 ml 50 mM Tris-HCl buffer pH 7.5, 5% (v/v) 2-morpholinoethane-sulfonic acid and filtered (nylon nets 60 and 100 µm pore sizes, Monyl, Polylaho, Strasbourg, France). The filtrate was centrifuged (15 000 × g. 10 min, 4°C, Beckman Ultracentrifuge L5 50R) and the supernatant was used as crude enzyme extract (CE). Endoproteolytic activities were assayed using ¹⁴C-methylated casein [25] as a substrate (10.6 µC) (mg protein)⁻¹. Sigma) at pH 4.5 20 µl of CE and 80 µl ¹⁴C-methylated casein in accetate-acetic acid buffer pH 4.5 were mixed and incubated during 3 h at 37°C. The reaction was stopped by adding 10 µl of 2% bovine serum albumin (BSA) (w/v) and 90 µl of 10% trichloroacetic acid (TCA) (w/v). The TCA-soluble radioactivity was measured in the supernatant (Liquid scintillation analyzer 1600 CA, Packard). The endoproteolytic activity was expressed as µg of ¹⁴C-methylated casein hydrolyzed (mg protein)⁻¹ h #### 2.3. Inhibition of endoprotease activity Experiments were carried out using control and S: plants of bean ev. Carioca. Class-specific protease inhibitors (26) were used: 2 inM phenylmethane sulfonyl fluoride (PMSF, serine protease inhibitor). 0.15 mM pepstatin A (specific AP inhibitor), 1 mM para-chloromercuribenzoic acid (pCMB, cysteine protease inhibitor) and 10 mM EDTA (metalloprotease inhibitor) CE was partially purified (PE) by precipitation with 80% (w/s) ammonium sulfate, desalted by Sc. phadex G-25 (Pharmacia, Uppsala, Sweden) gel filtration followed by anion-exchange chromatography (Mono Q HR 5/5, Pharmacia, Uppsala. Sweden). PEs were preincubated separately with inhibitors for 1 h and 30 min at 4°C at the appropriate pH optima and endoproteolytic activities were measured using 14C-methylated casein as above. Results are expressed as percentage inhibition defined as the difference between the enzymatic activity after incubation without inhibitor (EA₀) and that with inhibitor (EA), expressed in percent $[(EA_0 - EA_1)/EA_0] \times 100$ #### 2.4 AP activity ossay AP activities were determined in leaf enzyme extracts (UE) which were brought to a final volume of 1 ml with 0.1 M sodium acetate HC) pH 3.0 buffer. The reaction was initiated by adding a synthetic substrate Pro-Thr-Glu-Phe-(NO₂-Phe)-Arg Leu (Novabiochem, Switzerland) to a final concentration of 0.3 m/M, according to [27]. After 15 min at 37°C, the absorbance (A) was measured at 310 nm (Perkin Elmer). AP activity was expressed in AA₂, (mg protein) min⁻¹. Protein content was determined using the Bio-Rad protein assay reagent (Bio-Rad, Richmond, USA [28]) with BSA as a standard. # 2.5. cDNA claning and sequence analysis Primers corresponding to AP preautsor consensus regions were used in PCR amplifications using cDNA of Vir S₂ as a template (cDNA synthesis kit, Amersham). The amplified DNA fragment was purified (Wizard PCR Prep. Promega) and cloned in the pCRII plasmid (T/A cloning kit, Invitrogero, A. Zirp-Lox (Gibco-BRL) cDNA intrary constructed from mRNA of coupea plants [19] was screened and the longest positive plasmid clone was obtained after excision in vivo in DHI0B(ZIP). Excheric him colif cells. Sequencing was carried out on one strand using the dideoxy chain-termination. method [29] with the Oncor sequencing kit (Appligene). The other strand was sequenced by ESGS (Paris, France). Results were analyzed with the PC/gene program (Intelligenetics Inc., Mountain View, CA, USA) #### 2.6. mRNA isolation and Northern blotting Bean and cowpea leaves (6 g FW) frozen in liquid nitrogen were used for total RNA extraction [30]. mRNA was obtained using Oligotex columns (Qiagen) according to manufacturer's instructions. 