(T.D./M.S.)

DOCUMENT N. 58/83

MAI 89

SERVICE DE PHYTOCHIMIE DU MIL ETUDE COMPARATIVE DU COMPORTEMENT DE QUELQUES POPULATIONS DE MIL

par

T. DIOUF

Physiologists ISRA/CNRA Bambay

collaboration technique ND. FAYE - I. DIEYE

SOMMAIRE

р	a ges
I • I NTRODUCTI ON.	1
II- MATERIEL ET METHODES	1
2.1 Matériel	1
2.2 Mét hodes	1
2.2.2 Conditions d'expérimentation en champ,,,	2
2.2.2.1. * Variations locales	2
2.2.2.1.1 Caractéristiques des pluiss examesant en caractéristiques des	2
2.2.2.2 Données climatiques do la campagne de Juin à Octobre 1981	2
2.2.2.3 Caractéristiques agrochimiques dos soles	2
2.2.2.4 Semis	2
2.2.2'5 Mesures	2
III - RESULTATS	2
3.1 Oétermination de la résistance relative à la sécheresse	4
3.2. → Teneur en pigments	5
3.3. • Mouvement de l'eau « » « » » » « » » « » » « » » » « » » « » » » « » » « » » « » » » « » » « » » » « » » » « » » » « » » » « » » » « » » » « » » » « » » » « » » » » « » » » » « » » » » « » » » » » « » » » » » « » » » » » « »	
3.44 - Surface foliairs	t 🐉
3.5. w Evolution de la matière sèche	
3.5.1 Ni oro	
3.5.2. mBambey. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3. 5. 3. ► Louga • ≥ • • • • • • • • • • • • • • • • •	13
3.6 Dynamique et Répartition des éléments minéraux par organe et par stade de développement	14
	≤14
3.6.1.1. • Montai son	14
3.6.1.2 Epiaison	14
3.6.1.3. • Floraison ••••••••••••••••	14
3.6.1.4. • Stade laiteux ••••••••••••	14
3.6.2 Bambsy	14
3.6.2.1 Montai son ••••••••••••••••••••••	14
3.6.2.2 Epiason	74

	3.6.2.3. * Floraison	14
	3.6.2.4. • Stade laiteux,	14
	3.6.3. m Louga	15
	3.6.3.1. ≈ Montaison	15
	3.6.3.2 Epiaison.	15
	3.6.3.3 Floraison,	15
	3.6.3.4. • Stade laiteux zz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	15
3.1.	Exportations	15
	3Jr7.1. W Nioro-Accessors to the second seco	15
	3.7.1.1 Azots	15
	3.7.1.2 Phosphora	15
	3. 7. 1. 3, • Potassi um 🕬 👀 👀 💮	15
	3.7.1.4. Calcium	15
	3.7.1.5 Magnésium	15
	3.7.2, - Bambey	16
	3.7.2.1. = Azote	16
	3.7.2.2 Phosphore	16
	3. 7. 2. 3. Potassi um	16
	3.7.2.4 Calcium	16
	3.7.2.5. → Magnésium	16
3.8. 🖛	Rendement	16
	3.8.3 Nioro	16
	3.8.2 Bambey	17
	3.8.3. * Louga	17
IV - DISCUSS	BIONS	17
4.1.	Résistance relative à la sécheresse «	17
4.2.	Teneur en pigments	17
4. 3. ·	Mouvement de leau	18
4.4.	Surface foliaire	18
4.5	Evolution de la matière sèche	18
4.6.	Dynamique et répartition des éléments minéraux par organe et par stade de développement	19
4. 7.	Exportations	19
4.8	Rendement #zzzzzzzzzzzzzzz	19
	4.8.1 Nioro	20
	4.8.2. • Bambey • • • • • • • • • • • • • • • • • • •	20
	4.8.3. ~ Louga	20

	4.8.4.	Structure du rendement	20
		Relations entre les différents paramètres, les populations, les variations locales et leurs influences sur las rendements ELZEZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	
		4.8.5.1 Relations entre paramètres et rendement	21
		4.8.5.2 Relations entre les populations et les variations locales et leurs influences dans les rendements	21
V -	CONCLUSIONS		22
VI-	BIBLIOGRAPHIE		6 0

I - INTRODUCTION

Le mil est en général considéré comme une plante résistante à la sécheresse, dependant le mécanisme de cette résistance n'est pas encore connu.

En effet, par rapport à certaines céréales comme le mars et le sorgho, avec des pluies déficitaires jusqu'à 300 mm, mais bien réparties, la plants de mil peut s'en sortir modestement.

Avec l'introduction de nouvelles variétés et les conditions pluviométriques aléatoires, la nécessite de trouver des variétés adaptées à des zones écologiques bien déterminées, s'imposa,

Ce screening écologique du matériel végétal psrmettra de mieux apprécier les potentialités de production do chaque variété placés dans des conditions pédoclimatiques difficiles.

Le but de l'essai est de trouver des paramètres physiologiques pouvant aiger à faire une classification des mils an vue d'une zonation.

II - MATERIEL ET METHODES

2.1. * Matériel

Le matérial végétal utilisé comporte 18 populations de cycles différents allant do 60 à 90 jours.

1/ - Souna III	10/ = 4 Synt. 60-2
2/ - 3/4 Souna SR	11/ = H9-127
3/ - 3/4 HK SR	12/ = PS 90-2
4/ - 3/4 Ex-Bornu SR	13/ = H24-38
5/ - RC 9G-1	14/ = H7-66
6/ - RC 80	15/ = IBV 7815
7/ - 4 Synt. 75-2M	16/ = IBV 8001
7/ = 4 Synt. 75-2M	16/ - 18V 8UU1
8/ = RC 70-1	17/ - IBV 8004
9/ ~ 7 Synt. 60-3	$18/ - H_4 - 24$.

2.2. - Méthodes

Les essais ont été conduits en laboratoire et en champ,.

2.2.1. - Conditions d'expérimentation en laboratoire

Il a été effectué des tests de germination osmotique au saccharose et au mannitol à 15 et 20 atmosphères. Chaque population de mil a été semée dans une boîte do pétrin au fond de laquelle un papier filtre a été étalé. Chaque population comporte le traitement suivant avec trois répétitions.

- 1 Eau (témoin)
- 2 15 atmosphères avec du saccharose
- 3 20 atmosphàres avec du mennitol.

Les semences sont en provenance des résultats des essais de comportement écologique ayant pour sites Louga, Bambey, Nioro.

La durée de l'exposition à l'étuve est de 48 heures à la température de 30°C.

2.2.2. - Conditions d'expérimentation on champ

En 1981 les essais ont été conduits dans les conditions naturelles sans irrigation de complément dans trois localités : Louga, Bambey, Nioro.

2.2.2.1. • Variations locales : Campagne 1981

2.2.2.1.1. Caractéristiques des pluies

Cette année les pluies sont venues à temps.

Par rapport à l'année dernière elles sont bonnes à Nioro, optimales à Bambey et médiocres 8 Louga.

A Nioro: La sécheresse est intervenue du début jusque vers la fin de la deuxième décade de juillet. A cette époque, les mils se trouvaient au stade tallage ot les réserves du sol en eau étaient suffisantes.

A Bambey: On note trois périodes de sécheresse:

- La première sécheresse a commence à la mi-première décade jusqu'au début de la troisième décade de juillet cofneidant avec la levée. Cette période a été très dure pour les jeunes plantules de mil.
- La deuxième sécheresse a débuté à la première décade de septembre et a duré huit jours.
- La troisième sécheresse s'est étalée vers la fin de la deuxième décade de septembre jusqu'au début de la deuxième décade d'octobre.

Ces deux dernières sécheresses ont été également très dures pour les mils. Elles ont coïncidé avec les stades de formation des organes reproducteurs (floraison, stade laiteux et maturation:

A Louga: On note trois périodes de sécheresse dont les deux dernières ont coincidé avec des stades de développement de la plante de mil très critiques,

La première sécheresse a débuté à la première décade jusqu'au début de la troisième décade de juillet.

La deuxième sécheresse a commence à partir de la mi-première décade jusqu'au début de la troisième décade d'adût coîncidant avec la levée et le tallage.

La troisième sécheresse est intervenue vers la fin de la douxième décado de septembre jusqu'à la fin de la campagne. Cette période a coîncidé avec la formation des organes de reproduction.

2.2.2.2. Données climatiques de la campagne de juin à octobre 1981

Ţ

Tableau 1

Localités	Pluie en m m	Températur moyenne	Humidité relative de l'air en /5"/	Insolation moyenne h/j	Evapora- , tion aau libre bacs mm
Louga	. 253,3	27,19 1	68,28	8,18	7, 52
Bambey	504,7	29	6 7, 56	7,80	6,91
Nioro	785,9	28,42	73,09	7,86	5,39
!	<u> </u>	<u>!</u>			

2.2.3. - Caractéristiques agrochimiques des sols

Tableau 2

			С І -	·					
!	Localité !	PH		Humus	! N	P ₂ O ₅ assim	K ₂ O assim	Ca0 échang	M O échang.
!!!		Eau	Kcl	1 %	! % !	mg/100 g !	mg/100 g···	mg/100 9 	mg/100 9
!	Bambey	6, 131	4,56!	0,48	10,0321	13,03	7,14	26,0	7,11
!	Ni oro	5,80	4,34	0,41	0,045	6 , 77	5,01	20,63	2,70
	Louga !	5, 651	4,20	0,17	0,011	1, 60 !	! 2,71 ! !	13,0 7	2,17
1					!		<u> </u>		1

2.2.2.4. Semis

Les mils ont été semés avec un écartement de 60×60 cm sauf Le Souna III qui était semé avec un écartement de 90×90 cm. Le démariage s'était effectué au 140 jour après le semis avec un pied par poquet.

L'essai comportait quatre blocs randomisés avec quatre répétitions.

Une fumure de 150 kg de 10.21.21 a été appliquée avant le semis avec une couverture d'urée de 100 kg/ha fractionnée au démariage et en montaison.

2, 2, 2, 5. - Mesuras

Durant catto campagne, différentes mesures ont été effectuées dans la but de trouver des paramètres permettent do mieux caractériser la plante de mil,

Il a été déterminé :

- La résistance relative à la sécheresse
- ➡ La teneur en pigmenta des feuilles de mil
- L'état hydrique dos feuilles
- ► La surface foliaire
- Croissance de la matière sèche
- Dynamique et exportations des élémente minéraux
- Structure du rendement,

III - RESULTATS

3.1. - Détermination de la résistance relative à la sécheresse

Elle est exprimée par le rapport entre le taux de germination osmotique et le taux de germination $\bf \hat{a}$ l'eau.

Comme le montrent les résultats du tableau 3, aussi bien au saccharose qu'au mannitol, la tendance générale est que les cycles courts (RC 80,4 Synt 75-2M, RC 70-1, 7 Synt. 60-3, 4 Synt, 60-2) sont moins résistants que las cycles longe (Souna III, 3/4 Souna, 3/4 HK, 3/4 Ex-Bornu, RC90).

Résistance relative à la sécheresse

Tableau 3 : Pourcentage de germination.

!	Fau	l	Saccharose	Eau	Mannitol	Manni tol
Variétés	distillée	15 atmos- phères	eau	distillée	20 atmos phères	eau
! Souna III	1 1 98,0	27, 0	27 , 5	98,6	74,6	75,6!
3/4 Souna , !	91,6	27,3	29,8	95,3	74,0	77,6
1 3/4 HK	91,0	26,3	28;9	94,0	74,0	78 _j 7
3/4 Ex-Bornu	95,0	22,3	23,5	95,3	70,6	74,1
. RC 90	93, 0	26 ,5 !	28,6	94, 0	76,6	81,5
RC 80	95,3	17,6	18,5	94, 0	62 , 0	66,0
4 Synt.75 2M	87,3	1 14,6	16,7	Y6,0	72,6	75,6
RC 70-1	! 91,3	19,6	21,4	92,6	59,3	6,7,4
Synt.60-3	93,3	16,0	17,1	4.9	580	62,6
4 Synt.60-2	85,6	9,0	10,5	86,6	48, 0	55,4
1	İ	<u> </u>	!	!	1	

3.2. - Tenour en piciments

Les résultats de la détermination des pigments ont montré $q\ u\ o\ la$ teneur de ces derniers varie en fonction du stade de développement.

En début de cycle jusqu'à la formation des organes de reproduction on nota une augmentation de la concentration des pigments.

Au stade montaison le rapport chlorophylle a/chlorophylle b tourne autour de 2 tableau 3. Au moment de la formation des organes de reproduction ce rapport est passé à 3 tableau 3. Entre variétés on ne note pas do différence significative.

Au niveau des caroténoïdes, entre variétés on note une différence arithmétique.

Los moyennes intervariétales des trois stades de développementmontaisons - épiaisons - floraison sont successivement - 61,42 - 74,76 -72-27 mg/100 g de matière fraîche tableau 4.

On remarque une baisse à partir do la floraison. Les variétés ayant des moyennes inférieures aux moyennes intervariétales sont les cycles courts : RC 80,4 Synt.75 - 2M, RC 70-1, 7 Synt.60-3, 4 Synt.60-2, H_{24} -38.

Cos résultats confirment un peu les données des tests de germination osmotique.

L'évolution et en particulier l'adaptation, s'accompagne d'une régularité de changements dans l'état des pigments non plastidiques - les authocyanes, Chez las espèces très anciennes la couleur dominante de la corolle est le jaune (Blagoshensky, 1966).

 $\begin{array}{ccc} \text{Rapport} & & \frac{\text{Chlorophylle A}}{\text{Chlorophylle }} \text{A} \\ \hline \end{array}$

Tableau 4

Variétés	! Montaison !	Epiaison !	Fl orai sor
Sauna III	! 2,69 !	3,25 · !	3,32
3/4 Souna	2,53	3 , 4 2	3,17
3/4 HK	2,68	3,53	3,18
3/4 Ex-Bornu	2,76	3,45	3,27
RC 90'	2,72	3,35	3,30
RC 80	2,58	3,34	3,29
4 Synt. 7 5 2M	2,59	3, 28	3, 35
RC 70-1	2,79	3,27	3,31
7 Synt. 60-3	2,66	3,28	3, 06
4 Synt. 60-2	2,74	3,35	2,68
Н9 - 127'	2,78	3,48	3,41
PS 90-2	2,60	3,36	3,29
H ₂₄₋₃₈	2,69	3,37	3,40
H ₇ = 66	2,59	3,27	3,13
IBV 7815	2,73	3, 25	3,29
IBV 8001	2,63	3,28	2,86
IBV 8004	2,72	3,39	3,34
H4-24	2,72	3,44	3,32

Teneur en caroténoïdes des feuilles de mil en mg/100 g de matière fraîche

Tableau 5

Campagne 1981

Variétés	! Montaison !	Epiaison	Floraison !
Souna III	72,80	76,13	69,40
3/4 Souna	56,36	88,57	78,92
3/4 HK	55,34	88,23	74,56
E#-Bornu	75,28	102,7	75,36
$^{ m acc}$ and the section and an experimental and the section and the section and the section $^{ m acc}$ $^{ m$	1 61,76	71,98	72,00
RC 80	45,68	69,92	62,56
4 Synt, 75- 2M	48,18	63,06	59,68
RC 70-1	63,24	59,82	69,80
7 Synt. 60*3	54,50	80,94	61,72
4 Synt. 60-2	50,44	67,44	56,76
H9-127	68,78	87, 40	89,96
P.S. 90-2	70,54	83, 25	83, 28
H24-38	37,40	63,52	65,56
H7-66	62,08	70,02	64,96
IBV 7815	65,44	75,82	75,16
IBV 8001	51,22	58,78	71, 24
IBV 8004	74,20	65,34	75,96
H4-24	72,26	72,68	93,84
Moyenne	61,42	74,76	72,27

D'après la loi biogénétique de "Heakel" cité par Robinson et al (1931-1932), dans l'évolution et la biosynthèse dos anthocyanes, ces dorniers prennent leurs sources à partir des pigments jaunes,

Selon Vavilov (1959), la couleur anthocyanique est un caractère génétique de resistance et l'analyse de l'évolution de l'organisme végétal a montré un important rôle des changements du système des pigments dans l'adaptation des plantes dans les conditions défavorables. Il apparaît intéressant, le rôle physiologique que peuvent jouer les caroténôtes comme approche de 13 résistance à la sécheresse.

3.3. - Mouvement de l'eau

ta toneur totale en eau des feuilles a été plus importante en montaison pour l'ensemble des populations tabloau 5,

Entro populations on ne note pas de différences significatives. A partir de l'épiaison jusqu'au stado laiteux, la tondonco générale est de diminuer.

En montaison, 1s rapport eau liée/eau libre tourno autour de 1. tabloau 6.

En épiaisan, quand l'eau totale commence à diminuer, an observe une diminution de l'eau libre, Le rapport eau libre passa à 3,

En floraison et stade laiteux, on observo une augmentation de l'eau libre. Ces deux stades ont coîncidé avec les sécheresses de la première décade de septembre et fin deuxième décade de septembre. - début deuxième décade d'octobre, On suppose que cette augmentation de l'eau libre est un passogo de l'eau liée à l'eau libre pour permettre à la plante d'assurer son fonctionnement.

A ces stados, le rapport est successivement 2 et 1 chez les populations Souna III, 3/4 Souna, 3/4 Ex-Bornu, RC 90, RC 80, Hg-127, H₂₄-38.

Chez les cycles courts do 60 et **75 jours,** le rapport n'a pas varie et tourne autour de 2.

Chez les populations PS 98-2, H7-66, IBV 7815, la mode de gestion est semblable à celui des cycles courts.

Chez les populations IBV 8004 et H4-24, le rapport n'a pas change en floraison et est resté à 3, Au stade laiteux, :La rapport ast passe à 2. La population IGV 8001 est la seule à avoir un rapport eau liée/eau libre constant égal à 3 aux stades Bpiaison-floraison-laiteux,

De ce qui suit, il convient de dire que choque population a sa façon de géror son eau en fonction des besoins de chaque phase et des conditions auxquelles cotte phase est soumise.

3.4, * Surface foliaire

Les moyennes intervariétales pour les trois stades étudiés montaisonepiaison-floraison sont successivement 5551,487 - 10263,08 - 10443,24 cm2 Tableau 8.

Do la feuillaison à la formation des organes de reproduction la surface assimilatrice des mils croît.

 Teneur en eau des feuilles an pourcentage

Tableau 6

Çampagne 1981 - Bambey.

Variétés !	Montaison !	Epiaison	 Floraison 	_ Stade laiteux
Souna III	81 ,7 7	77,46	73,79	72,70
3/4 Souna	80 , 17	7 7 ; 96	74,75	71,94
3/4 HK	83 , 11	75,84	76,17	72,12
3/4 Ex→Bornu	79,75	76,66	76, 76	77,10
RC 90	80,38	76,57	1 75,46	76,03
RC 80	81 , 56	78,75	77,35	68,38
4 Synt. 75-2M i	82,45	78,06	78;79	75,84
RC 7 0	80,51	77, 09	79,02	75,98
7 Synt. 60+3!	83,25	74,25	75,97	75,30
6 Synt. 60-2	82,44	79, 95	1 \ \74, 49	74,28
H ₉ _ 127	83,54	78,06	74,72	72,86
PS 90 • 2	82,27	76,24	71,32	72,42
H ₂₄ - 38	77,94	72,29	78,09	65,02
"7 = 66	78,70	76,57	75,83	71,08
IBV 7815	81,87	78,79	77,06	76,74
ISV 8001	83,57	76,82	76,85	73,20
IBV 8004	80,48	73,79	75,20	73,64
H ₄ 24	9 0,07	75,02	69,79	74,49

Salance de l'eau dans les feuilles en pourcentage

Tableau 7

Campagne 1981-Bambey

							1	
: ! بر برد ا	! Monta	ison !	Epiai	ison I	Flora	aison	!Stade la	aiteux!
Variét és]	_	1		1	<u> </u>	! 1 !	
Souna III	49,37	32,4	58,86	18,6	52,19	21,6	47,50	25,2
3/4 Sauna	48,97	31,20	60,56	17,4	51,95	22,8	! 41,94!	30,00
3/4 H K	55,51	27,60	54,84	21,00	55,77	20,4	46,92	25,2
3/4 Ex-B.	44,95	34,80	56,26	20,40	51,56	25,2	48,30	28,8
RC 90	51,58	28,80	59,77	16,80	58,06	17,4	47,83	28,2
RC 80	51,56	30,00	59,56	19,20	51,55	25,8	43,18 ¹	25,2
4 Synt.75-21	50,05	32,40	58,86	19,20	56,59	22,2	51,24	24,6
RC 70-1	50,51	30,00	59,09	18,00	56,82	22,2	51,38	24,6
7 Synt.60+3	53,25	30,00	56,25	18,00	52,57	23,4	50,7	24,6
4 Synt. 60-2	52,44	30,00	62,55	17,40	52,29	22,2	53,88	20,4
H ₉ - 127	51,14	32,40	56,46	21,60	51,32	23,4	47,36	25,2
PS 90-2	51,67	27,60	55, <u>8</u> 4	20,40	49,72	21,6	48,42	24,00
H24 - 33	46,74	31,20	50,09	22,20	5 7,6 9	20,4	42,22	22,8
H7 = 66 IBV 7815	-54.27	T27.6		99 H	80 - 5	4. 26	50,68	285 81 85 6, 6
						42,	E > - > 4	25,4
IBV 8001	54,77	28,	BO, 57	7,62	19,20	19,265	7 5	5,17,4
IBV 8005								
H4 - 24	53,67	26,40	57,02	18,00	54,14	15,60	54,09	20,4

Legende: 1 = eau liée on %
L = eau libre on %

Si on considère les moyennes intervariétales par stade de développoment, entre variétés on note des différences arithmétiques qui font ressortir les populations suivantes :

= En montaison = Souna III, 3/4 Souna, 3/4 HK, 3/4 Ex-Bornu 4 Synt. 75-2N, RC 70-1, H₉-127, H₇- 66, IBV 8001, IBV 8004.

60-3, H₂₄ 38, Ten épiaison - Souna III, 3/4 Souna, 3/4 Ex-Bornu, 4 Synt.

= En floraison = Souna III, 3/4 Souna, RC 90, RC 80, RC 70-1, 7 Synt.60-3, $H_9 = 127$, PS 90-2, $H_4 = 24$

Pour los trois stades étudiés, seules les populations Souna III et 3/4 Souna ont dépassé las moyennes intervariétales.

Surface foliaire en cm²

Tableau 8

Campagne 1981 • Bambey

		<u></u>	
Variétés	Montaisan !	 Epi aison ! -	Floraison
Souna III	7099,294	18229.044	18679,672
3/4 Souna	6028,335	13878,839	! 13304,611
3/4 н к	7324,423	11588.560	. 10250, 622
3/4 Ex Bornu	7514, 669	7233, 795	7358, 487
R C 90	4465, 415	. 6456,97	11056, 203
R C 83	4053, 891	5962, 499	. 11537, 433
4 Synt, 7 5 - 2M	7911, 722	9351, 656	10229, 815
R C 70-1	8573, 814	7694, 934	. 10586, 348
7 Synt. 60-3	3855,80	16358,734	12179, 212
4 Synt. 60-2	5482, 178	7285,58	5929, 706
H ₉ _ 227	5769, 176	7638, 446	11723, 121
PS 90-2	3787, 272	8026,091	11202, 194
H24-38	4366, 822	10615,963	7928, 132
H 7 → 66	6748, 371 ,	13643,872	10021,105
IBV 7815	5328, 668 ,	. 1 24 1 8, 5	25 ! 6510, 199
I9V 8001	8081, 605	. ቀጠወቀቀ ፕሬፕ	7/69 671
IRV 8004	9927, 273	15300 , 455	, 7462, 187
Η4 - 24	3931, 108	5140, 1 74	14553,65
Moyenne	5551, 417	10263,085	10443,243

35 - Evolution de la matière sèche

3.5.1. - Nioro

En montaison, la moyenne intervariétale est do 61,79 g. Tableau 9. Les populations dépassant cette moyenne sont : la Souna III, la 3/4 Sounû, la 3/4 H K, la JC 90, la 4 Synt. 75-2M, la RC 70-1, la PS 90-2, la H7-66, la IBV 7815 et la H4-24.

En épiaison, on observe une accumulation de la matière sécha mais à des vitesse différentes. La moyenne intervariétale est de 177,35 g. Les variétés dépassant cette moyenne sont : Souna III, 3/4 Souna, 4 Synt. 75-2M, H9-127, H7-66, IDV 8001 et IBV 8004. Tableau 9.

En floraison, à cause de l'hétérogénéité du terrain chez certaines populations, il n'y a pas de régularité dans l'accumulation de la matière sèche, on trouve des valeurs inférieure au stade prácédent. La moyenne intervariétale est de 210,66 g. Les populations ayant un surplus de matière sèche par rapport à cette moyenne sont : Souna III:, 7 Synt. 60-3, H24-38, H7-66, IBV 8001 et IBV 8004.

3.5.2. • Bambey

En montaison la moyenne intervariétale ost de 32,76 y. Les populations ayant dépasse cette moyenne sont Souna III, 3/4 Souna, 3/4 H K, 3/4 Ex. Bornu, 4 Synt. 75-2M, RC 70-1, H9-127, H7-66, IBV 8001, IBV 8004, Tableau 10.

En épiaison, on observo une augmentation de la matière sèche. La moyenne intervariétale est do 146,36 g. Les variétés ayant accumulé plus de matière sèche sont : 5ouna III, 3/4 Souna, 7 Synt. 60-3, H24-38, H7-66, IBV 8001 et IBV 8004, Tableau 10.

En floraison, la moyenne intervariétale est de 261,05 g. Les populotions dépassant cet-le rnoyenne sont : Souna III, 5/4 HK SH, RC 80, 4 Synt. 75-2M, PS 90-2, IBV 81301 et IBV 8004, Tableau 10. Durant ces stades de développement seules les populations Sounû III, IBV £001 et IBV 8004 ont pu dépasser les moyennes .

3.5.3. - Louga

En montaison, on observe une faible accumulation de la matière sèche. Tableau 11.

La moyenne intervariétale est de 11,0 g. Los variétés ayant dépassé cette moyenne sont : 3/4 HK, 3/4 Souna, RC 70-1, 7 Synt. 60-3, 4 Synt. 60-2, H9-127, H7-66, IBV 7815.

En Floraison, on enregistre une accumulation de la matière sèche. La moyenne intervariétale est de 50,10 g tableau 11.

Les meilleures accumulat**ric**es de matière sèche sont ; Souna III, 3/4 Souna, 3/4 Ex-Bornu, RC 90, RC 80, 4 Synt. 60-2, H9-127, IBV 8004.

Au stade laiteux, on observe une irrégularité due à l'état du lerrain. L'accroissement de la matière sèche est très faible. La moyenne intervariétale est de 67,07 y tableau 11.

Les populations ayant dépassé cette moyenne sont : la Souna III, la RC 80, la 4 Synt. 75-2M, la PS 90-2, la H7-66, la IBV 7895, la IBV 8001, la IBV 8004 et la H4-24.

3.6. - Dynamique et répartition des éléments <u>minéraux par organe et par stade</u> de dévoloppement

3.6.1. - Nioro

3.6.1.1. * Montaison

L'azote, le potassium et le magnésium ent tendance à s'accumuler dans les times, tandis que le phosphore et le calcium se localisent dans les fouillas. En no trouve pns de différence significative entre les différentes populations, tableau 12.

3.6.1.2. - Epiaison tableau 13

On note une diminution de la teneur en NPK chez certaines populations ; le magnésium et le calcium ont tendance à s'accumuler respectivement dans les tiges et les fcuillos. Dans l'ensemble on observe lu méme régularité qu'en montaison dans la répartition des éléments per organe. Le magnésium a tendance à so maintenir.

3.6.1.3. ■ floraison ➡ tableau 14

La teneur en NPK a baissé. Ca et Mg suivant le rythme de la croissance. Au niveau de l'azote on no trouve pas derégularité dans sa localisation pour l'ensemble des populations. P et Ca ont tendance à s'accumuler dans les feuilles, tandis que K et Mg se localisant dans les tiges,

3.6.1.4. - Stade laiteux - tableau 15

NPK ont légèrement baissé. Ca et Mg suivent toujours le rythme de la croissance. NP Ca ont tendance à se localiser dans les fouilles tandis que, K et Mg s'accumulent dans les tiges.

3.6.2. - Bambey

3.6.2.1. - Montaison - tableau 16

La répartition do l'azote et du calcium entre organos varie suivant les populations, PK et Mg ont tendance à s'accumuler dans les tiges.

3.6.2.2. - Epiaison - tableau 17

On observe une diminution de la teneur en N P K, Ca et Mg n'ont pas changé. L'azote, le phosphore et le calcium ent tendance à s'accumuler dans les feuilles, tandis quo K et Mg s'accumulent dans les tiges.

5.6.2.3. ■ Floraison ■ tableau 18

La teneur en éléments minéraux dos différents organes diminue suivant les populations. L'azote, le phosphore et le calcium ont tendance à s'accumuler dans les feuilles, tondis quo le potassium et le magnésium s'accumulent dans les tiges.

Chaz certaines populations 7 Synt. 60-3, 4 Synt. 60-2, H9-127 et PS 90-2 la taneur en azote a tendance à augmenter. La concentration de Ca et Mg croît avec la croissance.

3.6.2.4. - Stade laiteux - tableau 19

On note une légère diminution de la teneur an N PK par rapport au stade précédent, La teneur on Ca et Mgn^t a pratiquement pas varié.

N, P, Ca of Mg s'accumulent dans les fouilles, tandis que K s'accumule dans les tiges.

3.6.3. - Louga

3.6.3.1. - Montaison - tableau 20

Par rapport aux autres localités on observe une légère augmentation do la teneur en azote, tandis que Mg a tendance à diminuer. La teneur on K a beaucoup fluctué. Tous les éléments N, P, K, Sa ent tendance à s'accumuler dans les tiges.

3.6.3.2. - Epiaison - tableau 21

On observe une diminution du la teneur on éléments minéraux des différents organes. N P Ca ont tendance à s'accumuler dans les feuilles, tandis que K et Mg s'accumulent dans les tiges,

3.6,3.3. - Floraison - tableau 22

Pour l'ensemble des populations, on observe une diminution de la teneur en éléments minéraux des différents organes, N, K et Mg ont tendance à s'accumuler dans lus tiges tandis que P et Ca s'accumulent dans les feuilles.

3.6.3.4. - Stade laiteux * tableau 23

La teneur on N P et K a diminué Ca et Mg ont tendance à augmonter.

N, K et Mg ont tendance à s'accumuler dans les tiges tandis que F ut Ca s'accumulent dans les fouilles.

3.7, Exportations

3.7.1. • Ni oro

3.7.1.1. - Azote - tableau 24

Le plus grande toneur on azote so trouve dans l'épi, réparti entre le grain et le rachis, ensuite viennent les feuilles. La plus faible teneur se trouve dons los tiges. Entre variétés on note dos différences arithmétiques.

1.7.1.2. - Phosphore - tableau 25

11 est localisé dans l'épi, réparti entre le grain et le rachis.

Dans les feuilles on trouve des quantités peu différentes de celles du rachis. Au niveau des tiges on trouve des différences significatives entre variétés.

3.7.1.3. - Potassium - tableau 26

La plus forte teneur en potassium so trouve dans les tiges et la plus faible teneur dans le grain. Dans les feuilles et le rachis on trouve des quantités relativement importantes.

3.7.1.4. ~ Calcium **~** -tableau 27

L'épi exporte de faibles quantités de calcium. Les exportations les plus importantes se trouvent dans la paille (feuilles + tiges).

3.7.1.5. - Magnésium - tableau 28

La paille (feuilles + tiges) en exporte plus quo l'épi. Au niveau do la paille, on no nots pas do différence significative; cependant au niveau do l'épi, on relève des différentes arithmétiques.

5.7.2. - Bambey

3.7.2.1. - Azote - tableau 29

La plus forte teneur se trouve dans le groin. Le rachis en contient en quantités inférieures. Dans la paille (feuilles + tiges) on trouve des valeurs pelativement importantes.

3.7.2.2. - Phosphore - tableau 30

L'épi en contient plus que la paille. Au nivoau do l'épi, 10 phosphore a tendance à s'accumuler dans le grain.

3.7.2.3. - Potassium - tableau 31

La paille en exporte plus que l'épi. Le grain en contient très peu tandis que le rachis est riche en potassium.

3.7.2.4. - Calcium - tableau 32

On trouva do très faiblos quantités dans. le grain et le rachis.

Lo calcium est exporté principalement par la paille.

3.7.2.5. - Magnésium - tableau 33

La paille em oxporte plus que l'épi. Le grain oxporta peu de magnesium.

3.7.3. - Louga

3.7.3.1. - Azote - tableau 34

La plus grande quantité est exporté par l'épi repartie entre le grain et le rachis.

Au niveau de la paillu on trouve des quantités relativoment importontes.

Il est surtout exporté par le groin et le rachis. La paille on exporte de faibles quantités.

3.7.3.3. Potassium tableau 36

Il ost exporte essentiellemont par la paille (feuilles + tiges).

Au niveau de l'épi il est localisé dans le rachis et le grain en exporte tràs peu.

3.7.3.4. - Calcium - tableau 37

Lo grain et le rachis en exportent très peu. La quantité la Plus importante est exportée par la paille (feuilles + tiges).

3.7.3.5. - Magnésium - tableau 38

Le grain et le rachis en exportent pou. Tout le magnésium est exporte par la paille,

3.8. - Rencement

3.8.1. - Nioro

La randament moyen intervariátal os-t de 29,22 q/ha. L'analyse statistique des données do randaments nous a permis de clessor les populations en groupes.

Les populations les plus productives sont la Souna III et la RC 80 tableau 39

PU second groupe se classent les populations H24-38, IBV 8004 H7-66, 3/4 HK SR, PS 90-2, IBV 8001 et H4-24. Tableau 39. La PPd905 est de 8,32 q/ha.

3.8.2. - Bambey

La moyenne intervariétale est de 15,72 q/ha avec une PPds05 do 6,35 q/ha tableau 40.

Seules les populations Souna III, H27-38, H7-66 et 3/4 Souna se sont bien comportées et ont pu atteindre 2 tonnes. En seconde position viennent les populations 3/4 HK SR, IBV 8001, IBV 8004, RC 70-1 et 4 Synt. 75-2M tableau 40.

3.8.3. . Louga_

La moyenne intervariétale des rendements est de 5,10 q/ha avec une PPds05 de 3,13 q/ha tableau 41.

Sould la population 7 Synt. 60-3 a eu un rondoment significatif. En soconde position viennent les populations 3/4 HK SR, RC-60 IBV 8034, 3/4 Souna, RC 90-2, H7-66, 4 Synt. 60-2, RC 70.

IV - DISCUSSIONS

4 de la Résistance relative à la sécheresse

Le pouvoir de germer dans une solution ospotique avec un fort pourcentage de germination, montre que le grain étant le reflet de la plante, posède une force do succion capable de vaincre la pression osmotique de la solution dans laquelle, elle germe.

Par rapport aux cycles longs, les cycles, courts ont une force do succion moins développée, t a b l e a u $\,3\,$

Ceci nous amène à dire que le raccourcissement du cycle et de la taille a pour effet de changer les propriétés physiologiques d'adaptabilité que la plante a acquiert durant tout son processus d'évolution.

Ces changements physiologiques et morphologiques intervenus à la suite d'une modification des caractères génétiques se sont beaucoup reflétés sur le: particularités biologiques des mils nains.

4.2. * Teneur en pigments

Au niveau du rapport chlorophylle a/chlorophylle b on ne no-te pas do différence significative entre variétés. tableau 4

Pour l'ensemble des populations on observe la même régularité dans la synthèse des deux chlorophylles a et b.

Au niveau des caroténoïdes, entre variétés on note une différence arithmétique, tableau 5

Los cycles courts ont tendance à présentor des teneurs en carotémoïdes inférieures à colles des cycles longs. Cette légère différence est peut être liée aux modifications physiologiques et morphologiques effectuées chez les cycles courts. tableau 5.