3 µg mRNA of each treatment was separated on a 1% agarose-formaldehyde gel and transferred to nylon membrane (Hybond-N, Amersham) and hybridized with a ¹⁷P-labeled DNA probe of 330 bp obtained by PCR cDNA amplification between oligonucleotides corresponding to amino acids 20-130 of cowpea AP cDNA VuAPI. RNA loading was checked by re-probing the membranes with ntS19 (encoding S19 ribosome protein from Nicotuana tabacum). #### 3. Results #### 3.1. Leaf endoprotease activity under water stress In control plants (water potential: $\psi_w = -0.3$ MPa), activities of endoproteases assayed using ¹⁴C-methylated casein were not significantly different in bean and cowpea cultivars (Fig. 1). In mildly stressed plants (S₂: $\psi_w = -1.5$ MPa), withholding irrigation led to increased activity in bean ev. Carioca (+235%), JPA (+119%) and cowpea ev. IT83D (+95%). Lower values were obtained for the more tolerant ev. EPACE-1 (+58%) ## 3.2 Characterization of an AP activity The percentage of inhibition of proteolytic activities, induced by class-specific inhibitors, was determined in watered and stressed plants in the case of the more drought-susceptible cultivar of the plant system, cy. Carioca. Proteases are classified as cysteine (CP), aspartic (AP), serine (SP) and metalloproteases (MP) as defined by Barrett [26]. The experiments were conducted using partially purified (PE) leaf extracts of control ($\psi_0 = -0.3$ MPa) and S_2 ($\psi_a = -1.5$ MPa) plants of bean Carioca (Fig. 2). EDFA (metalloprotease inhibitor) did not result in any change in percentage inhibition of endoproteolytic activity, in either watered or non-watered plants, thus excluding significant contributions from metalloproteases in Fig. 1. Endoprotocyte activities in crude leaf extracts from control and water-stressed *Physiothis* and *Vigna* plants. The activities were measured at pH 4.5 and expressed as μg^{-14} C-methylated casein bydrolyzed (mg protein)¹¹ h¹¹. The leaf extracts were obtained from control (C. $\psi_{\alpha} = -0.3$ MPa) and water-stressed (S₂: $\psi_{\alpha} = -1.5$ MPa) plants. Values are means of three replicates from a representative experiment. ies s'extracts. Sonne and cysteine protease activities, as identifiere by their respective inhibitors, PMSP and pCMB, decreased in stressed plants as compared to controls. Pepstatin A a class specific AP inhibitor, resulted in a weak inhibition of endopre teolytic activity in leaf extracts of watered plants, in licating a low level of AP activity in unstressed plants. However, in the stressed plants, 25% of the total proteolytic activity was inhibited by pepstatin A, showing that the level of AP activity is dramatically increased in bean Carioca leaves under these conditions of water deficit. ### 3 AP activity under water stress Experiments were performed on control ($\psi_w = -0.3 \text{ MPa}$) and S_2 ($\psi_x = -1.5 \text{ MPa}$) bean and cowpea plants. A peptide substrate specific for APs, Pro-Thr-Glu-Phe-(NO₂-Phe)-Arg-log, was used to assay their activity in partially purified leaf extracts evolution proteins which precipitate at pH 3.0) (Fig. 3). The results showed that water deficit significantly stimulated AP activity, the stimulation being higher with increasing plant sensitivity to drought stress (see Section 2). ## 34 Cloving and sequence analysis of a cDNA encoding a pugative AP procursor of cowpea Primers: 5'-GGNTGYGC1GCTATHGCTGA (sense) and z = CCCATRAANACRTCNCC (antisense), where N = A/C/CGeT, H = A/T/C, R = A/G, Y = C/T, were designed according 1. AP precursor consensus sequences of bailey (GenBank accession no. X56136), cardoon (X81984) and rice (D12777). The 612 bp long probe was used to screen a cDNA library constructed from cowpea leaf (19). A full length clone of 1842 to was holated, sequenced and referenced as VuAP1 (Genbank accession number U61396). The open reading frame encodes a 513 amino acid protein with a calculated molecular class of 55.4 kDa and a predicted pl of 5.6. VuAPI has highly conserved regions in the two catalytic domains with identical position and length as compared to the conserved regions of tracles (X5(n36) [31], cardoon (X81984) [32], Brassica napus (U55032) [33], Arabidopsis (haliana (U51036) [33] and rice D12777 [9], FuAPI showed 74 785; sequence identity with these plant AP precursors. A signal was detected at the ami- by 2. Edge of class-specific processe inhabitors on endoproteory is specific activity in partially purified leaf extracts from control and (x,s) or (x Fig. 3 AP activities in V, unguirulate and P -vulgares crude leaf extracts (CE). A specific substrate Pro-Thr-Glu-Phe-(NO₂-Phe)-Arg-Leu was used. The specific AP activity was expressed as $\Delta A_{\rm eff}$ (mg protein)⁻¹ min⁻¹. The leaf extracts were obtained from control (C+ ψ_A = -0.3 MPa) and water-stressed (S+ ψ_A = -1.5 MPa) Phesecutes and Vigna plants. Values are means of three replicates from a representative experiment. no-terminus of Vic4PI, known to be responsible for the (ageting of the protein into the cell vacuole. The production of the cleavage site (Psignal program. Pegene software) gives the best score after C_{24} , conforming to the (-3, -1) rule proposed by Von Heijne [34]. It is followed by a prosequence, characteristic of APs of vertebrate, fungal and plant origin [1]. VuAPI contains a sequence specific to plant APs referred to as PSS (plant-specific sequence) [1]. The two active site aspartic accresidues, one with the Asp-Tht-G y morif and the other Aso Ser-Gly, are consistent with those previously (eported [3]). Two putative N-glycosylation sites were predicted (Pegene Prosite program, Intelligenctics) [35]. Genomic hybridization patterns (data not shown) suggested that the AP precursor gene is encoded by two or more genes in bean, and a single or two genes in cowpea genomes. ## 3.7 Expression of ViaFI mRN4 under water devolutional ABA treatment The effects of three levels of water deficit, as well as it hydration (R), were examined in leaves of bear ev. Carloca and IPA and cowpea ev. EPACE-1 and IT83D. Additional ABA treatment (A-) with control (A-) was carried out using detached leaves. Hybridization was done with a 330 bp long probe corresponding to the 5 region of the VictPi cDN a In bean as well as in cowpea, one band of approximate a 1840 bp was detected (Fig. 4). In the case of bean cultivious transcripts were not detectable in control of an re-hydrated leaves, but appeared under water stress. In IPA the transcript accumulation was similar in St. Sq and St. stressed plants while in drought-susceptible Carnoca the transcript level of creased with increasing stress. The Vir4PI gone showed in sign of being under the control of ABA in bean leaves under our experimental conditions. In the case of compared tive in constitutive expression of transcripts was observed in responsite drought stress, re-hydration and ABA treatment on detached leaves. ### 4. Discussion Although levels of protection, although levels of protection, although all known to be Fig. 4. Northern blot analysis of mRNA of VuAPI (A) under water stress, re-hydration and ABA treatment in P. vulgaris and V. organish at leaves. The membranes were hybridized with a ³²P-labeled 330 bp fragment of VoAPI cDNA under high (V. organization and low iP. vulgaris stringency and with a constitutive mRNA, mS19 probe (B) encoding a constitutively expressed gene of ribosomal protein from N. india and C. control, $\psi_0 = -0.3$ MPa; S. water-stressed. S. $\psi_0 = -1$ MPa; S₂: $\psi_0 = +1.5$ MPa; S₃: $\psi_0 = -2$ MPa; R. re-hydrated after a 14 h max is deficit ($\psi_0 = -0.3$ MPa). For ABA treatment detached leaves were plunged in 6.) mM ABA for 24 h. A+r or water (A=) affected during senescence [36.37], the influence of drought stress is poorly characterized and the relation between plant resistance or susceptibility to drought and protein breakdown has never been established. Using a plant system of four cultivars of common bean and cowpea which differ in their resistance to water stress, we have demonstrated in this study that water deficit induced an increase in endoproteolytic activity that parallels the susceptibility to drought of the cultivar (Fig. 1). Among the different protease classes, exsteine proteinases were shown to be implicated in proteolysis during senescence [38] and under drought [39,40], involvement of APs in senescence of flower petals [12,41] and degradation of pathogen-related proteins [6] was also reported. In this work, the use of class-specific inhibitors has enabled the water stress-stimulated activity in bean Carloca cultivars to be identified as being mainly due to AP (Fig. 2). The highest