Selon Vavitov (1959), la couleur anthocyanique est un caractère de résistance et l'analyse de l'évolution de l'organisme végétal a montré un important rôle des changements du système des pignents dans l'adaptation des plantes dans les conditions défavorables.

Etant donne que les anthocyanes prennent leur source à partir des pigments jnunos, il apparaît intéressant le rôle que peuvent jouer les caroténoïdes comme approche de la résistance à la sécherosso.

4.3. - Mouvement de l'oau

Le teneur totale des organes en eau varie avec le stade wégétatif/ la plante. Chaque phase physiologique exprime ees besoins en eau en fonction du rôle et des conditions dans lesquelles elle se trouve.

Au premier stade correspondant à la phase végétative les besoins du mil sont très importants. Au second stade du cycle, correspondant à la phase reproductrice les besoins du mil sont modérés.

D'une façon générale on observe une diminution de la teneur totale en cau quand la plante vieillit. Le fractionnement de l'eau en eau liée et eau libre a permis do suivre la gestion hycirique le chaque population. Il apparaît quo, l'équilibre entre ces doux fractions d'eau varie en fonction du stade végétatif et des particularités biologiques de chaque variété.

Suivant les fonctions que l'organisme à à remplir et dos conditions du milieu, il pout y avoir passage d'une forme d'eau à une autre.

Ainsi on montaison, le rapport eau liée/eau libro est do 1. En épiaison, ce rapport est passé à 3, tableau 7.

En Floraison ot stade laiteux, on observo une augmentation de l'eau libre. Cos deux stades ont colincidé avec des périodes de sécheresse+ A ces stades, on observe une baisse du rapport eau liée/eau libre allant de 2 à 1 suivant les populations. Chez d'autres populations le rapport varie entre 3 et 2, tableau 7,

Chaque population a son mode/gestion qui lui est propre.

4.4. - Surface foliaire

La surface foliaire croît avec 13 matière sèche. Durant les trois stades étudiés (montaison, épiaison, floraison) les moyennes intervariétales sont successivement : 5551, 48 = 10263,08 = 10443,24 cm2 tableau 8.

Les populations ayant dépassé ces moyennes sont : Souna III, 3/4 Souna,. Dans le développement de la surface assimilatrice an note quelques régularités chez certaines populations telles que Souna III, 3/4 Souna RC 90,PC 20,4 Synt. 75 3 M, RC 70-1, 7 Synt.60-3, H4è127, PS90-2 et H4-24 Il faut noter que l'irrégularité et le faible développement de la surface foliairs sont dûs à l'hétérogénéité de la solo qui était en jachère et les périodes de sécheresse,

4.5. - Evolution de la matière sèche

Pour l'ensemble des trois localités d'expérimentation Nioro, Bambey Louga, les conditions des solos ont beaucoup affecté la croissance du la matière sèche. tableaux 9, 10, 11.

D'une localité à une autre, le tythme do croissance d'une même variété change.

La plus faible accumulation do matière soche est constatée à Louga où les précipitations sont très faibles et la sole très sablonneuse..

la/ à/
De/montaison/l'épiaison entre Nioro et Bambey, on observe une différence dans l'accumulation de la matière sèche.

En floraison déjà entre les deux localités on ne note pas de difforence significative.

4.6. - Dynamique et répartition des éléments minéraux par organes et par stade de développement

La dynamique de l'absorption des éléments minéraux par le mil est élastique. Une grande utilisation s'observe surtout au moment de la croissance intensive du mil.

Des l'apparition des organes **de** reproduction, **on** observe une diminution de N P K dans les tiges **et** les fouilles, tandis que Ca et Mg ont ten—dance à s^i y accumuler,

Quello que soit la localité, le rythme d'absorption et la répartition des éléments minéraux par organe, entre variétés ne changent pratiquement sur le plan quantitatif, entre localités et à l'intérieur d'une même localité on note dos différences arithmétiques. Durant tout le cycle végétatif des mils, l'azote et le potassium ont dominé l'absorption. L'absorption et la localisation dépendent du stade physiologique et de la nature de l'élément.

4.7. - Exportations

L'alimentation minérale est directement liée à l'alimentation en eau et invorsement.

Les quantités exportées par chaque organe dépendent surtout de la répartition de la matière sècheentre les différents organes en fin de cycle.

L'azoto et le phosphore sont localisés principalement clans l'épi, repartis entre le grain ot le rachis. Le potassium, le calcium et le magnésium s'accumulent surtout dans la paille (tiges + feuilles). Le grain est très pauvre ences éléments. Entre variétés à l'intérieur d'une même localité on note tics différences significatives. L'exportation globale par la plante entière est la seule donnée expérimentale intéressante.

Cette exportation globale dépend du cycle et de la productivité de la variété qui dépendent à leur tour des conditions pédoclimatiques.

Si on classait les exportations par localité en fonction des rendements en biomasse, Nioro serait entête, ensuite viendra Bambey ot Louga se placerait endernière position.

Entre variétés au niveau de chaque localité on trouverait des différences significatives.

4.8. - Rendement

inlgré lus meilleures conditions climatiques de cette année, les rendements ont beaucoup chut0 dans les trois localités. Cette diminution de rendement par rapport à 1980 est due, d'une part à l'étai des soles et d'aue tre part aux attaques de maladies.

4.8.1. - <u>Nioro</u>

O'est In localité où un a enregistré plus de rendement ce qui/pout Otro expliqué que par les précipitations tombées dans cotte zone. Car au point do vue richesse du sol, Bamboy est mieux pourvu.

Lo rendement moyen intervariétal est de 29,22 q/ha contre 34 q/ha on 1983 avec une pluviométrie inférieure. L'analyse statistique des données do rondement nous a permis do classer les variétés on groupes. Les populations les plus productives sont le Souna III et lu RC 00.

Au second groups so classent les populations H24-38, IBV 8004, H7-66, 3/4 H: SR, PS 90-2, IBV 8001 et H4-24. La PPds 05 est de 8,32 q/ha. tableau 39,

4.a.2. - Bambey

L'hétérogénéité de la sole et les sécherasses intervenues en début de cycle et au stade de formation des organes reproducteurs ont beaucoup affecte les rendements.

La moyenne intervariétale est de 15,72 q/ha avec une PPds 05 de 6,35 q/ha. tableau 40.

Seules les populations Souna III, H24-38, H7-66 et 3/4 Souna se sont bien comportées et ont pu atteindre 2 tonnes, En seconde position viennent les populations 3/4 HK SR, IBV 8004, IBV 8001, RC 70-1 et 4 Synt. 75-2M.

4.8.3. - Louga

Los rendements ont été très catastrophiques. Non seulement le terrain était très sablonneux et pauvre on substances nutritives, mais les mils étaient semés après une jachère rendant les propriétés physiques (porosités) moins Sonnes.

A ces facteurs s'y ajoutent les sécheresses intervenues en début de cycle et au stade formation des organes reproducteurs.

La moyenne intervariétale des rendements est do 5,10 q/ha avec une PP de 05 de 3,13 q/ha. Soule la Population 7 Synt. 60-3 a ou un rendement significatif. En seconde Position viennent les populations 3/4 HK SR, RC 80, IBV 8004, 3/4 Souna, RC-30, H7-66, 4 Synt. 60-2, RC 70. tableau 41.

4.8.4. - Structure du rendement"

L'analyse des composantes du rendement permettent de diffbroncier l'action de la sécheresse sur la productivité des mils. En sécheresse, on enregistre de haut rendement en paille et de fniblo rendement en grain, Le faible rundoment en grain peut être do deux sortes tableau 42.

Dans le premier cas le fniblo rendement on grain est dû à un mauvais remplissage do ce derrier.

Dans le second cas le faible rendement on grain est dû aux épis non remplis - grains éparpillés sur l'épi mnis do bonne qualité.

Lc:mauvais remplissage et la stérilité do l'épi sont dûs à l'affectation des pollens.

ne/

En chaervantle tableau 42 on voit qu'à Niero le remplissage de l'épi ne diffère pas du tout du remplissage do l'épi à Bambey. Ceci s'explique par le simple fait qu'à Niero il y a eu beaucoup d'attaques do maladies, Néanmoins entre localités pour une même variété en note dos différences arithmétiques.

Au niveau du rapport paille/grain on observe une différence très significative entre les deux localités. Si l'on considère la poids de 1000 grains pour exprimer le remplissage du grain on se rend compte qu'à Bambey la chut::: de rendement est principalement duo àu mauvais remplissage do l'épi et au rapport paille/grain très élevé.

4.8.5. Relations entre les différents paramètres, les populations les variations locales et leur influences sur les rendeme ments

4.8.5.1. - Relations entre paramètres et rendements

Seule une analyse multivariée de l'ensemble des facteurs étudies pourrait montrer les corrélations positives ou négatives qui existent entre ces facteurs et les rendements. Malgré l'irrégularité des paramètres dons leur dynamique due à l'hétérogénéité des terrains, on relève des rapprochements entre ces paramètres et les rendements.

1.8,5,2. Relations entre les populations et les variations locales et leurs influences dans les rendements

L'analyse do variances de ces facteurs a montre que le lieu a un effet hautement significatif sur les rendements. Entre les populations au niveau d'une même localité on note une différence très significative tableau 43.

Cependant, on n'observe pas de population plastique adaptée à toutes les localités d'expérimentation tabloau 44. Entre localités et populations il existe une relation étroite - tableau 43.

Tableau	43	-	Résultats	de l	'anal	vse	de	variances

Building . Sand an included designation.		· · · · · · · · · · · · · · · · · · ·	North St.	1
, Surface do variation	Degróde liberté	! ! Moy onns dos carr és ! !	F _P	F _T
! Variétós	17 !	1317037,52	. 3,73**	! 1,75 !
Lieu	2	105222648,35	298,32**	3,09
! Variétés x ! ! Lieu	34 !	576585,44	1,63*	1,57 !
, Erreur	162	352719,74	!	
! Total	215 ! !	1439904,36	!	

^{*} **=** 5 5

^{* = 1 /3}

F_p = pratique

F_T = thé**o**rique.

sur la base de 13 moyenno interlocale de chaque population et por rapport à la moyenne intervariétale, les populations les plus productives sont : Souna I I I , 3/4 Soans SR, 3/4 HK SR, RC-80, H24-38, H7-66, I B V 8001 et IBV 8004 - tableau 44.

V - CONCLUSIONS

Les résultats des tests do germination esmotique ont montré que les cycles longs sont plus résistants à l a sécheresse.

Au niveau d o lateneur en caraténofdes, il semble que les cycles longs en contiennent plus que les cycles courts.

Les besoins de la plante en eau varie avec le stade physiologique. Le fractionnement do l'eau en eau liée et eau libre permet de dire que choque population a sa façon de gérer son eau on fonction des besoins de chaque phase et dos conditions auxquelles cette phase est soumise.

La surface foliaire croît avec la matière sèche. Chez certaines populations on trouve une relation entre lû surface foliaire et le rendement.

La dynamique de l'absorption dos éléments minéraux par le mil est élastique. Une grande utilisation s'observe au moment de la croissance intensive du mil. Dès l'apparition des organes de reproduction, on observe une diminution de la teneur en NPK dans les tiges et les feuilles tandis que Ca et Mg ont tendance à s'y accumuler.

Quelle que soit la localité entre variétés on ne note pas de différence significative dans le mode d'absorption et la répartition des éléments minéraux par organe et par stade de développement.

Sur le plan quantitatif entre localités et à l'intérieur d'une même localité on note des différences arithmétiques. Los quantités exportées par chaque organe dépendent surtout de la répartition de la matière sèche entre les différents organes en fin de cycle.

Entre variétés à l'intérieur d'une même localité on note des différonces significatives.

L'exportation globale par la plante entière est la seule donnée expérimentale intéressante. Il convient do dire que l'exportation globale dépend du cycle etde la productivité de la variétéqui à leur tour dépendent dos conditions pédoclimatiques. Autrement dit, l'exportation globale n'est pas constante et varie d'une eone à une outre suivant les particularités biologiques de la variété.

Los données de rendement ont montré que le facteur eau os t déterminant. Entre localités et à l'intérieur d'une même localité on trouve des différences très significatives.

L'analyse de la structure du rendement révèle que la chute de ce dernier en période de sécheresse est due au rapport paille/grain élevé et au mauvais remplissage de l'épi et du grain,

Lo mauvais remplissage et la stérilité de l'épi sont peut-être des à l'ef fec tation des pollens. L'analyse interlocale montre qu'il n'y a pas de variété plastique adaptée à toutes les localités d'expérimentation.

Sur la base de la moyenne interlocale de chaque population et par rapport à la moyenne intervariétale les populations les plus productives sont: Souna III, 3/4 Souna SR, 3/4 HK SR, RC 80, H24-38, H7-66, IBV 8001 et IBV 8004.

Effets de l'incidence hydrique sur la dynamique de la croissance

Nioro

Tableau S	9	-	Hatiere	sèche	poi ds	en	grammes.
-----------	---	---	---------	-------	--------	----	----------

Populations	. Jean	es de développem	18116
معلى مامن مامل مدار إليان والله الله الله الله الله الله الله الل	Montaison ,		Florai son
Souna III	t 76,80	405,70	467,9
3/4 Souna	65,90	189 , 50	184,25
3/4 H K	!" 63,90	141,73	188,25
3/4 Ex. Bornu	49,45	107,65	148,05
RC 90	70,85	140, 15	95,80
RC 80	48,65	171,45	199,65
4 Synt. 75 2M	63,70	239,20	149,25
RC 73-1	73,30	115,05	162,5
7 Synt. 60-3	57 , 29	112,05	282,0
4 Synt. 30-2	54 , 95	114,15	138,85
H ₉ - 127	49,70	185,90	189,50
PS 90-2	78,80	105,15	182,45
H ₂₄ - 38	58,00	15 7, 10	263,55
H ₇ - 66	62,80	191,40	242, 00
IBV 7815	63,75	144530	192,15
18V 8001	58 , 76	196,80	231,85
IBV 8004	48,80	320 , 45	291,55
H ₄ - 24	66,85	154,60	182,25
l oyenne	! ! ! 61,79	177,05	1

Evolution de la matière sèche 81-82

Bambey

Tableau 13 - Poids en grammes

p - I	Phases de développement					
Variétés	Montai son	Epiaison	Floraison			
Souna III	40,65	275 , if.5	464,50			
3/4 Souna	42,20	153,00	208,90			
3/4 H K	36, 15	125,65	401, 20			
3/4 cx. Bornu	44 , 95	90,90	240,13			
RC 90	31 , 85	! 99 , 05	169,05			
RC 80	25,85	83,10	277,48			
4 Synt. 75-2M	39,50	120,00	420,95			
RC 70-1	33 , 10	123,10	215,25			
7 Synt. GO-3	22,70	188,55	275,70			
4 Synt. 60-L	29 ,7 5	84,65	167,05			
H _q - 127	34, oo	1 0 2, '7'5	139,85			
PS 90 ~ 2	17 , 50	₿ 6 ,80	272,98			
H24-38	19,65	180,60	252,35			
H7-66	38,60	15 7, 90	252,10			
IBV 7815	28 ,7 5	144, 4 0	254,70			
IBV 8001	39,45	250,65	365,73			
IBV 9004	45,60	306,80	336,15			
H4-24	19,40	61,20	237, 15			
Moyenne	32,76	146,36	! 261,05			

Dynamique de la matière sèche des mils Poids en grammes

Louga

Tableau 11

Populations	Sta	des de développe	mont	
10002303010	Montai son	Floraison	Stade laiteux	
Souna III	10,25	53,58	82,85	
3/4 Sounn	12,5	1 63,77	50,10	
3/4 H K	12,3	41, Y0	43,70	
3/4 Ex. Bornu	7,57	51,91	44, 05	
RC 90	9,67	63,52	61,60	
RC 80	7,97	i 97,85	95,95	
4 Synt, 75-211	5,50	43,0>	77,50	
RC 70-1	14,20	35,99	27, 00	
7 Synt. 60⊶3	16, 220	42,76	51,40	
4 Synt, 60-2	18,35	5 4, 3 ()	f 52,85	
H ₉ <u>127</u>	13,25	59,31	44,57	
PS90 - 2	8,10	! 24,50	72, 015	
H ₂₄ 38	5,90	28,60	! 54 , 55	
H ₇ = 66	19 , 25	47,21	68,10	
IBV 7315	13,00	36,23	70,95	
I8V 8001	7,55	48,45	! 85 , 00	
IBV 8304	9,55	69,70	150,55	
H ₄ - 24	6,85	! 39,28	74,60	
Moyenne	! 11,00	1 50,10	1 67,07	

Montaison Nioro 1981

Tableau 12

vari ét és	Organes	! ! !	P .		Ca	Mg .
Souna 3	Figedles	. 2. 586	c. 4540. 4	65 7.4.446	00.36455 ,	0. 250 0. 465
3/4 Seuna 1	Fouilles Tiges	2. 553 2. 626	0. 56	to the sea of the sea	4= 1=0= q== 1=8=200=	0. 445
3/4 H K	Feuilles Tiges	2.661 3.562	0.591	3.060 2.260	0.259	0.240 07.6
3/4 Ex.B.	Tigesles	2. 989	0.471	€ 6 € €		0.485
! RC 90	Tigesles -L"-"	. 2. 72 6	. 00.389 06 1, 6	274 0 00 0.	4670. 285 -	C 0.665
RC 80	Feuilles , Tiges	2. 473 . 2. 912	0.419-1. 0.375	•	0 0.419 , 32 0 .215	0, 250 0. 585
4 st.75-2M	Feuilles Tiges	. 2.579 2.782	0.406 0.425	41.0 7.240	0. 346 0. 200	0. 202 0. 485
! ! RC 70-1	Feuilles , Tiges	2.606 , 2.451	0.580 0.455	3.910 5.880	0.314 0.150	0.202 0.445
7 St.60,3	Feuilles Tigas	2. 473 2, 553	0. 390 0. 455	3,710 . 7,400	0. 443 . 0. 270	0. 138 0. 525
! ! 4 St.60-2	∏igesles ,:	2, 027.5460!,	0. 3230, 553	4 ₁ 3 ,6 43	g [0.165)2	00.517056
! ! H 9- 127 !	Feuilles Tiges	2.500 2.808	0.444 0.388	3.050 5.640	0.237 0.215	0.135 0.585
PS.90-2	Fouilles , Taigaa	2.487 2.517	0. 500 0. 412	100 8.400	0. 294 0. 454	0. 507
H24-38	Feuilles Tijes	2. 606 2. 859	0. 436 0. 500	2.000 5,923	0. 333 0. 375	0. 153 0. 742
H7-66	Feuilles Tiges	2.369 2.606	0. 406 0. 442	3,300 7,000	0. 274 0. 340	0. 133 0. 540
! IBV 7615	Feuilles Tiges	2.385 2.808	0.414 0.442	2.200 5.200	0.353 0.375	0.178 0.782
! ! 1 BV 6001 !	Feuilles Tiges	2.334 2.404	0.423 0.510	3.200 4.840	0.431 0.340	0.184 0.507