stimulated specific AP activity was obtained in the case of the more susceptible bean cultivar (Carioca, Fig. 3). Screening a cDNA library from cowpea leaves led to isolation of a full length cDNA referred to as *VuAP1*, encoding a putative AP precursor showing a high level of similarity to cDNAs of other plant APs. Analysis of the deduced *VuAP1* amino acid sequence showed a PSS of about 100 amino acids not found in yeast or mammalian enzyme homologues. These residues are positioned in the same regions as in other plant AP precursors. The PSS sequence is very similar to that of saposin, a sphingolipid-activating proteins from mammalian cells which is involved in targeting proteins to lysosomes [42] and has been suggested to be a vacuolar targeting determinant [43]. It may target proteins to a newly characterized bytic compartment of plant cells called \$\alpha\$-TIP PSN [44]. Recembly experiments with recombinant expression expressed in *Pichn* pastorit showed that PSS is essential for the correct tolding of the protein [45]. Northern and Western experiments showed ther title demants increase of AP enzymatic activity in bean cultivars correlated with the stimulation of gene expression. Fig. 4) and increased the content of a 36 kDa putative mature AP enzymetorm (data not shown). On the contrary, in cowpea cultivars the level of transcripts (Fig. 4) as well as that of AP precursor protein (data not shown) remained unchanged. The observed change in enzymatic activity induced by drought in this species could therefore be due to posttranslational modifications of the immature enzymic form (zymiogen processing/activation [1]) It is interesting to underline that the drought-susceptible and the drought-tolerant plants display different stimulation of AP activity. The capacity of the drought-tolerant cowposicultivars to maintain enzyme stability under water stress conditions could result from their ability to retain states in the protoplasm [16]. These plants are also able to regulare AP enzyme activity at the level of gene expression (Fig. 4). Of the contrary, in susceptible common bean plants, drought induced excessive AP activity (Fig. 3) which probably hales to the deregulation of the balance between catabolism and phabolism. In these susceptible bean plants, a rapid reduction of CO; assimilation occurred during water stress [6,17], 15. hibition of photosynthesis may lead to nitrogen starvation during prolonged water stress. The observed enhanced AP activity in droughted leaves could be involved in the protestypic process of organic nirrogen remobilization to other part. of the plant, notably to the reproductive organs. Plant species as common been and tomato respond to extended periods of drought with prematate flowering and fruit production [46] and nitrogen remobilization [47]. The successful engineering of plants with the cloned AP precursor VuAPI cDNA could help to enlighten the role of this enzyme in plant response to drought stress. schnoul dgements. The authors wish to thank Prof. R. Esnault and his group (ISV, CNRS, Gif sur Yvette, France) for kindly providing protocols. Thanks are also again to Prof. R. Esnault, to Prof. E. Miginiac (BCMP, UMR 7632, Université Paris 6 Pierre et Marie Curie, Paris, France) for critical reading of the manuscript, Prof. R.H. Pain (Josef Stefan Institute, Ljubljana, Slovenia) for reviewing the manuscript and language editing and Dr. N. Chaubet-Gigot (IBMP, Strasbourg, France) for kindly providing the ntS19 constitutive probe. This work was supported by the European Union (Science and Technology for Development programs). M.H.C.C. received the Grant PRAXIS XXI/BD/9149/96 (Portugal). #### References - [1] Davies D.R. (1990) Ann. Rev. Biophys. Biochem. Chem. 19. 189-215. - [2] Kervinen, J., Sarkkinen, P., Kalkkinen, N., Mikola, U. and Saarma M (1993) Phytochemistry 32, 799-803. - [3] Mudu, A. and Gal, S. (1999) Physiol. Plant 105, 569–576. - [4] Brzin, J. and Kidrio, M. (1995) Biotechnol. Genet. Eng. Rev. 13. 422-462 - [5] Tönes, Z.A., Woon, W.C. and Chambers, S.M. (1974) Planta 119, 39-45 - [6] Rodrigo, L. Vera, P. and Conejero, V. (1989) Eur. J. Biochem 184. 