IBV 8004	Feuilles	2.448	0.318	2,890	0.392	0.189
	Tiges	2.464	0.198	5,280	0.032	0.485
! ! H4+24 !	Feuilles Tiges	2.650 2.908	0.549 0.545	3,240 6,760	0.401 0.285	0.152 0.485

Absorption dos **Eléments** minéraux on EPIAISON Nioro 1981

Tableau 13

intega (5						
-		! N	þ	K	Ca	Мэ
Souna 3	Fouilles	2.013	0.392	2.410	0.570	0.486
	Tigos	2.314	0.340	3.460	0.105	0.770
3/4 Souna	Feuilles	1.608	0.627	3.460	0.350	0.313
	Tiges	1.584	0.477	7.600	0.140	0.340
3/4 HK	Fouilles	1.877	0.365	2,060	0.365	0.384
	Tiges	2.262	0.275	5,360	0.090	0.445
3/4 Ex.B	fouilles Tiges	1.959 2.158	0.331 0.288	1.510 4.520	0.105	0.524
RC 90	reullies Tiges	2.26Z 2.210	0.255	1.79U 3.360	0.215	0.464 0.775
RC 80	Feuillas	1.877	0.418	1.310	0.580	0.422
	Tiges	1.896	0.350	5.200	0.180	0.645
4 St. 7 5-28	Fouilles Tiges	1. 877 2. 366	0.337 0.315	1.960 4.640	0.556 0.180	0.400
RC 70-1	fruilles	1. 435 1.421	0.371 0.448	4.210 5.360	0.4 7 5 0.095	0.267
7 St. 60-3	Fauillos	1.435	0.352	3,660	0.483	0.245
	Tigos	1.742	0.438	4,520	0.215	0.550
4 St. 60-2	Fouilles	1.522	0.247	3.400	0.447	0.168
	Tiges	2.530	0.438	5.680	0.218	0.575
H9-127	Tigosles	2. 634	Õ. <i>228</i> 759	2. 746510	0.098	0. 165 0. 485
PS - 90-2	Feuilles	1.972	0. 324	3,250	0. 372	0. 209
	Tiges	2.100	0. 235	5,080	0. 320	0. 675
н 24 - 38	Fouilles	1.816	0.318	3,200	0.353	0.322
	Tiges	1.817	0.343	3,640	0.230	0.633
Н7 - 66	Feuilles	1.469	0.358	2.800	0.372	0.148
	Tiges	1.561	0.405	4.085	0.175	0.395
IBV 7815	Fouilles	1.843	0.394	2,300	0.431	0.254
	Tiges	1.771	0.350	2,486	0.210	0.633
IBV 8001	Feuilles	1.656	0.238	2.400	0.558	0.296
	Tiges	1.678	0.195	2.640	0.175	0.600
IBV 8004	Feuilles	1.820	0.259	2.340	0.608	0.357
	Tiges	1.476	0.242	2.360	0.120	0.515
н4 . 24	reuilles Times	2,233 2 /nn	0.286	3.240	0.401	0.152

Absorption des Eléments minéraux en >

FLORAI SON

Ni oro 1931

Tableau 14

. —						
المراجعة مناف المراجعة	ودو وست وست معل شده بدائم وست مسل وسود مدو وي	! N	! !	! ! K	Ca	! Mg
! Souna 3	Feuilles Tiges	1.915 1.704	U.350 U.212	3.060 3.960	0.532 0.175	0.422 0.425
3/4 Souna	Feuilles Tißes	1.424 1.584	0.364	2.560 5.280	0.456	0.387 0.325
3/4 H K	feuilles Tiges	1.546	0.239 0.175	1.560	0.509 0.175	0.421
3/4 Ex.B.	Feuilles Tiges	1.632 1.560	0.284 0.250	1.860 3.520	0.456 ! 2.215	0.490
! RC BO	Tiges	1.632	0.250	1.66U 3.320	U.628 0.180	0.481 0.765
RC 80	Feuillos Tigas	1.583 1.344	0.310	1.410 1.920	0.499 0.080	0.353 0.445
4 St. 75-2M	Fouilles Tiges	1.706 1.701	0.493	4.560 5.560	0.363 0.150	0.228
RC 70-1	fe uilles Tiges	1.349	0.465 0.533	3.360 4.840	0.330	0.254 0.425
7 St, 60-3	Feuilles Tiges	1.754 1.678	0.362 0.330	3.410 4.560	0.459 0.180	0.460
4 St, 60-2	Feuilles Tigos	1.73U 1.782	0.280 0.225	2.400 4.280	0.495 0.150	0.194
H9 - 1 2 7	Feuilles Tiges	1.877 1.666	0.274 0.220	3,250 4,560	0.500 0.265	0.225
PS 90-2	Fouilles Tiges	1.767 2.075	U.277 D.205	2.650 4.840	0.431 0.320	0.255 0.675
H24-38	Feuilles Tiges	2. 184 1 . 631	0.336	2.300 3.880	0.549 0.120	. 0.260 ! 0.507
H7 - 66	Fouilles Tigos	1.586 1.375	0.392 0.284	2,200 2,840	0.392 0.120	0.153 0.386
IBV 7815	Fouilles Tiges	1.377 2.113	0.239 0.260	4.850 3.160	0.431 0.210	0.275 0.783
IBV 8001	Fouilles Tiges	1.259 1.049	0.327 0.200	2.300 1.680	0.607 0.100	0.296 0.386
IBV 8034	reullles ! Tiges !	7.797 1.486	U.264 0.177	1.740 1.960	0.647 0.100	0.311 0.395
H4 - 24	Fouilles Tiges	2.170 2.400	0.260 0.242	1.49C 2.480	0.637 0.380	0.261 0.685

Absorption des **Eléments** minéraux en 5 STADE LAITEUX Nioro 1981

Tabl eau 15

		! ! !	! p	K	Ca	Mg
Souna 3	Feuilles Tiges	! 1.939 ! 1.560	0.378 0.237	2.610 3.280	0.684	0.490
3/4 Souna	Feuilles Tiges	I I 1.152	! ! 0.315	3.080	0.225	0.375
3/4 HK	Feuilles Tiges	1.019 1.008	. 0.268 0.212	1.160 3.080	0.251 0.140	0.367
3/4 Ex.B	Feuilles Tiges	1.067 0.840	0.217 0.148	0,810 2,960	0.165	0.524
RC 90	Feuilles Tiges	1.387 1.248	0.220 0.212	0.710 2.920	0.757 0.150	0.412 0.680
RC 80	Feuilles Tiges	1.448 1.080	0.288 0.118	0,96C 3,480	0.451 0.040	0.3 97 0.495
4 St.75-2M	Feuilles Tiges	1.926 1.398	0.294 0.260	3.110 3.760	0.620 0.165	0.443
RC 70-1	Feuilles Tiges	1.025	0.425	4.520	0,080	0.370
7 St.60-3	Feuilles Tiges	1.251 0.932	0.188 0.220	1.960 3.600	0.540 0.060	0 .215 0 . 320
4 St. 60-2	Feuilles Tiges	1.289 1.118	0.332 0.323	2,000 3,760	0.366 0.140	0.129 0.575
H9 - 127	Feuilles Tiges	0.843 0.850	0.136 0.125	2,550 4,880	0.647 0.195	0.166 0.400
PS 90-2	Fouilles Tiges	1.435 1.212	0.235 0.123	2.400 3.080	0.451 0.195	0.306 0.625
H24 - 38	Feuilles Tiges	1.816 1.049	0.339	1.150 3.120	0.647 0.120	0.286 0.407
H7 - 66	Feuilles Tiges	0.792	0.123	3.880	0.160	0.288
IBV 7815	Feuilles Tiges	1.165	0.228	2,500	0.195	0.666
IBV 8001	Feuilles Tiges	1.097 0.885	0.212 0.165	1.700 1.960	0.824 0.140	0.357 0.452
IBV 8004	Feuilles Tiges	1.016	0.117	1.560	0.140	0.565
H4 - 24	Fauilles Tiges	1.761 1.476	0.232 0.195	1.340 2.840	0.519 0.280	0.274 0.573

Absorption des Eléments minéraux en γ_2

MONTAI SON

1.4

Bamboy 1931

Tableau 16

1	i N	! !	! K	l Ca	Mg
Souna 3 Feuilles	2,500	0.345	4.000	0.517	0.496
Tiges	! 2,162		9.240	0.325	0.400
. 3/4 Souna Feuilles Tiges	2.304 ! 1.867	0.442 0.512	3.600 7.760	0.517	0.304
Feuilles Tiges	2.136 2.698	0.412 0.640	3.400 8.760	0.420	0.199 0.465
! 3/4 Ex.B Feuilles Tiges	2.239 1.894	0.397 0.442	2,370	0:495 0.370	0.334
RC 90 Fauilles Tiges	2.188 2.323	0.433 0.545	2.220 6.320	0.495	0.249
! RC 80 Feuilles	2.435	. 0.420	2.120	0,449	0.199
Tiges	2.242	! 0.545	5.960		0.205
! 4_St.75-2M Feuilles	1 1.888	0.546	5.270	0.322	0.239
Tiges	! 2.135	0.622	8.680		0.165
RC 70⊷1 Feuilles	2.421	0.352	3.120	0.588	0.396
Tigas	2.055	0.622	6.600		0.215
7 St.60-3 Feuilles Tiges	2.596 2.353	0.327 0.700	1.720	0.468	0.320 0.595
4 St. 60-2 reuilles	. 2.85U	U.527	2.570	0.370	0.215
Tiges	. 3.050	0.500	6.850	0.455	0.700
H9 – 127 Fauilles	! 2.610	0.520	. 3.070	0.455	. 0.405
Tiges	! 2.942	0.724	. 6.080	0.420	0.550
PS 90-2 Fouilles	2.424	0.496	. 3.970	0.385	0.320
Tiges	2.996	0.600	. 8.680	0.395	0.550
H24 - 38 Fouillos	2.808	0.633	7.420	0.342	0.290
Figos	3.210	0.760	9.040	0.345	0.490
! H7 = 66 Feuilles	2.300	0.349	3.720	0.408	0.415
Tiges	3.023	0.576	4.040	0.310	0.715
IBV 7815 Feuilles	1.841	0.522	4.170	0.228	0.130
Tiges	2.769	0.532	6.120	0.295	0.490
IBV 8001 Feuilles	2.595	0.637	5.310	0.162	0.126
Tiges	2.658	0.800	9.880	0.310	0.340
IBV 8004 Feuilles !	2.882	0.520	3.560	0.517	0.318
Tiges	2.659	0.625	7.200	0.195	0.845
H4 - 24 Feuilles !	2. 691	0.583	3,710	0,562	0.387
Tiges !	2.447	0.552	7,000	0,345	

Absorption des Eléments minéraux en % EPIAISON Bambey 1981

Tableau 17

1		1	•		•	
year manuar marror and tast and beliefs to	والمراجعة والمراجعة المراجعة والمراجعة والمراج	# favor out move on the wall will be and the fact of t	1 1	K	Ca	! Mg
,	Feuilles	2.148	0.610	5.650	0.397	0.254
! Souna 3	Tiges	1.867	0.285	5.680		0.670
! ! 3/4 Souna !	Fouilles Tiges	2.012 1.510	0.564 0.305	3.850 4.680	0.277	0.209 0.500
	Feuilles	2.318	0.520	4.350	0.367	0.284
3/4 H K	Tiges	1.894	0.375	5.080	0.385	0.250
! ! 3/4 Ex.8 !	Feuilles Tiges	1.838 1.840	! 0.439 ! 0.345	3.720 3.600	0.285 0.435	0.179 0.265
!	Feuilles	2.536	0.469	2.970	0.405	. 0.204
! RC 90	Tiges	1.254	0.390	4.440		. 0.200
RC 80	Feuilles	2.305	0.494	2.120	0.412	0.184
	Tiges	1.638	0.345	4.320	0.390	0.170
4 St.75-2M	Feuilles	2.317	0.404	3.770	0.588	. 0.394
	Tiges	1.894	0.345	5.120	0.405	0.235
RC 70-1	Feuilles Tiges	2. 161 1.412	0.512 0.488	4.070 1 5.200	0.462 0.170	0.275
7 St.60-3	Feuilles	2.709	0.530	2.920	0.440	0.325
	Tiges	1.844	0.320	3.240	0.405	0.615
4 St.60-2	Feuilles Tiges	2.695 2.594	0.484 0.555	2\720 5.680	0.384	0.370 0.595
H9-127	Fauilles Tipps	2.596	0.580	3.670	0.280	0.205
! PS 90-2 .	Fouilles	2.636	0.340	2.970	0.539	0.325
	Tiges	1.870	0.308	4.360	0.360	0.530
H24 - 38	Fouilles	2.836	0.399	4.120	0.720	0.645
	Tiges	1.844	0.404	4.320	0.170	0.490
H7 - 66	Fouilles	2.438	0.367	2,670	0.4 2 0	0.400
	Tiges	2.031	0.308	3,080	0.185	0.595
IBV 7815	Fouilles	2.256	0.315	2.570	0.408	0.335
	Tiges	2.045	0.378	4.520	0.170	0.740
IBV 8001	Fouilles	1.817	0.457	1.960	0.438	0.335
	Tiges	1.001	0.295	5.000	0.205	0.400
! IBV 8004		1.292	U.262 0.300	2,26U 3,6UU	0.730 0.225	0.446 0.445
H4 - 24	Feuilles	2.013	0.731	2.760	0.471	0.284
	Tiges	1.200	0.570	4.760	0.245	0.630

Absorption des Eléments minéraux en 5 FLORAISON Bambey 1981

w .	1	N	! !	! K	l L Ca	. Mg
Souna 3	feuilles Tiges	1:863 1.203	0.306 0.285	3.500 3.600	0.622	0.496 0.350
3/4 Souna	Feuilles Tiges	1.975 1.229	0.306 0.265	2.650 3.400	0.577 0.275	0.664
3/4 H K	Feuilles Tiges	2.266 1.787	0.357 0.325	2.500 2.680	0.627 0.325	0.714 0.250
3/4 Ex.8	Feuilles Tiges	1.213 2.162	0.300 0.207	1.820 2.800	0.690	0.589 0.360
. RC 90	Feuillea Tiges	2.486 1.840	0.306 0.258	1.470	0.630	0.514 0.385
RC 80	Feuilles Tiges	2.000 1.459	0.320 0.433	1.470	0.644	0.339 0.250
4 St.75-2M	feuilles Tiges	1.739 1.306	0.494 0.403	3.620 4.640	0.504 0.370	0.314
RC 7 0-1	Feuilles Tiges	1.801 1.038	0.456 0.335	3.770 4.320	0.504	0.325
7 St.60-3	Feuilles Tiges	2.624 2.645	0.303 0.195	1.570 3.500	0.510 0.220	0.465 0.635
4 St. GO-2	Feuilles Tiges	2.779 2.031	0.348 0.270	1.520 2.920	0.566 0.295	0.380 0.635
H9 - 127	Fouilles Tiges	2.836 2.112	0.372 0.304	2.220 2.400	0.567 0.310	0.410 0.720
PS 90 → 2 · -	Feuilles Tiges	2,664 2,031	0.351 0.324	1.920 3.040	0.595 0.280	0.425 0.530
H24 - 38	Feuilles 7 iges	2.567 1.392	0.397 0.288	3.3 7 0 3.520	0.558	0.540 0.450
H7 - 66	Feuilles Tiges	1.849 1.442	0.291 0.288	2.020 2.800	0.336 0.110	0.395 0.435
IBV 7815	Feuilles Tiges	1.903 0.759	0.327 0.152	2.273 2.040	0.480 0.195	0.565 0.340
IBV 8001	Fouilles Tiges	1.877 1.141	0.351 0.250	2.765 2.680	0.438 0.260	0.355 0.500
IBV 8004	Fouilles Tiges	1.915 1.318	0.372 0.294	2.810 2.600	0.639	0.367 0.425
H4 - 24	Feuilles Tiges	2.347 1.104	0.367 0.243	2.460 4.040	0,638 0.195	0.294 0.550