663-669 - [7] Rodrigo, L. Vera, P., Van Loon, U.C. and Conejero, V. (1991). Plant Physiol 95, 616-62. - [8] D'Hondt, K., Bosch, D., Van Damme, J., Goethals, M., Van dekerokhove, J. and Krebbers, E. (1997) J. Biol. Chem. 268. 20884 20891 - [9] Asakura, T., Wataraba, H., Abe, K. and Arai S. (1995) Eur. ! Brochem, 232 77-33 - 10] Runeberg-Roos, P. Kervinen, J., Kovaleva, V., Rail hal, N.V. and Gal. S. (1994) Plant Physiol. 105, 321-329. - [11] Buchanan-Wollaston, V. (1997) J. Exp. Bot. 48, 181 (199) - [12] Panavas T., Pikula, A., Reid, P.D., Rubinstein, B. and Walker F. (1999) Plant Mol. Biol. 40, 237-248. - [13] Dice, IF (1987) FASEB 1 1, 349-357 - [14] Vasquez Tello, A. Zuilly-Fodil, Y., Phanc Thi, A.J. and Vicira da Silva, J. (1990) J. Exp. Bot. 228, 827-832 - [15] Roy-Maranicy, H. Zudy-Fodil, Y., Kidric, M., Pham-Th. A.T. and Vierra do Sáva 3 (1992) Physiol. Plant 55, 90-96. - [16] Cruz de Carvalho, M.H., Laffray, D. and Louguet P. (1996) Fiviron Exp. Bot 40, 197-207. - [17] França, M.G.C., Pham-Thi, A.T., Pimmitel, C., Rossiello, R.O.F., Zuily-Fedil, Y. and Laffray D (2000) Environ Exp. Bot 43, 227-237 - [18] Sahsali, Y., Campos, P., Garcil, M., Zuily-Fodil, Y. and Pham Thi, A.T. (1998) Physiol. Plant 104, 577-586. - [19] El Maarouf, H., Zuily-Fodil, Y., Gareil, M., d'Aray-Lameta, A. and Pham-Thi, A.T. (1999) Plant Mol. Biol. 39, 1257-1265. - [20] Huffaker, R.C. (1990) New Phytol. 116, 199-233 - [21] Buchanan-Wollaston, V. and Ainsworth, C. (1997) Plant Mo. Biol. 33, 821-834. - [22] Khanna-Chopra, R., Srivalli, B. and Ahlawat, V.S. (1999) Bic chem. Biophys. Res. Commun. 255, 324-327 [23] Scholander, F., Hammel, H.T., Hemmingsten, E.A. and Brad - street, E.D. (1964) Proc. Natl. Acad. Sci. USA 52, 119-125. - [24] Scotti-Campos, P. and Pham-Thi, A.T. (1997) Plant Sci. 130, 11 - [25] Donnelly, W.J., Barry, J.G. and Richardson, T. (1980) Biochim Biophys Acta 626, 117-126. - [26] Barrett, A.J. (1986) in: Plant Proteolytic Enzymes (Dallin, M.) Ed.), pp. 1-16, CRC Press Inc., FL. - [27] Galleschi, L. and Andreoni. U. (1990) Plant Physiol. 28, 793-79. - [28] Bradford, M. (1976) Anal. Biochem. 72, 248-254. - [29] Sanger, F., Nicklen, S. and Coulson, A.R (1977) Proc. Natl Acad. Sci. USA 74, 5463-5467. - [30] Hall, T.C., Ma, Y., Buchbinder, B.U., Pyne, J.W., Sun, S.M. and Bliss, F.A. (1978) Proc. Natl. Acad. Sci. USA 75, 3196-3200. - [31] Runeberg-Roos, P., Törmäkangas, K. and Osiman, A. (199) Eur. J. Biochem 202, 1021-1027. - [32] Cordeiro, M.C., Xue, Z.T., Pietrzak, M., Pais, M.S. and Brodelius, P.E. (1994) Plant Mol. Biol. 24, 733-741 - [33] D'Hondt, K., Stack, S., Gutteridge, S., Van Bekerckhove Krebbers, E. and Gal, S. (1977) Plant Mol. Biol. 33, 187-192 - [34] Von Heijne, G. (1986) Nucleic Acids Res. 14, 4583-4590. - [35] Costa, J., Ashford, D.A., Nimtz, M., Bento, L. Frazão (Esteves, C.L., Faro, C.J., Kervinen, J., Piros, E., Verissimo, I. Wlodaver, A. and Carrondo, M.A. (1997) Eur. J. Bicchem. 243 693-700. - [36] Vierstra, R.D. (1993) Ann. Rev. Plant Physiol. Plant Mol. 96 44, 385-410. - [37] Vierstra, R.D. (1996) Plant Mol. Biol. 32, 275-380 - [38] Nob. V.S. and Amasino, R.M. (1999) Plant Mol. Biol. 41, 15 194 - [39] Koizumi, M., Yamaguchi-Shinozaki, K., Tsuge El. and Shinove ki, K. (1993) Gene 129, 175-182. - [40] Jones, J.T. and Mullet, J.E. (1995) Plant Mo., Biol. 28, 1055 - [41] Domingos, A., Cardoso, P.C., Xue, Z.T., Clemente, A., Brode hus, P E and Pais, M.S. (2000) Eur J Biochem 367-5824-687 - [42] Staab, J.F. Ginkel, D.L., Rosenberg, G.B. and Munford, R.S. (1996) J. Biol. Chem. 269, 23736-23742 - [43] Guruprasad, K., Törmäkangas, K., Kervinen, J. and Blunder T.L (1994) FEBS Lett 352, 131-136 - [44] Paris, N. Stanley, C.M. and Jones R. I. (1996) Cell 85, 563-51. - [45] White, P.C., Cordeiro, M.C., Arnold, D., Brodehus, P.E. and Kay, J. (1999) J. Biol. Chem. 274, 16685-16693 - [46] Becker, T.M., Hoppe, M. and Fock, H.P. (1985) Photosynthesis 30, 153, 157 - [47] Bauer, D., Biehler, K., Fock, H., Carrayol, E., Hirel, B., Miyas A and Becker, T.W. (1997) Physiol. Plant 39, 241-248.