Absorption des Eléments minéraux en % MONTAISON Louga 1981

=)rganes !	. N	! . p	! K	! . Ca	! Mg
! Variétés	· ••• • • • • • • • • • • • • • • • • •	ar and one year and and and and and and and] 	ing man must be desired belt belt belt belt belt belt belt belt	 	! !
! Souna III	Feuilles	2.573	0.393	1.590	0.453	0.116
!	Tiges	3.683	0.215	5.640	0.540	0.280
!	Feuilles	2.369	0.350	1.690	0.410	. 0.246
! <i>5,</i> ′3/42_Sount	^ì Tiges	3.404	0.650	6.880	0.500	0.298
!	Feuillos	2. 539	0. 377	5.290	0. 361	0. 208
! 3/4 н к	Tiges	3, 861	0. 693	0.640	0. 585	0. 282 ,
! 3/4 Ex.B	Feuilles f	2.960 ,	0.336	4.790	0. 435	0. 208
!	Tiges	4.364	0.868	1.200	0. 505	0. 215
f	Fouilles f	2.710 ⁻	0.339 ,	2.790 ,	0. 353	9.177
! RC 90	Tiges f	2. 934	0.605	0.760	0. 720	0.263
!	Fouilles ,	2.778	0.373	3.530	0.532	0.170
f RC 80	Tiges ,	4.064 ,	0.420	1.120	0.720	0.263
! ! 4 St.75-2M ⁻ !	Feuilles Tiges	1.210 3.570	0.363 0.498	2.330 6.480	0.436 0.720	0.132 U.263
! ! RC 79-1 !	Feuilles Tiges	2.755 3.545	0.382 0.495	2.830 5.000	0.378 0.555	0.240 0.270
! 7 St.60-3	Fouillos	2.386	0.400	3.53 0	0.463	0.196
	Tiges	1.964	0.530	1.760	0.140	0.298
! f 4 St, 60-2 !	Đeuillas Tiges	2.606 3.851	0.407 0.465	3.480 4.76U	0.411 U.535	0.218 0.498
! ! H9 - 127 !	Feuilles Tiges	2,210 3,213	0.399 0.440	4.130 6.160	0.327 0.410	0.125 0.360
! PS 90-2	Fouilles	2.572	0.304	3,630	0.236	0.112
	Tiges	3.621	0.410	5,560	0.410	0.291
l H24 → 38	Feuilles	2 .97 1	0.407	2.880	0.326	0.169
	Tigos	4 . 080	0.508	5.760	0.480	0.397
!	Fouilles	2,240	0.422	2.780	0.317	0.204
! H7 = 66	Tigos	2,297	0.500	8.160	0.335	0.405
IBV 7815	Feuilles	2.283	0.459	2.980	0.480	0.204
	Tiges	3.149	0.214	9.720	0.325	0.392
! IBV 8001	Fouilles	2.678	0.395	2.130	0.255	0.250
	Tiges'	3.985	0.202	7.640	0.410	0.520
f ! IBV 8004 !	Feuilles Tiges	2,561 3.518	0.373 0.785	2.280 6.000	0.544 0.460	0.270 0.508
! ! H4 ≈ 24 !	Feuilles Tiges ,	2. 668 3, 838	0. 357 a. 590	1.630 5.440	0,425 0,480 ,	0.190 0.480

Absorption des Eléments minéraux en 5 EPIAISON Louga 1981

1	Onces	**************************************	***************************************			
! ! Variétés	Organes	And the case one can see the case one can the case of cas	b		Ca	! Mg
! ! Souna III !	Fouilles Tigos	1.000	0.165 0.132	1.346 1.440	0.453	0.097 0.256
! ! 3/4 Souna !	Fouilles Tiges	1.422	0.211 0.170	1.390 2.160	0.517	0.312 0.508:
! ! 3/4 H K · !	Feuillos Tigos	1.965 2.112	0.229	4.340 2.400	0.553 0.365	0.262 0.380
3/4 Ex.B	Feuillos	1.869	0.156	3.690	0.570	0.242
	Tiges	1.827	0.132	3.400	0.315	0.277
RC 90	Feuilles Tiges	1.829 1.827	0.173 0.127	2.840 3.040	0.467 0.405	0.177
RC 80	Feuilles	2,255	0.246	3.630	0.540	0.193
	Tiges	1,64 6	0.160	1.960	0.275	0.153
4 St.75-2M	Feuilles	0.967	0.197	1.480	0.531	0.147
	Tiges	1.214	0.203	1.880	0.340	0.120
RC 70-1	Feuilles Tiges	1.432 1.190	0.202	1.630	0.444 0.260	0.196 0.305
7 St.60-3	Feuilles Tiges	2.133 3.596	0.211	1.380 6.400	0.436 0.5 7 0	. 0.231 . 0.263
4 St.60-2	Feuilles	2.144	. 0.229	2.680	0.344	0.138
	Tiges	1.666	. 0.145	1.960	0.340	0.302
H9 - 127	Feuilles	1.957	0.162	2.980	0.409	0.174
	Tiges	1.862	0.102	2.080	0.325	0.281
PD 90-2	Feuillos	1.892	0.141	2.630	0,436	0.152
	Tiges	2.040	0.102	2.000	0,340	0.270
H24 - 38	Feuilles T iges	2.411 1.989	0.279 0.145	2.580 1.680	0.267 0.250	0.231
H7 - 66	F e uilles	1.747	0.204	1.470	0.464	0.240
	Tiges	1.235	0.128	1.520	0.180	0.244
IBV 7 815	Feuilles	2.454	0.181	1.280	0.462	0.174
	Tiges	2.386	0.122	2.120	0.325	0.460
IBV 80C1	Feuilles	1.408	0.144	1.030	0.417	3 170
	Tiges	1.072	0.085	1.280	0.110	0.202
IBV 8004	feuilles	1.791	0.180	1,580	0.493	0.255
	Tiges	1.142	0.105	1,400	0.165	0.310
H4 - 24	Feuilles	2.197	0.162	1.130 !	0.400	0.150
	Tiges	3.838	0.590	5.440 !	0.480	0.480

Absorption des Eléments minéraux en %

FLORAISON

Louga 1981

! ! Variétés	Organes	! N	! P	! K	! Ca	! Mg
! Souna III	Fouilles Tiges	! 1.472 ! 1.682		1.090	0.424	0.116
3/4 Souna	Feuilles Tiges	! 1.392 ! 1.670	0.078 0.060	1.200 0.640 7.480	0.260 0.656 0.380	. 0.440 . 0.294 . 0.625
! ! 3/4 H K !	Feuilles Tiges	1.048 1.525	. 0.069 . 0.075	1.990 1.7.240	0.475 0.263	0.231 0.508
! 3/4 Ex.B	Feuilles Tiges	1.230	0.079	1.990 ! 6.160	0.541	0.231 0.610
R¢+90	Feuilles	1.089	. 0.084	1.890	0.554	0.146
	Tiges	1.271	. 0.080	5.040	0.2 7 5	0.102
! RC 80	Feuilles	0.967	0.088	1.730	0.465	0.146
	Tiges	1.071	0.085	2.760	0.275	0.153
!	Fauilles	1.300	0.102	1.330	0.527	0.116
! 4 St .8 5–2M	Tiges	1.357	0.065	G.960	0.430	0.153
RC 70-1	Feuilles	0.947	0.117	1.630	0.477	0.306
	Tiges	1.142	0.085	1.720	0.200	0.168
7 St.60-3	Feuilles	1.047	0.099	2.23U	0.419	0.143
	Tiges	1.357	0.075	1.440	0.280	0.270
4 St.60-2	Fou ill es	1.184	0.094	1.830	0.469	0.125
	Tiges	1.047	0.069	0.960	0.225	0.223
H9- 127	Fouilles	0.892	0.080	1.43G	0.473	0.169
	Tiges	1.119	0.047	0.960	0.250	0.223
PS 90-2	Fouilles	0.756	0.076	1.780	0.468	0.121
	Tiges	1.047	0.047	1.200	0.270	0.212
H24 - 38	Feuilles	1.3 <i>9</i> 0	0.135	1.430	0.421	0.242
	Tiges	1.000	0.075	1.3 6 0	0.250	0.249
H7 - 66	Feuilles Tiges	1.360 1.654	0.092 0.069	0.730 1.040	0.185	0.174 0.265
IBV 7815	Feuilles	1.961	0.116	0.930	0.718	0.495
	Tiges	1.864	0.080	1.526	0.235	0.422
I9V 8001	Feuilles	1.096	0.093	0.930	0.493	0.210
	Tiges	1.212	D.045	1.800	0.205	0.440
IBV 8004	Feuilles	0.831	0.103	0.880	0.595	0.230
	Tiges	1.212	0.080	1.000	0.130	0.255
H4 - 24	Fauilles	1.067	0.092	1.180	0.587	0.150
	Tiges	0.932	0.065	1.960	0.180	0.283

Absorption des Eléments minéraux en %Stade laiteux Louga 1981

Tableau 23

Variótés	Organos	! ! N	þ	K	! Ca	! Mg
Souna III	Fouilles Tiyus	1.000 1.718	0.094 0.065	1.000 1.000	CI.424 3. 315	ii. 146 ! 0,527
3/4 Souna	Fouilles Tiges	1.139 1.283	0.121 0.085	0.940 2.160	0.816 0.350	0.431 0.422
3/4 H K	Fouillos Tipos	0.866 1.331	0.108 0.105	3.698 2.998	0.582 0.330	0.254 0.385
3/4 Ex.8.	Fouilles Tigos	1.038 1.150	0.102 0.065	2.590 2.160	0.484 0.170	6.308 0.363
RC 90	Fauilles Tiges	1.020 1.065	0.076 0.045	1.790 2.520	0.681 0.385	0.285 0.140
RC 80	Fouilles Tiges	1.210 1.090	0.091 0.070	2.130 2.960	û.847 0.385	0.331 0.140
4 St.75-20	Fouillos Tigus	0.7 ₁ 5 0.7 ₀ 2	0.097 0.090	1.98J 1.680	0.452 0.250	G.132 G.C90
RC 7 01	Fouilles Tiges	1.338 0.690	0.086 0.027	1.380 2.520	0.477 0.170	0.310 0.305
7 St.69-3	Fouillos Tiges	1.260 1.333	0.087	1.780 1.760	9.627 U.285	G.319 G.382
4 St.60-2	Fouilles Tiges	1.251	0.092 0 ? 64 7	1.886	0.718 0.300	0.328 0.344
H9 - 127	Fouilles Tiges	0.931 1.071	0.078	1.960	0.559 0.215	0.233 0.189
PS90 - 2	Fouilles Tiges	0.912 0.928	0.075	1.483	0.614 0.330	S.200 9.270
H24 - 38	fouilles Tigos	1.105 1.119	0.117 0.069	1.285	0.508 0.235	0.358 0.302
H7 - 66	Fouilles Tiges	1.037 1.235	0.089	1.030 2.120	0.444	0.257
IBV 7815	Fuuilles Tigus	0.727 0.909	0.103 0.055	1,580	0.145 ; 0.493 0.215	0.281 0.230 0.412
IBV 8 1.31	Fouillos Tigos	0.944 1.212	0.091 0.045	1.136	.582 G.205	0.355 0.440
IBV 8564	Fouillos ! Tiges !	0.972 1.328	0.693 0.073	0.930 2.300	0.417 0.2150	x . 3 9 5 A . 3 5 6
H4 - 24	Fouilles ,	1.096			U.383	0.250

Exportations de l'Azete en %

ableau 24

NIGRO RECOLTE 1981

									V AR	IETES				and the second s				
Jrganes	Souna III	3/4 Souna	3/4 H K	5/4 Ex.B;	RC 90	RC 80	4 St 75-2M	RC 70-1	7 St.63-3	4 St.6J-2	H9 - 127	PS 90-2	H24 38	H7 = 56	IBV 7815	IBV 8001	IBV 8034	H4 = 24
fouilles	! !2.236! !	! 1.430. !	! !1.2761 !	221	! 1.408! ! 1.408!	1.441		! !1.5J7! !	1.496	! !1.342	11.232	1.518	! ! 2.405!	1.617	1.430	1.551	1.254	1, 3641
Tiges	0.902	1.144	! ં.94 <i>6</i> !	825	0.957	0 . 858	1.254	1.912	o.99	11 . 298	90.900	1.069	1.560	0 . 920	1.660	1.940	1.889	36 0
Graines	!2.0 7 8!	11.815	! 1.77 _{0!}	2 ,015	! 1.930! ! 1.930!	1.840	1.990	2.015	1 .9 80	12, 969	2.025	1.865	12.100! !	2,265	2.U45	1.963	1.933!	1.985
Rachis	1.323	1.365	! !1.205 ₁	353!	! !1.313!	1.380!	1.575	1.500	1.503	1.6 18	1.493	1.390	! 1.715! ! 1.715!	1.468	1.658	1.265	1.360	1.965!

NICRO RECOLTE 1981

	!		***					V AR	IETES					<u> </u>					I
)anes	Souna III	3/4 Scuna	3/4/ H K	3/4 Ex.B.	RC 90	RC 80	4 St.75-2M	RC 70-1	7 St.60-3	4 St.60-2	Н9 — 127		H24 - 38	H7 - 66	5182 na1	IBV 8001	IBV 8004	H4 - 24	
uilles :	! G.227	! 0.295	! ∂.222 !	! ! 0.172 !	! ! 0.210! !	0.182	0.252	! 0.557	! 0.218	! !0.182	! !0.160	! ! 0.188:	0.218	. 0 • 17	! 0.172	.0.182	10.240	! 0.133	ω
es	0.165	0.160	! ! 0.270	0.418	0.240	0.182	0.112	0.195	0.222	. 3.390	0.083	0.063	0,142	0.050	0.155	0.075	0.045	! 0.050	1
ins	0.346	0 .3 34	! :0.337!	0.266	G .2 79	0.367	0.366	U.383	0.367	0.364	0 .37 9	0.384	0.387	0.401	10.388	0.376	0.375	0.378	!
his	0.203	0.228	0.228	0,230	0.222	0,238	0.261	0.265	3.241	0.259	0.238	0.231	0.251	0.219	0.261	0.232	0.220	0.237	!

. 42 .

NIORO RECOLTE 1981

	!								V AR	IET≶					-			
ganes	Souna III	3/4 Souna	3/4 H K	3/4 Ex.B	RC 90	RC 8.0	4 St.75-2M	RC 70-1	7 St.60-3	4 St.60-2	H9 127	ps 90-2	H24 - 38	H7 - 66	IBV 7815	IBV 8001	IBV 8004	H4 - 24
uilles	! !1.960 !	1 .1 60	1 11.160	! !1.640 !	1.520	0.880	2. 400	1.360	1.000 1.000	° , 8 00	.0.680	! !1.200	! ! 1.28U	11.400	! 1.120	!1.240	! 0.520!	
ges	! !3.880! !	3. 800	2.720	! !2.080!	3.120	3.0JU	3.800	3.640	2.280 12.280	12.880!	2.900	! !2.860 !	! !3.550!	2.800	14.320	! ! 4.750 !	! 3.900!	3,920
ain	! !0.586! !	0.562	1 10 . 569	ე .7 28	0.623	0.314!	0.270	0.383	-0.33 ₀	[0.274]	0.635	18.697	0.625	0.66g	G.572	! ! 0.273	! ! 0.365!	0.470
chis	! !1.110!	1.3881	1.533	! !1.488!	1.440	1.835	1 . 549!	1.315	1.235	1.238	! !1.295 L	11.670	! ! 1.865! !	1 11.135	11.089	11.085	! 1.013! ! 1.013!	0.770

Exportations du Calcium en %

eau 27

,

	!									VAR	IETES								<u> </u>
ganes	Souna III	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	3/4 Souna	3/4 H K	3/4 Ex.8	RC 90	RC 80	4 St.75-2M	RC 70-1	7 St.60-3	4 St.60-2	Н9 - 127	PS 90-2	H24-38	H 7 = 66	IBV 7815	IBV 8501	IBV 3504	H4 = 24
uilles	! 1 . 1: ! 1 . 1:	! 50! !	0,960	!0.940!	0.980 	1.160	1.040	1.070	1.020	1.120	1.080	1.230	1.2801	1.350	1.12J	1.183	11.123	11.120	1.120
ges	[! 0.5	10; 10;	0.620	.6.586!	0.540	0.580!	0.520I	0.586	10,590!	5,598	0.680	0.125	 0.187 	0.110	0.125	0.125	.G.110	0.084	0.125
ains !	! !0.0	05 ! !	0.027	€.007	0,007	0.007!	0.010	0.014	G.017	9;815	3,018	0.013	0.012	0.019	0.011	0.013	[[0.012]	0.020	0.017
chis	[[0.0:	231 !	0.044	.0.054! !	o.050	0.420!	0.043	0,053	0.861	0.039	0.046	0.219	C.U39	0.039 !0.039	0,050	0.037	0.038	0.029	0.042

NIORO RECOLTE 1981

Exportations du Magnésium en %

eau 28 NIGRO RECOLTE 1981

	!								VARI	ETES								
ganes	Souna III	3/4 Sauna	3/4 H K	3/4 Ex.B	RC 90	RC 80	4 St.75-2M	RC 70-1	7:St.60-3	4 St. 60-z	H9-127	Z-06 Sd	H24-58	H7-66	IBV 7815	IBV 8001	IBV 8004	H4 = 2
illes !	0.3 7 4	0.396	! 0.360 !	0.392	0.420	0.510	0.295	0.366	0.378!	3.318	0.314	0.348	0.422	0,300	0.422	! 0.384	! 0.336	! ! 0.336
]es	0.162	0.296	! ! 0.180! !	0.204	0.228	0.240	0.163	0.222	0,222	0.288	0.378	0.394	0.388	0.454	D . 696	[! 0.520 !	! !0.466	! ! 0.544 !
ains	0.140	0.135	! ! û.143! !	0.105	0.075	0.071	0.082	0.048	0.108	C.091	0.233	0.077	0.161	0.165	0.142	: 0.162	0.148	0.140
his!	0.116	0.124	G.117	0.127	0.119	0.086	0.043	C.051!	0.198	0.142	0.125	0.118	0.138	0.140	0.171	! ! 0.121	0.110	0.110

BAMBEY RECOLTE 1981

									— ** ***	-								
	ļ !								Vrin	IETES								i i
ganes	Souna Ti	3/4 Souna	3/4 H K	3/4 . B	RC 9(RC 80	4 St. 75-2M	RC i i i i	7 S _t 60-3	S i i s	H9 127	i 5 90 5	H24 + 38	H7 · 66	187 7815	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	18V-8004	H4 = 24
⊐illes!	! 1.706! !	1.677!	1.9371 !	1 .6 88!	! 1.662! !	! 1.859! !	! 1.884! !	! ! 1. 919 !	! 1.397	:1.990 !	2.034 !	! 2.009	! !1.853 !	1.644? !	: 11.862 !	11.754	! ! 7.758 !	! !1.602! !
្វិខទ	! !1.175 !	! !1.025	! 1.250!!	! 0.925	! !1.020 !	! !1.005	11.110	11.070	. 0.945	! 1.2 7 0	1.115	! !0.915! !	1.145	. 0.730 !	! 0.995 ! 0.995	10,673	!0.32 7! !	! 0.990 !
ai ns	! ! 2.315!	! ! 2.288! !	2.370	2.228	! !2.079! !	2.155 !	2.365 !	! !2,345! !	2.308	! 2.318 !	! ! 2.285 !		2.098	2.143 !	: ! 2.143 !	; 2.170	! 2.133 ! 2.133	! 2.11 3 !
chis!	! 1.568! !	1.410	! 1.75)!	1.650	! !1.644! !	!1.681!	1.679	1.716	1.728	:1.800	11.858 !	!1.558	11.123	!1.248	11.670	! 1.525 	! 1.335! !	1 11 .7 23 !

Exportations du Phosphore en %

iau 30

BANBEY RECOLTE 1981

-			er eller i Tarrelland (Divilland)		-						····	-	-					
	! !							_	VAR	IETES								!
anes	souna III	3/4 Souna.	3/4 H K	3/4 Ex.B	RC 90	nc 80	4 St.75-2M	RC 70-1	7 3 5 60 3	4 5t. 60 -2	H9 - 127	z - 0 6 Sd	H24 - 36	99 - 2H	IBV 7815	1008 AGI	IBV 8004	H4 - 24
illes	! 0.282! 	10.257	:	! !0.262! !	0.251	! 0.257! !	! 0.3°5!	0.221	[0.250	0.343	0.338	0.232	. 0.2941	0.237	!9.271	U.339	0.304	10,364 !
es	! !0.251! !	. 295	[] 0.239	!0.282!	0.311	0.220	0.289	0.138	.0.204	! 0.24 7 !	0.250	0.222 	0.272	0.265	[0.311 ! 0.311	0.272	[] 0.317 !	[] [] [] [] [] [] [] [] [] []
ins!	! ! 0 .427! !	0.432	! !0.456! !	!0.432! !	0.416	. 0. 397	0.360	0.352	0.395	0.402	0.288	0.326	[0,283] 	0.308	[] 0.321 !	. 0.330	0.335	! 0.335 !
his	!0.257	0.280	0.246	0.316	: :0.333 !	0.317	0.471	0.344	0.363	10.378	0.356	0.329	0.268	0.238	! 3.441 !	. 0.288	0.236	0,351

Exportations du Potassium en 🖇

eau 31

BAMBEY RECOLTE 1981

		and the second second second second																
	!			_					V 4R	IZTES								
ganes	Souna III	3/4 Souna	3/4 H K	3/4 Ex.B	RC 90	RC 80	4 St.75-2H	RC 70-1	7 St.60-3	4 St.60-2	H9 - 127	890 2	H24 - 38	H7 • 66	IBV 7815	IBV 8001	18V 8004	
uilles	! !1.59D !	! !2,566 !	1 !2.060 !	1 !2.500 !	! !1.200 !	1.600	2.480	! ! 2. 7 20! !	2.980	2 . 620	! !2.400	! !1.580 !	1.983!	1.495	1.725	1 12.767 1	! 2.360 !	12.685 !
ges	! !3.135 !	! !3.960 !	! !3.300 !	! !1.400 !	 2,280 	12,200	2.180	!2.308!	2.020	1 11.480	[[1,84°]	! [1 _* . 220	10.853 !	0.760	! 3.515 !] 13.287 :	! ! 2.693 !	! !2,205 !
ains	! !0.596	! 0,596 	! :0.652 !	! ! 0.584 !	0.596	0.716	0,668	0.704	0.656	0.697	T	0.607		0.516		T 10,525	[] 0.499 !	[0.683
chis	! !2.260	12 . 590	! 2.520	! !2.350	2.290	2.230	2.310	2,260	2.330	1.750	12.300	12.°5°	1. 785	11.660	! !1.773	I 553	! !1.315 !	!1.683

Exportations du Cal**cium e**n, %

DAMBEY RECOLTE 1981

		-							_									
!	! !	. <u> </u>					·		VAR	IETES								
)rganes !	Souna III	3/4 Souna	3/4 H K	3/4 Ex.B	Rc 90	HC 80	4 St.75-2M	1.C 70-1	7 St.60.*	4 St.60-2	Н9 - 127	ps 90-2	H24 - 38	H7 - 66	IBV 7815	IBV 8001	1 DV 8004	H4 - 24
euilles	! !0.990! !	1.025	9.824	0.788	! 0 . 860! !	! 0.885! !	0.590	985! !	0.550	: 10.995 !	1.145	0.920	! 1.190: !	0.900	. 0.730	! !0.747:	11.120	! !1.080 !
ig es	0.135	0.236	0.204	0.181	0.209!	0.207!	0.155	U.187!	0.151	! !0.164!	0.165	0.288	[] 0.247	0.208	10.205	[0.147 [0.147	0.206	. 0.251
rains !	[!0.018! !	0.025	0.018	0.024!	! 0.034! ! 0. 034!	0.017!	0.017	0,012	0.012	[[0.012] [0.011	0.035	. !0.013!	0.016	. 0.012	! !0.013! !		! 0.010 !
achis !	! !0.061! !	0. <i>96</i> 01	9,042!	0.057!	0,057!	0.052	0.052	:0.060!	0.055	! ! 0.068! !	0.064!	0.107	0.078!	0.058	T ! 0.079 !	: 0.077! ! 0.077!	0.073	! ! 0.089 !

Exportations du Magnésium en %

oleau 33

BAMBEY RECOLTE 1981

	! !					·			VAR	IETES								!
]rganes - 	Souna III	3/4 Souna	3/4 H K	3/4 Ex.B	RC 90	RC 80	4 St.752M	RC 70-1	7 St.60-3	4 St. 60-2	Н9 - 127	PS 90-2	H24 = 38	99 - 2H	IBV 7815	IBV 8001	18V 8004	H4 24
euilles	0.698	0.795	! !0.598 !	! !\.663	.0.690	! 0.585!	0.575	.0.6.03	0.810	! ! 0.698! !	0.610	! 0.733! !	0.760	0.638	.0.618	! 0.570 !	! !0.717! !	0.585!
iges !	.0.467	[0.517 	! !0:446	! !.412!	0.403	0.302	0.264	.0.378	0,338	! !0.364	0.319	0.322	0.254	0.325	0.423	! !0.323	! 0.339! !	0.302!
Prains	G.132	0.132	. 0. 129 !	! . 119! ! . 119!	0.112	0.137 !	0.130	C.128	0.125	0.121	0.118	0.111	0.128	0.131	0.143	! J.132	! 0.275!	0.143!
Rachis !	0.215	0,237	C. 249	.212	0.254	0.215	0.257	0,301	0.320	0. 2 49	0.176	! ! 0.158!	0.1481	0.142	0.179	! ! 0.152	! ! 0.140!	0.150!

LOUGA RECOLTE EN 1981

										,	MATERIAL CONTRACTOR AS							
	 								V AR	IETES								
:ganes	Souna 1	3/4 Souna	3/4 H K	3/4/ Ex.B	RC 90	RC 80	4 St. 75.21	RC 70-1	7 St 8 . 3	4 St % 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H9 27	PS 9 72		9	IBV - 15	IBV TO1	IBV 80 ⁰⁴	H4 - 24
uilles	!1.470 !	1.347	11.542	1.467	! ! 1.595	1.277	1.466	1.156	1.202	11.190	1 11.219	1 1.259	1,415	11.230	1.489	1.288	1 1.087	! 1.495! !
988	1 11.090	0.845	!1.155	! 0.945	11.068	11,217	1,225	0,949	1.028	0.86)	! ! 1 . 233	1,000	0.815	1.173	! !1.100 !	11.128	Г ⁷⁷⁷ : G.751 !	! 1.223! ! 1.223!
ains	! !2.540 !	12.560	! 2.303	! !2.313 !	! !2.367 !	12.600	2.747	2.720	0,560	2.745	2.655	12.450	2.690	2.675	!2.865	2.535	[! 2.650	13.085!
chis	! !1.330	11.392	1.489	! !1.3891	11.426	1.494!	1.426	1.378!	1.464	11.532	11.648	11.512	11.531	1.653	! !1.547!	1.600	11.457	! !1,611!

LOUGA - RECOLTE 1981

	! !								VARIE	ETES								
)rganes	Souna III	3/4 Souna	3/4 H K	3/4 Ex.B	RC 90	RC 80	4 St.75-2M	RC 70-1	7 St.60-3	4 St.60-2	H9 127	PS-90-2	H24 - 39	99 1 LH	IBV 7815	IBV 8001	IBV 8004	H4 - 24
euilles	[0.094	0.039	0 102	0.089	0.117	0.080	0.099	0.068	0.079!	0.076	0.083	0.087	 082	0.095	0.093	10.089	! 0.063	[0.096
iges	.0.087	.0.078	G.092!	0.128	0.088	0.093	0.087! ! 0.087!	U.074	0.083!	0.079	0.085	0.087	0.076	0.036	0.080	07087	! ! 0,972	0.086
rains !	! ! 0.283! !	10.296	[6,539] 	0.329	0.293!	0.278	0.267!	0.283		0.294	0,270	.0.2681	0.292	0.273	0.289	0.293	! 0.293!	0.266!
achis !	0.167	0.159	!0.171!	0.183!	0.181!	0.196	0.173! 	0.169	0.187	0.179	0.185	0.164	0.179	0.174	0.189	0.208	0.157	0.276

Exportations du Potassium en %

leau 36

LOUGA . RECOLTE 1981

	!								VARI	ETES					•			!
rganes !	Souna III	3/4 Souna	3/4 H K	3/4 Ex. B	RC 90	RC 80	4 St.75-2M	RC 70-1	7 St.60-3	4 St.60-2	H9-127	PS 90-2	H24 - 38	H7 - 66	IBV 7815	IBV 8001	18V 8004	H4 - 24
euilles	2,030	2.280	2.010	1.495	1.665	1.835	1.875	1.850	2.640	2.165	1.440	1.580	1.880	1.710	2.190	1.545	1.325	1.565
iges	!1.550!	1.505	! !1.501! !!	!1.420	! ! 1.873! ! !					! !3.068! !		! ! 2 .7 50!	2.455	2.603	3,010	2.075	! 2.203	12.863! !
rai ns	0.336	0.328	: :6.386 :	0.390	0.396		_ 1	! 0.475!	 10:4 7 5	! 0.4331	 0.375	! 0.330! ! 0.330!	0.404 !r	D.450	0.444	Γ ! D.495 !	10.728	10.536!
achis	1.084	1.157	1.128	1.069	1.137	11.052	1.144	1.147	1.134	1.059	0.933	11.0831	1.136	11.045	1.036	0.934	10.934	10.901!

LOUGA - RECOLTE 1981

									VAR:	IETES	, , , , , , , , , , , , , , , , , , , 						·····	I
rgaoes !	Souna III	3/4 Souna	3/4 H K	3/4 Ex.B	RC 90	RC 80	4 St.75-2M	RC 70-1	7 St. 60-3	4 St. 60-2	H9 127	PS 90-2	H24 - 38	99 - 2H	IBV 7015	IBV 8001	IBV 8004	H4 24
euillesi	1.025	! ! 0.857 !	0.950	! ! 0.815 !	! !0.933! !	0.953	1.068	1.145	1.035	! ! 1.085	.0.800	1.135	1.130	1.060!	1.350	0.825	0.930	10.935! 0
iges !	0.210		0.296	0,271	.0.220	0.193	0.192	0.157	0.238	0.245	0.164	0.240	0.137	0.109	0.152	0.112	! !0.116! !	[] . 0.192
rains	0.060	0.019	0.020	0.015	0.026	0,049	0.053	0.049	0.050	0.051	0.059	0.056	0.054!	D.055!	0.052	0.055	.0.056	0.060!
achis	U.020	0.076	0.072	0.073	0.073	0.079	0.096!	0,089!	0.003	.0.085	0.080	[0.139	0.146	0.102	0.153	0.133	. 0.1301	0.400!

53

≤xportations du Magnésium en %

18au 38 LOUGA - RECOLTE 1981

- [
!	VARIETES	

!	!						<u> </u>		V AR	IETES								•
rganes	Souna III	3/4 Souna	3/4 H K	3/4 Ex.8	RC 90	RC 80	4 St. 75-2M	RC 70-1	7 St. 60-3	4 St. 60-2	H9-127	ps 90-2	H 24-38	H7 - 66	IBV 7815	18V 8001	IBV 8004	H4 = 24
euilles!	0.685	0.663	! !0,560! !	0.675	0.704	0.745	.0.808	0.800	0.541	!0.584!	0.490	0.678	0.651	0.509	0.566	0.478	0.411	0.440!
iges !	0.283	0.301	0,224	0.330	0.450	0.772	0.698	0.626	0,633	0.736	0,473	0.611	0.457	0.526	0.658	0.493	0.544	0.698
ains !	0.126	0.102	! !0,096!	0.114	0.137	0,123	! ! 0.114!	0.125	0.117	0.104	0.091	0.079	0.095	0.106	0.091	0.129	0.140	0.118
ichis	0.126	0.169	! 0.174!	0.180	0.168	0.172	0.181	0.193	0.192	! 0 . 1 75 ! !	0.166	0.141	0.173	0.153	0.170	0.161	0.1391	0.1501

Tableau 39 - Rendement campagne 1931 - Localité de Nioro

Popul ati ons	! Rendement q/ha	Classement
Souna III	42,47	
3/4 Souna	27, 27	l III
3/4 н к	30,42	II
3/4 Ex. Bornu	25,45	i III
RC 90	25,00	III
RC 80	37, 00	1
4 Çynt. 75- 2M	25,15	III
RC 70-1	24,42	III
7 Synt, 60-3	20,97	i III
4 Synt. 60-2	18,87	III
H9 → 12 7	28,17	III
PS 90-2	31,67	II
H24 → 38	34,95	II
H ? → 66	33,50	! !
IBV 7815	25,60	i III
IBV 8001	30,55	i II
IBV 8004	34,50	II
H4 · 24	29,97	I II

PPds 05 8,32 q/ha soit 28,47 % - Moyenne intervariétale 29,22 q/ha.

Tableau 40 - Rendement campagne 1981 - Localité de Bambey.

Populations	! Rendement q/ha	Classement
! Souna III	26,17	and the first and the time the time and the time the time the time the time time time time time.
! 3/4 Souna	21,45	II
! 3/4 H K	17,85	i II
! 3/4 Ex÷Bornu	13,17	III
! RC 90	14 ; 05	III
HC BO	14,85	III
4 Synth. 75-2M	15,65	i II
RC 70-1	15,32	II
! 7 Synt. 60-3	11,40	III
! 4 Synt. 60-2	9,45	III
! H9 = 127	10,20	III
PS 90-2	9,22	III
H24 - 38	21,85	1
! H7 - 66	22,92	1
! IBV 7 815	11,57	! III
! IBV 8001	16,95	II
! IBV 8004	18,72	i II
! H4 = 24	11,62	III
		!

PPds 05 6,35 q/ha soit 40,4 % - Moyenne intervariétale 15,72 q/ha.

Tableau 41 - Rendement campagne 1981 - Localité de Louga.

Popul at i ons	Rendement q/ha	! Classement !
Souna III	4,57	III
3/4 Souna	5,65	II
3/4 H K	7 , 95	111
3/4 Ex.Bornu	! 4 , 74	III
RC 90	5,57	i II
RC 60	6,02	! II
4 Synt. 75-2M	3,36	i III
RC 70-1	5 , 39	! !
7 Synt. 60-3	8,70	1
4 Synt. 60⊷2	5,52	! II
H9 - 12 7	2,52	i III
PS 90-2	4,39	III
H24 - 38	4,55	! III
H7 - 66	5,44	! II
IBV 7815	4,05	III
IBV 6001	3,72	, III
IBV 8004	5 , 77	! II
H4 - 24	3,82	III

PPús OS - 3,13 q/ha soit 61,48 % - Moyenne intervariétale 5,10 q/ha.

Hiver mage 1 931

Localité	i NIORO !			BAMBEY			
Variétés	Remplissage %	Rapport, paille/grains	Pds 1000 grains en orammes	Remplissage % grains/épis	, Rapport ;paille/grains	Pds 1000 grains en grammes	
Souna III	68,40	3,177	8,413	61,96	6,575	7,771	
3/4 Souna	53,80	3,702	7,459	60,72	4 t £ 4 2	8,397	
3/4 H K	58,60	3,247	7,845	61,71	6,563	9,137	
3/4 Ex-Bornu	59,20	3,879	8,070	73,35	4,154	3,664	
RC 90	57,20	3,895	7,570	56,00	5,656	8,282	
RC 80	64,50	2,789	7,988	62,03	5,476	7,956	
4 Synt. 75 - 2M	56,80	3,655	gia ana ma ura sha asa wa sua wasuna mu musuu ma ma ura wa wa	53,14	7,581	8,256	
RC 70-1	56,30	3,461	8,894	62,44	5,824	8,288	
7 Synt. 60-3	50,90	3,713	7,626	60,22	7,404	8,032	
4 Synt. 60-2	52,40	4,405	7,426	53 , 98	8,916	7n913	
Н9 - 127	59,60	3,049	8,440	62,30	7,516	7,949	
PS 90 = 2	61,717	2,744	8,213	42,90	9,427	8,072	
H24 - 38	60,40	2,860	8,554	65,25	5,840	8,375	
H7 = 66	65,80	3,432	9,051	66,18	5,741	9,011	
IBV 7315	40,110	3,672	8,230	53,40	7,673	8,919	
IBV 8001	69,40 t	4,091	9,918	55,96	6,901	г в у 205	
IBV 8004	62,50	3,496	9,995	71,35	4,914	8 n747	
H4 - 24	52,40	4,263	7,188	53,05	1 8,832	7,686	

<u>Tableau 44</u> \bullet Moyenne interlocale de chaque population

Pop	ul ati ons	! ! Rei	ndements	q/ha
Souna III		!	24,40*	
3/4 Souna	SR	!	18,12*	1
3/4 н к		1	18,74*	•
3/4 Ex-Bor	nu	!	14,45	!
RC 90-2		İ	14,87	,
RC 80		!	1' 9, 28 *	
1 4 Synt. 7 5	- 2M	1	14,72	
RC 70-1		!	15,21	
7 Synt. 60	- 3	į	13,69	
4 Synt. 6 0	 2	!	11,30	
! H9 → 127		!	13,63	
PS 90-2		1	15,09	
H24 - 38		1	20,45*	
H7 - 66		!	20,62*	
IBV 7815		j	13,73	
I BV 8001		!	17,07*	
I BV 8004		!	19,66*	
H4 ~ 24		!	15,14	
! 		<u>i</u>		

PPds 05 9,60 q/ha - Moyenne intervariétale 16,68 q/ha.

BIBLIOGRAPHIE

BLAGOSHENSKY, A.V.- L'évolution biochimique des plantes à fleurs. Moscou "Nauka", 1966,

VAVILOV, N.I. Deuvres 1, Mocou - Leningrad "Academ. Nauk" URSS 1959.

Robinson G.M., Robinson R. Siochom. J., 26, 1647, 1932.

1

RAPPORT DE SYNTHESE DIVISION DE MALHERBOLOGIE CNRA DE BAMBEY

Le programme "Desherbage chimique dus principales cultures pluviales de la zone soudano-sahélienne" a été poursuivi sur les 3 thèmes suivants :

- 1 Détermination das principales adventices au stade plantule,
- 2 Désherbage chimique des légumineuses (arachide, soja)
- 3 Technique d'application des herbicides,

Les essais ont été menés sur arachide à Bambey et sur soja à Séfa. Sept herbicides ont été testas sur arachide, 8 sur la soja, De plus des tests herbicides sur arachide ont Bté réalisés en milieu paysan,

Malgré les pluviométries totales déficitaires à 3ambey (446 mm, normale 660) et à Séfa (779 mm, normale 1200) les besoins en eau de l'arachide 73-30 et du soja 44A73 ont été juste couverts,

I - DETERMINATION DES ADVENTICES AU STADE PLANTULE

Pendant l'hivernage, il n'y a pas eu de nouvelles adventices importantes identifiées au stade plantule.

II - DESHERBAGE CHIMIQUE DES LEGUMINEUSES

2-1. Arachide

Pas de nouvelles molécules herbicides testées sur arachide, Notre témoin de ré fé rence herbicide est l'association dipropé tryne-métolachlor (720-480) à 1200 gma/he appliqué 3 SAS (Jours Après Semis) Qn traitement desique à 400 l/ha ou en Bas-Volume 3 20 l/ha (COTODON CE400 (R) CIBA-GEIGY),

2.1.1- Essai de comportement

les 3 mailleurs herbicides, qui ant présenté une bonne efficacité à 15 JAS, sans phytotoxicité sur l'arachide sont :

- le mélange trifluraline 960 + alatchlore 750 + atrazine 125 gmæ/ha appliqué en post-semis pré-levée sur sol humide et incorpore par la radou traditionnel,
- l'association dipropétryne-métolachlor à 1200 gma/ha appliqué à 3 JAS.
- l'association tèrbutryne métolachlor à 800 gma/ha appliqué à 3 JAS.

CNH00946 14680 CNRA L'acidfluorfon à 480 gma/ha applique au stade 2 feuilles de l'arachide (7 JAS) présente une bonne efficacité avec une faible Phytotoxicite, par contre appliqué0 à la même dose aux stades 3 et 4 feuilles, la phytotoxicité devient très forte,

La trifluraline, seule ou en mélange, présente une meilleure efficacité quand elle est appliquée en post-semie pré-levée sur sol humide et incorpore par le radou traditionnel, On a note une perte d'efficacité de la plus part des herbicides à 30 JAS.

2.1.1. Essai de sélectivité

L'essai de 1981 a été repris avec les mêmes herbicides aux mêmes doses :

applique 3 JAS.

applique à 3 JAS,

Pendant toute la culture on n'a pas observé de phytotoxicité, ni de différence significative) sur les rendements en graine entre les traitements herbicides et les témoins désherbés manuellement et mécaniquement.

L'association terbutryne-métalochlor, étant sélective do la variété 73-30 et présentant une bonns efficacité, sera proposée à 1 'autorisation Provisoire de Vente à la Commission d' Homologation des Pssticides, à la dose de 800 gma/ha appliques 3 JAS à 400 1/ha.

2.1.3. <u>Essai valeur pratique</u>

L'essai consistait à évaluer la rentabilité de 3 traitements herbicides (trifluraline sur engrais mélangé au laboratoire, association terbutryne-mé tolachlor à 800 gma/ha en application classique et bas volume) par rapport à notre herbicide de référence dipropétryne-métolachlor d'une part et d'autre part au témoin désherbé mécaniquement (houe Sine + cheval).

On n'a pas observé de phytotoxicité sur la culture ni de différence significative sur les poids parcellaires des différents traitements. La rentabilité des traitements herbicides s'est traduite par le nombre inférieur de désherbage par rapport au témoin désherbé mécaniquement qui a reçu 3 sarclabinages à g-22-34. JAS et un désherbage manuel rapide à 73 JAS:

- trifluraline sur engrais: 1 sarclo-binage à 24 JAS.
 et un désherbage manuel rapide à 73 JAS.
- terbutryne-métolachlor à 4 0 0 1/ha: 1 sarclo-binage à 43 JAS et un désherbage manuel rapide à 73 JAS.
- et 20 l/ha et terbutryne-métolachlor en application à 400 l/ha et 20 l/ha et terbutryne-métolachlor en application à 20 l/ha: 1 seul dé sherbage manuel rapide à 73 JAS,

Les traitements herbicides permettent de réduire le nombre de désherbage sur l'arachide, 11 reste à les tester dans le milieu réel.

2.1.4. Arrières effets traitements herbicides arachide essai HAVP 79-80-81 cur mil 82

Los six traitements herbicides sur arachide ont permis un report du' 10 désherbage manuel du mil du 9ème 'au 43éme JAS. On n'a pas observé de phytotoxicité sur le mil Pondant toute la culture. Par contre on note une différence hautement significative du , meilleur rendement, obtenu sur l'arrière effet de la trifluraline à 960 gma/ha applique en bas volume, avec les autres traitements herbicides et le témoin désherbé manuellement.

2.1.5. Tests herbicides en milieu paysan

Trois herbicides ont été appliqués par quatre paysans do Bambey Sérère dans un dispositif bloc de 4 parcelles de 625 m2 chacune avec les traitements suivants :

- 1 Témoin désherbé traditionnellement
- ≈ 2 Tréflengrais 1980 (SSEPC)
- 3 Tréflengrais 1982 (Laberatoire cie Malherbologie)
- 4 Cotodon (dipropé tryne-me tolachlor) 3 lpc/ha applique avec le Handy buse rouge à 2 0 1/ha.

On n'a pas pu mettre en évidence ni de gain de temps de désherbage ni de rendement car les paysans ont biné les parcelles traitées à l'herbicide cammo les témpins sans tenir compte de la différence de 1 'enherbement. De plus on a constate une grande hé térogénéité des sols (PH variant de 8 à 5,5), de l'état des cultures, des lots de semences utilisés par les paysans qui sont souvent des mélanges de différentes variétés locales et sélectionnées.

CONCLUSION

Nous disposons de 7 traitements herbicides sélectifs de l'arachide dont 5 sont applicables soit en traitement classique soit en bas volume. 1 en granule, 1 mélangé avec l'engrais, Il faut étudier maintenant le problème de l'enherbement des parcelles en milieu paysan et analysex les contraintes du passage des herbicides dans le milieu réel.

2.3- Soja

Deux nouveaux herbicides ont été testes sur le soja, il s'agit du butam applique en pré-semis incorpore ou en post semis pré-lové et de l'association dipropétryne-métolachlor en post-semis pré-lové. L'efficacité des traitements herbicides n'a pas pu être mise en évidence du fait de l'enherbement insuffisant des témoins dans les essais de tri-logarithmique et de comportement (pourcentage do couverture moyen des adventices 14% à 30 JAS au lieu de 95% normalement). Les seuls enseignements ont porte sur la phytotoxicité des herbicides sur la variété 44 A 73, le seuil

de phytotoxicité limite (dose correspondante à la noto 3 ce la CES) est donné pour chaque herbicide.

2.2.1- Essai de tri-logarithmique

Appareil AZO utilisé avec la dilution 1/10.

Herbicides de pré-semis incorporés et post_semis pré-levée

- butam (1080-10800 gma/ha) est plus phytotoxioue on post-semis prélevée (2800 gma/ha) qu'en pré-semis incorpore (4500 gma/ha).
- métribuzint + alachlore (80-800+300-3000) est moins phytotoxique en post-semis (260 + 100) qu'en pré-semis incorporé (100 + 370)

Herbicides de post-semis pré-levé

- dipropétry ne-métolachlor (480-4800) phy totoxicité limite (1600 gma/ha).
- → butraline (600 à 6000) phytotoxicité limito (1560)
- butraline-linuron (720-7200) phytotoxicité limite (1800 gma/ha).
- deuxherbicides ont montré une forte phytotoxicité à toutes les doses, il s'agit de l'association oxadiqzon, linuron (600-6000) et oxyfluorfon (120-1200)

<u>Herbicides de post-semis post levés du soja</u>

acidfluorfen (240 - 2400) appliqué 9 JAS au stade V1 V3 du soja a montré une phytotoxicité assez forte à toutes les doses.

2.2.2. Essai de comportement

L'hétérogénéité et la forte acidité du sol (PH 5) n'ont pas été favorables à la culture du soja, Tous les herbicides ont montre dessymptomes de phytotoxicité à des niveaux différents.

A 30 JAS les 3 herbicides suivante ont montré une très légère phytotoxicité acceptable:

- butraline-linuron (1920-480) en post semis prélevée
- dipropétry ne-métolachlor (480-320) en post semis pré-levée
- ccidfluorfon (240) applique 11 JAS au stade V₁-V₃ du soja,

La butralineà 1680, 1920, 2160 gma/ha en poat-semis prélevée et le mélange métribuzine + alachlore (245 + 1000) on présemis incorporé ont montré une phytotoxicité acceptable pendant 15 JAS qui est devenue assez forte vers le 33 JAS. Les quatres herbicides suivants ont montré une très Forte phytotoxicité (note CEB supérieur à 6 l) :

- oxyfluorfen (240 360 480) en post-semis prélevée
- → butam (2880 3600 4320) en post- semis prélevée
- métribuzine + alachlore (245 + 1500, 245 t 2000) en pré-semis incorporé,
- acidfluorfen (720) en post-semis post-levée stade V1-V3 du soja,

2.2.3 - Essai de sélectivitó

Les trois meilleurs herbicides de 1981 ont été testés en sélectivité en 1982 en comparaison avec la butraline à 1920 gma/ha appliquée en post-semis prélevée.

Herbicides de post-semis pré-levée

, butraline-linuron 2400 ≈ 4800 ≈ 7200

métribuzine + alachlore (245 + 1000, 490 + 2000, 735 + 3000)

Herbicides de post-semis post-levée

, acidfluorfen (720 - 1440 - 2160) applique au stade V3 du soja,

AUX doses simples et doubles les herbicides de post semis ont montre une phytotoxicité acceptable. Par contre l'acidfluorfen a été très phytotoxique dès la dose simple et certaines parcelles n'ont pas ou de récolte. Le fort coefficient de variation ries poids parcellaires récoltés, lié à l'hétérogénéité du sol et à la phytotoxicité des herbicides, n'a pas permis l'interprétation statistique des récoltes.

2.2.4. Arrières effets herbicides soja sur riz et. maîs

Les arrières effets des traitements herbicides, appliqués en post-semis pré-levée sur soja en 1981 dans l'essai sélectivité ont été testés sur maîs et riz pluvial en 1982 il s'agissait de :

- butraline (1920 5760)
- métribuzine + alachlore 345+1000, 690+2000, 1035+3000
- butraline linuron 3000 6000 9000.

Avec l'association butraline-linuror on a observé une phytotoxicité légère à la levée, sur le RiZ pluvial, assez forte sur maîs : levée passable à mauvaise, feuillage jauni, croissance ralentie. Le fort coefficient tic variation des poids parcellaires récoltés ne permet pas de faire l'interprétation statistique,

CONCLUSION

L'efficacité des herbicides n'a pur; pu être mise en valeur. Lours phytotoxicités observées sur la variété 44A73 e t leurs arrières effe ts sur maîs et riz pluvial nous obligent à ne recommander que le traitement de post semis prélevée avec la butraline a 1920 gma/ha (soit 4,2 l AMEX 820) appliqué en traitement classique ou en bas volume (Handy, buse jaune, 10 1/ha).

Du point de vue pratique la plus port des herbicides couramment utilisés sur soja on zone tropicale ont été testés et serévèlent phytotoxiques sur notre variété 44A73. Une réorientation du programme he rbicide s'impose pour trouver une autre variété oui nes oit passensible aux herbicides couramment utilisés sur soja en zone tropicale,

III - TECHNIQUE D'APPLICATIONS DES HERBICIDES

3.1. Mélange herbicide sur engrais granulé

Le mélange trifluraline sur engrais à froid a été réalisé par petite quantité au laboratoire sur la base de 1200 gmo de trifluraline (s o i t 2,5 l d e TREFLAN CE 480) avec 150 kg d'engrais 6-20-10. Le mélange doit être fait une à deux semaines avant utilisation.

3.2, Epandeur granule pour mélange trifluraline sur engrais

Le prototype, en cours de réalisation en collaboration avec le Service de Machinisme Agricole du CMRA, sero monté derrière un semoir Poly Eco et testé en 1983. Il permettra de gagner du temps pour la mise en place do la culture d'arachide en faisont simultanément Xe semis, l'épandage de l'engrais et de l'herbicide en localise sur la ligne de semis,

3.3. Applications bas volume de l'association terbutry ne mé tol $\hat{\mathbf{u}}$ chlo r

On utilise le pulvé risateur rotatif HANDY muni de la buse jaune à raison de 2 lpc (IGRAN COMBI CE 400 (R) CIBAGEIGY) et 18 l d'eau/ha.

TV - PREPARATION THESE INGENIEUR DOCTEUR

Dans le codre de lu formation IRAT, doux stages (Février 32 e t Novembre 87 ars 83) o n t été réalisés par le chef de Jervice Malherbologie dans :Le laboratoire de Phytosociologie du professeur LACOSTE Université de Peris Sud à Orsay pour la préparation d'une thèse de docteur ingénieur sur le Thème "Contribution à 1 'é tude dos mauvaises herbes des principales cultures pluviales du Sénégal". Le codage et les traitements statistiques dos relevés floristiques sont presque terminés, i l reste à foir e l'interprétation, la rédaction du mémoire avant la soutenance.

V - PUBLICATIONS

- Essais de désherbage chimique de l'arachide au Sénégal par L'HERNANDEZ, 11ème Conférence COLUMA (p. 949-957) Varsailles décembre 1981.
- Essais de désherbage chimique sur arachide et arrières effets sur mil au Sénégal par S. HERNANDEZ et M. WADE Symposium International sur la Production Arachidière du Conseil Africain de l'arachide Ban jul Gambia Juin 1982.

VI - CONFERENCES INTERNATIONALES - SYMPOSIUMS

Nous avons assiste aux conférences et symposium suivant :

- 7-11 décembre 1981 11ème Conférence COLUMA Versailles.
- 7-11 juin 1982 FAO-AIEA Rome (ITALIE) : Symposium International sur les résidus des produits agro-chimiques dans les denrées alimentaires et l'environnement par l'utilisation des techniques isotopiques.
- 2-11 septembre 1982 FAO ROME
 - . Réunion informelle sur la développement de la Malherbologie en Afrique,
 - Symposium sur le développement de la Malherbologie dans les pays en vois de développement pour la décennie 80.
- 2-26 novembre 1982 Brighton (G.B): British (Crop)
 Protection Conférence Weeds 1982.

Fait à Bamb⊖y, le 21 Avril 1983

Le Chef de la Division Malherbologie

S. HERNANDEZ

Tableau Nº 1 - HERBICIDES SELECTIFS - POUR LA CAMPAGNE 1983

Culture Région Formulation			Dose Herbicide	Application		
		1 3111111111111111111111111111111111111	en L ou kg/ h a	Epcque	Mode	
ARACHĪDE	S. Oriental Sine Scloum Centre Casamance	Stomp CE 33 Vernam 10 G Treflan CE 48 Tréfl a n e ngrais Cotodon CE 400 IGRAN combi CE 400	3 1 25 kg 2 1 '50 kg 3 1 2 1	Pré-semis en sec Pré-semis en sec Post-semis Pré-levée (en humide) Post semis;pré-lévée Post semis (3 JAS) Post semis (3 JAS)	BV avec incorporation G avec incorporation BV avec incorporation G avec incorporation 400 1/ha - B.V	
	Sin⊜ Saloum 	Gesat en u 500 FW	2,41	lpost semis.pré-levé∋	! B.V	
SOJA	Casamance	Amox 820	4,2 1	Post-semis.Pré−levée	! BV ou 200 1/ha	
SORGHO	Sine Saloum	L Q sso (t 48 + Gesaprim FW 500 Lasso GD Primagrem FW 500		Post-semis_Pré-levée Post-semis_Pré-levée Post-semis_Pré-levée	1180 l/ha ou BV 1 1180 l/ha 1180 l/ha	
MAIS	Sine Saloum Cesamance S. Oriental	Gesaprim FW 500 [Tazalon, 50 l [Primegram FW 500	5 1 5 1	Post-semis, mais 1-2 f. Post-semis, mais 1-2 f. Post-semis, mais 1-2 f.	IBV ou 400 l/ha IBV ou 400 l/ha	
Riz-Pluvial	Casamance S. Oriental	Preforan CE 300 Amex 820 Ronstar CE 250 T a mariz Basagran PL 2	8 1 8 1	Post-semis. Pré-levée Post-semis. Pré-levée Post-semis. Pré-levée Post-semis. 10-15 JAS 11 à 2 f. graminée Post-semis 15 JAS 2 f. graminée	BV ou 200 l/he BV ou 200 l/he BV ou 400 l/ha BV ou 400 l/ha 400 l/ha	

G = granulé JAS = Jour afrès demis BV = Bas Volume

f = feuille

Tableau Nº 2 : Herbicides appliqués en Bas-Volume. Campagne 1983

! ! Culture !	Nom Commerciale	Dose L/ha	ļņuanti tē d'eau	lie	-!Appa- ! reil !	!Coulour ! busc !
! !ARACHIDE ! ! ! !	Treflan CE 48 Stomp CE - 33 Gésatene FW 500 Coto d on CE 400 IGRAN combi CE 400	2 3 2,4 3	9 8 7,6 17 18	11 11 10 20 20	Herbi Herbi Handy Handy Handy	Bleu Bleu Jaune Rouge Jaune
i 	G@saprim 500 FW Tazalon 50 L	5 5	7 7	12 12	Handy Handy	Jaune J aune
! !RIZ PĿUV I AL !	Ronstar UE 250 Tamariz	10 4 , 2 4 8	0 5,8 6 12	10 10 10 20	Handy Handy Herbi Handy	Jaurie Jaurie Bleue Rouge
! ! SORGHO	Lasso CE 40 + Gesaprim 500 FW	3 , 2 + 1	5 , 8	! 10	! !Herbi ! !	Bleue
: !	<u> </u>	l i			! !	<u>.</u> !

<u>Tableau nº 3</u>: Herbicídes granulés applicables sur arachide. Campagne 83.

!	Dose	Sable	Quentité totale
!Nom Commercial	kg/ha	kg/ha	épandage kg/ha
! Trcflengrais	!	!	!
	150	! ()	! 150
! Vernem 10 G	2 5	75	100

5R/Doc 1983/61

COMPTE-RENDU DE LA REUNION DE CONCETATION SUR LE MAIS ET LE NIEBÉ AU TITRE DU PC 31 SAFGRAD A KAMBOINSE (HAUTE-VOLTA), 25 - 27 AVRIL 1983

1. INTRODUCTION

Cette réunion de programmation tenue en avril est fort tardive, Le programme est plus long que prévu. Le nombre et la qualité de la documentation apportée attestsnt que les participants n'ont pas été saisis à temps.

La participation du Sénégal est assurée par MM. papa Assane CAMARA, Samba THIAO et Mankeur FALL respectivement sélectionneur de maïs, responsable de la phytotechnie du niébé et Responsable de la Production Agricole Accélérée (RPAA) SAFGRAD-SENEGAL of liste des participants en annexe.

II. DEROULEMENT DES TRAVAUX

Le 25 avril 1983

Après le discours de bienvenue de M. Akadiri Soumaīla, Coordinateur international OUA/ESTR du PC 31 SAFGRAD, l'allocution du Docteur Shebeski, Directeur général Adjoint de l'IITA, l'aperçu du programme maïs-niébé de l'IITA/SAFGRAD par le Docteur V. L. Asnani, chef d'équipe IITA, le représentant du Ministre de l'enseignement supérieur et de la recherche scientifique de Haute-Volta prononce le discours d'ouverture officielle des travaux.

Session I : 1 > élection des présidents et des rapporteurs

2) adoption de l'ordre du jour,

Session II : 1)- aperçu de la recherche sur le niébé à l'IITA

par le Docteur Shiv Raj Singh. IITA/Ibadan.

2)— sélection du niébé.

CN0100347

Session III ,: Agronomie du niébé.

F0111A540

Sessi on [V]: Entomol ogi e du nî ébé.

CNRA

Le 26 avril 1953

Session U : Aperçu rie la recherche sur le maïs à l'IITA par le Docteur Fajemîsîn, IITA/Ibadan.

Sessi on VI : Agronomie du maïs.

Session VIT: Entomologie du maïs.

Session VIII: Prévue le 26/04/83 mais compte tenu de l'importance du sujet, 8' été reportée au 27/04/83.

(Expérimentation : Recherche et Développement).

Session XI: Discussions sur les thèmes ne figurant pas à l'ordre du jour.

Le 27 avril 1983

Session VIII : Expérimen tation : Recherche et Développement,

Session IX : Discussions sur les essais régionaux antérieurs

et futurs.

Session X : Les commissions de travail :

≃ commission de maïs

__ commissions de niébé.

Le 28 avril 1983

Session XII : Présentation des programmes :

≖ programme de travail sur le mals

- programme de travail sur le niébé.

Cérémonie de clôture à 13h 30.

III. DECISIONS PRISES

3-1. Plan général des rapports

Les orateurs ont mis l'accent : a)- sur les problèmes que rencontrent l'amélioration du niébd et l'amélioration du maïs. b)- les progrès réalisés par la sélection relative à ces deux (2) cultures ce les perspectives,

3-1-1. Les problèmes

Les problèmes rencontrés sont, de nature très civers.

- d' ordre climatique : sécheresse endémique, début et fin des pluies imprévisibles.
- d'ordre édaphique: faible fertilité des sols avec déficit chronique de N et de P2O5 dans certains cas, toxicité dans d'autres; faible infiltration ou trop grande percolation des eaux de pluies,
- d'ordre entomologique et phytopathologique : foreuses des gousses ou des tiges, bruches, rouille, streak, mildiou,
- d'ordre technologique : les facilités de transformations technologiques, le temps de cuisson sont des facteurs importants pour la diffusion des matériels végétaux.
- d' ordre organisationnel : la pénétration des thèmes en milieu rural se fait avec d'autant plus de facilité que les structures chargées de la prévulgarisation sont dotées de moyens leur permettant de faire correctement leur travail.

3-1-2. Les progrès

Les progrès réalisés par le PC 31 SAFGRAD/IITA sont nombreux et encouragent à aller do l'avant.

La sélection du niébé et du maïs a mis au point des variétés prométteuses qui seraient résistantes ou tolérantes aux insectes : Thrips, bruches ; aux mauvaises herbes (striga); à certaines maladies cryptogamiques (streak).

La combinaison des techniques culturales (labour billons cloisonnés, amélioration du statut organique des sols ...) et l'emploi de variétés précoces permet de tirer meilleure partie des saisons pluvieuses.

3-1-3. Les perspectives

La sélection sera de plus en plus guidée par les goûts et les habitudes alimentaires des consommateurs (niébé de couleur blanche ou rouge selon los zones, temps de cuisson relativement court, maïs blanc ou jaune de transformation facile) en plus des critères agronomiques habituels. Les populations locales feront l'objet d'une plus grande attention (collections),

L'agronomie se penchera sur Le choix des systèmes de culture, de production et l'emploi de technologies s'intégrant harmonieusement dans l'environnement du monde rural.

3-2. Décisions **prises**

3-2-1. II a été rappelé que :

- 1)- les programmes nationaux participent aux essais régionaux seulement s'ils en tirent profit.
- 2)- le SAFGRAD/IITA doit aider les pays membres pour tester leurs propres matériels végétaux dans des écologies les plus djuerses.
- 3)- le SAFGRAD/IITA étant un des rares projets où les pays nembres, le MAFGRAD/OUA/CSTR et IITA discutent et prennent des décisions, ensemble, doit répondre pleinement aux attentes de chacun.,.
- 4)- le Responsable de la Production Agricole Accélérée (RPAA) est un maillon très important dans la chaine de transfert des acquis de la recherche en milieu rural, tous les moyens lui facilitant le travail doivent être mis à sa disposition,

<u> 2-2-2. Programme 1983-84</u>

Sélection de maïs

RUVT

LLUVT 2

Agronomie de maïs

- . Fertilisation
 - . Rotation avec une ldgumincuse
 - Lutte entomologique.

Sélection de niébé

- Variétés précoces : 60-65 j : essai 1
- . Variétés intermédiaires : 70-80 j : essai 2,

Aqronomi e de ni ébé

- Essai d'aménagement niébé
- . Essai maïs relais niébé
- Lutte entomologique (essai non retenu, inutilement compliqué dans sa conception).

IV. CONCLUSIONS

Le maïs est une culture importante en Afrique et doit jouer pleinement son rôle dans le pari de l'autosuffisance alimentaire grâce aux populations à hauts rendements et aux hybrides.

La haute teneur et la diversité des protéines contenues dans les graines de niébé font de cette culture une base nutritionnelle non négligeable,

Grâce à l'existence du PC 31 SAFGRAD.IITA servant de trait-d'union entre les pays membres, nous éviterons, plus que par le passé, de faire des rocherches en vases clos.

La collaboration exemplaire entre les pays membres qui a permis de lever beaucoup de contraintes et d'augmenter les rendements, est un des nombreux facteurs militant en faveur de la poursuite (seconde phaso) du projet SAFGRAJ,

Plus que par le passé, un accent particulier est accordé aux essais en milieu rural en collaboration avec les réseaux nationaux de vulgarisation.

LA DELEGATION SENEGALAISE,

<u>PŘŎVĪŠĬŎŇĂĽĽĽĬ</u>ŠŤŎŖŢĎĂŔŤĬĊ**ſ**PĂŇ**Ť**ŠŤ LISTE PROVISOIRE DES PARTICIPANTS

MEMBER COUNTRIES/PAYS MEMBRES

PEOPLE'S REPUBLIC OF BENIN REPUBLIQUE POPULAIRE DU BENIN

M Alphonse HOUNKPEVI

Phytogénéticien - Sélectionneur

Maïs

Station de Recherche Agronomi que

de Niaouli B. P. 526

Cotonou, Rép. Pop. du BENI N

BOTSWANA Gasenone MAPHANYANE Mi ss

Agronomi st

Department of Research.National

Program. P/BAG 0033

Gaborone, BOTSWANA

CAMEROON/CAMEROUN

Dr. Jacob Assan AYUK-TAKEM

Maize Breeder IRA/DGRST B. P. 80

Bamenda, CAMEROUN

Dr. Jay CHUNG Mai ze Breeder NCRE/IITA/IRA IRA Nkolbisson

B. P. 2067

Yaoundé. CAMEROON

IVORY COAST/COTE D'IVOIRE

M. Etienne-Marie André HAINÆLIN

Sélectionneur Maīs IDESSA/CV - IRAT B.P. 6 3

Bouaké, COTE D'IVOIRE

ETHIOPIA/ETHIOPIE

M. Amare ABEBE

Cowpea Agronomist

Agricultural Research Institute

P. 0. Box 103 Nazret, ETHI OPI A

Tssdeke ABATE

Institute of Agricultural

Research (IAR) P.O. Box 103

NRS, Nazret, ETHIOPIA

M. Aberra DEBELO Maire Breeder

Institue of Agricultural Research (IAR)

AWASA Agricultural Research Station

P.O. Box 6

GAMBIA/GAMBIE

il. Albert Henry COX Senior Scientific officer Cambia Government P.O. Box 739 Banjul, THE GAMBIA

M. Tom G. SENGHORE
Scientific officer (Agronomist)
Department of Agriculture
P.D Box 739
Banjul, THE GAMBIA

M. Mohammed A. COLE Agronomist Department of Agriculture Yundum, THE GAMBIA

M. Baffour BADU-APRAKU
Maize Breeder
Nyankpala Agric. Expt. Station
P.O. Box 52
Nyankpala, GHANA

M. Felix Dapare DAKORA Soil Microbiologist Crop Research Institute P.O. Box 52 Nyankpala, Tamale, GHANA

M. Kwad jo Owusu MARFO Cowpea Breeder Ghanaian - German Agric. Expt. Station P.O. Box 52 Nyankpala - Tamale, GHANA

M. Ambrose Lawrence NYAMEKYE Soil Scientist Nyankpala Agrio. Research Station P.C. Box 52 Tamale, GHANA

M. Baffour ASAFO-ADJEI Cowpea Breeder Crops Research institute P.O. Box 3785 Kumasi, GHANA

M. Eckart FREY
Agronomist
GTZ, (Agric, Experimental Station
N yankpala)
Nyankpala, GHANA

M. Marcel OUAMOUNO Ingénieur Agronome Ministère de l'Agriculture Chef de la Division des Culture; industrielles au Ministère de l'Agri. B.P. 576 Conakry, GUINEE

GHANA

GUINEA/GUINEE

KENYA

Mr. Kiarie NJOROGE
Maize Breeder, Drylands
Ministry of Agric; ulture
National Dryland farming Research
Station
Katumani P.O. Box 340
Machakos, KENYA

Mr. Makundi B. TKOMBO Agronomist National Dryland Farming Research Station Katumani P.O. Box 340 Machakos, KENYA

M. Albon TEMBELY Sélectionneur de Niébé (Programme National Mali) Institut d'Economie Rurale SRCVO B.P. 438 Bamako. MALI

M. Oumar NIANGADO Responsable de la Cellule Amelioration des Plantes IER/DRA/SRCVO B.P. 438 Bamako. MALI

M. Lamine TRAORE
Responsable de la Production Agricole
Accélérée (RPAA)/SAFGRAD/MALI
Institut d'Economie Rurale (I.E.R.)
B.P. 34
Bamako, MALI

M. Roger TRUONG VAN NGA Ingénieur Polytechnique Rurale de Katibougou B.P. 1982 Bamako, MALI

Dr. Dramane KAMAFA
Docteur en Agronomie
Directeur Technique du CNRADA
B. P. 22
Kaédi, MAURITANIE

M. Si di RCHI D Conducteur T. R. CNRADA B. P. 22 Kaédi, MAURI TANI E

M. Mahamadou ISSAKA MAGA 1 NA AN B. P. 429 Ni amey, NIGER

MALI

MAURITANIA/MAURITANIE

NIGER

NIGERIA

Dr. Shiv Raj SINGH Progam leader IITA P.M.B. 5320 Ibadan, NIGERIA

Mr. Olatunda, Ore OLOGUNDE Maize Agronamist IAR/ABU Zaria, Nigeria Institute for Agric. Research P.M.B. 1044 Samaru, Zaria, NIGERIA

Mr, Fouad Hassan KHADR Maize Breeder IAR/IITA Samaru P.M.B. 1044 Zaria, Nigéria

Mr. H.N PHAM
Maize Breeder
CIMMYT/IITA
C/O IITA, Oyo Road
P.M.B 5320
Ibadan, Nigéria

Mr. Joseph M, FAJEMISIN Maize Pathologist and Breeder IITA P.M.B. '5320 Ibadan, Nigeria

Professor One LELEJI 1AR/ABU P.M.B. 1044 Zaria, NIGERIA

Mr. Dejone MAKONNEN Maize Breeder IITA P.M.B. 5320 Ibadan, Nigéria

Mr. Leonard SHEBESKI
Deputy Director General/Research
IITA, Oyo Road
P.M.B. 5320
Ibadan, Nigeria

M. Papa' Assanc CAMARA Maizo Breeder Institut Sénégalais de Recherches Agronomiques (ISRA)/CNRA Bambey, SENEGAL

M. Mankeur FALL
Responsable do la Production Agricole
Accélérée (RPAA)/SAFGRAD/SENEGAL
CNRA
B. P. 51
Bambey, SENEGAL

SENEGAL

M. Samba THTAW
Responsable de la Phytotechnie
Program National Sonegal
CNRA/BAMBEY
O.P. 53
Bambey, SENEGAL

SOMALIA/SOMALIE

Mr. Mohamud ABDURAHMAN Cowpea Agronomist Agricultural Research Institute Ministry of Agriculture Magadishu, SOMALIA

Mr. Bana BANA-ABBA ABANUR ABUCAR
Maize Breeder: Agronomist
Rgricultural Research Institute AFGOISomalia
Ministry of Agriculture
Mogadishu, SOMALIA

TANZANIA/TANZANIE

Mr. Mfaume David MWANJALI Maize Broeder Ilonga A.R.I. TARO-ILONGA AR1 Private Bag Kilosa, TANZANTA

TOGO

Dr. Yovo Mawulé EÇSEH Responsable National du Programme de Sélection de Maïs Recherche Agronomique B.P. 2318 Lomé, TOGO

M. Batoussi MPO
Ingénieur Agronome
Responsable de la Production Agric,
Accélérée (RPAA)/TOGO
PC 31 SAFGRAD DRDR
B.F. 3
Lamakara. TOGO

UPPER VOLTA/HAUTE-VOLTA

M. Idrissa HEMA Sélectionneur de Maïs E.P. 1495 Ouagadougou, HAUTE-VOLTA

M. Issa DRABO Sélectionneur du niébé IITA/SAFGRAD B,P, 1495 Ouagadougou, HAUTE-VOLTA

Accélérée
(RPAA)/HAUTE-VOLTA
SAFGRAD
B. P. 1783
Ouagadou, HAUTE-VOLTA

M. Michel SEDOGO
Agronome
IRAT/HAUTE-VOLTA
B.P. 633
Ouagadougou, HAUTE-VOLTA

M Baléma NEBIE Ingénieur Agronome CERCI-FARAKO-BA B.P. 540

Bobo-Di oul asso, HAUTE-VOLTA

ZI MBABWE

Mr. Irvine Kwaramba MARIGA
Agronomist
Agronomy Institute
Department of Research & Specialist
Services
P.O. Box'8100
(auseway, ZIMBABWE

Mr. Kingstone MASHINGAIDZE
Maize Breeder
Zimbabwe National Programme
Crop Breeding Institute
P.O. Box 8100
Causeway, Harare,

ORGANIZATIONS/ORGANISATIONS

C.C.E.

M. Guy HUAUX Conseiller à la Délégation Commission des Communautés Européennes B.P. 352

Ouagadougou, HAUTE-VOLTA

FAO

M. Ingeborg BOUWEN Expert FAO en Virologie B.P. 575 Ouagadougou, HALTE-VOLTA

Miss Lillyam GOMEZ-ALVAREZ Expert FAC Projet Lutte Intégrée B.P. 575 FAO/PNUD

Ouagadougou, HAL~TE-VOLT. 4

FSU/SAFGRAD

Dr. A. CANTRELL
Team Leader
FSU/SAFGRAD
B. P. 1783
Ouagadougou, UPPER VOLTA

ICRISAT

Or. Pattanayak Sorghum Breeder ICRTSAT .

В.Р.

Ouagadougou, UPPER VOLTA

IITA/SAFGRAD

Dr. Mario Santos RODRIGUE2 Maize Agronomist IITA/SAFGRAD R.P. 1783 Ouagadougou, UPPER VOLTA

Dr. Vas AGGARWAL Cowpea Breeder IITA/SAFGRAD B.P. 1495 Ouagadougou, UPPER VOLTA

Dr. Nyanguila MULEBA Cowpea Agronomist IITA/SAFGRAD B.P. 1495 Ouagadougou, HAUTE-VOLTA

Dr. Alpha Oumar DIALLO Sélectionneur de Maïs IITA/SAFGRAD B.P. 1495 Ouagadougou, HAUTE-VOLTA

M. Karim O. AKADIRI-SOUMAILA Coordinateur International OUA/CSTR B. P. 1783 Ouagadougou, HAUTE-VOLTA

Dr. Vishnoo ASNANI
Team Leader
IITA/SAFGRAD
B.P. 1495
Ouagadougou, UPPER VQLTA

M. Herbert HUGHES
USAID Project Clfficer
B.P. 35
Ouagadougou, UPPER VOLTA.

SECRERARI A- J