CN0000006 F300 C1S

REPUBLIQUE DU SENEGAL

MINISTERE DE L'AGRICULTURE

INSTITUT SENEGALAIS DE

RECHERCHES AGRICOLES

(I.S.R.A)

CENTRE NATIONALE DE RECHERCHES AGRONOMIQUES

DE BAMBEY (C.N.R.A)

AMELIORATION DU NIEBE RAPPORT ANNUEL - 1999

PAR

NDIAGA CISSE >

ASSANE SENE, BOUNAMA SALL

C.N.K.A. BAMBEY S.D. ..

Dole 15/07/00

Numbero 42 46/00

Mais Bulletin

Declinateire SAL

MARS 2000

INTRODUCTION

L'objectif principal du programme d'amélioration du niébé est de créer des variétés au rendement élevé et stable, avec des qualités de graines conformes aux exigences du consommateur. Ces variétés devront être adaptées aux conditions physiques et biologiques du Centre Nord et Nord du Sénégal. La sécheresse et la faible fertilité des sols constituent les principales contraintes abiotiques rencontrées dans la zone de culture du niébé. Les larves d'amsacta, les pucerons, les thrips et les bruches causent des dégâts importants sur la culture et les stocks de graines de niébé. Alors que le chancre bactérien et le virus de la mosaïque sont les principales maladies de cette culture.

ACTIVITES de REC~HERCHES

Pendant la contre saison 1999, les générations F2 et F3 d'environ 60 populations ont été réalisées et pendant l'hivernage leurs F3 et F4 ont été menées. Des lignées stables sélectionnées pour la résistance aux différentes contraintes biotiques, ont été introduites en essais variétaux préliminaires et avancés à Bambey et Thilmakha. D'autres essais dits de résistance aux thrips et résistance à la chaleur et des tests de lignées fourragères ont aussi été menés. Une pépinière d'observation constituée de lignées résistantes aux virus, au striga et aux pucerons avec des cycles courts à moyens, a éti: installée à Bambey.

CONDITIONS D'EXPERIMENTATIONS

L'adaptation de nouvelles lignées aux conditions agroécologiques du Centre Nord et Nord, a été testée dans les stations de Bambey et Thilmakha. Les cumuls pluviométriques ont respectivement été de 578,1; SO7 mm à Bambey et Thilmakha avec une distribution satisfaisante des pluies.

Un labour, un hersage et une fertilisation avec 150 kg / ha de 6-20-10 (NPK) ont été appliqués sur les parcelles d'essais. Les semis étaient effectués les 13 et 14 Juillet à Bambey et les 23 et 24 du même mois à Thilmakha. La présence massive de pucerons a nécessité un traitement au spildane le 25 Août à Bambey et le 22 à Thilmakha. Un traitement au décis a également été appliqué contre les thrips, le 27 Août à Bambey.

RESISTANCE A LA CHALEUR

Six paires de lignées pures isogéniques pour leur réaction à la chaleur ont été testées pour la seconde année consécutive, Le génotype des membres de chaque paire est identique: pour tous les locus, excepté celui contrôlant la réaction à la chaleur. A ce locus, l'un des lignées membre est homozygote résistant à la chaleur, et l'autre homozygote sensible. Ainsi ces lignées devraient réagir d'une façon identique à toutes les conditions biotiques et abiotiques de culture, mais ne différeraient que par leur réaction à la chaleur. Ces six paires sont ; 1) CB5, H36; 2) 1393-2-I 1, 1393-2-I; 3) H8-8-IN, H8-8-27; 4) H14-10-10, H14-10-10-IN; 5) H35-5-6, H35-5-10; 6) H8-14-18, HS-14-12; La lignée sensible de chaque paire est donnée en première. Les variétés Mouride et Mélakh ont été utilisées comme témoins.

L'essai a été mené dans les stations de Bambey et Thilmakha. Un dispositif à blocs complets randomisés à 4 répétitions a été utilisé dans chaque localité. Une parcelle élémentaire était constituée de 4 lignes de 5 m de long semées aux écartements de 50 x 25 cm.

Durant le mois de Septembre, qui correspond aux stades de floraison, fécondation et de remplissage des gousses du niébé, les températures moyennes minimales et maximales étaient de 24,38 et 33,33°C à Bambey en 1998 et de 24.04 ; 32.07" c en Août 1999. Le minimum et maximum absolus étaient de 22,1 et 36,6°C en 1998. Au cours de cet essai des observations sur les dates de semis, levée, floraison et de maturité ont été effectuées, A la récolte un échantillon de plantes a été obtenu sur 1 m des deux lignes centrales de chaque parcelle. Le nombre de gousses et de pédoncules par plante ainsi que le poids des graines et de la paille par pied ont été obtenus. Il a par la suite été calculé l'indice de récolte qui est le rapport du poids des graines sur celui de la paille et exprimé en pourcentage. Le rendement en graines (kg/ha) a été obtenu sur les 4 m restants de chaque parcelle utile (2 lignes centrales).

A Bambey l'analyse combinée sur les 2 années a montré que l'effet de l'interaction année x variété a été significatif pour le nombre de jours du semis à la floraison à 50%, indiquant que certaines entrées se sont comportées différemment d'une année à l'autre. La floraison a été plus précoce en 1998 qu'en 1999 pour toutes les variétés. Ainsi la moyenne de la période du semis à la floraison à SO % a été de 34,2 jours en 1998 alors qu'elle était de 38,4 en 1999. La. comparaison entre la moyenne des lignées résistantes à la chaleur et celle des sensibles montre que ces dernières ont fleuri plus précocement en 1999, alors qu'en 1998 aucune différence significative n'a été observée entre les deux groupes.

La maturité à 95 % a également été plus précoce en 1998 qu'en 1999, avec des moyennes de 58,5 et 62,5 jours respectivement. Les lignées sensibles à la chaleur ont significativement été plus tardives(62 j) que les résistantes (60,9) en 1999. Alors que pendant la première année de test, il n'y a eu aucune différence entre le cycle des deux groupes. Le témoin Mouride et La lignée H14-1 0-1 N ont été les plus tardives en 1998 avec 60 jours. Alors qu'en 1999 les cycles ont varié entre 59,5 et 69 jours.

Des différences significatives entre lignées ont été observées pour le nombre de gousses par plante en 1999 et non en 1998. Plus de gousses par plante ont été observées pendant la seconde année de test. Ce pendant la comparaison entre lignées tolérantes et résistantes ne montre aucune différence. La moyenne pluriannuelle était de 14.3 et 14.2 respectivement pour les deux groupes.

L'effet de l'interaction année x variétés n'a pas été significatif, indiquant que la même lignée tendait à avoir le même classement par rapport aux autres pour le nombre de pédoncules par plante. Cependant les effets année et lignée étaient significatifs. Ainsi les lignées ont eu un nombre de pédoncules par plante significativement différentes en 1999 et non en 1998. La moyenne était plus élevée la seconde année. La comparaison entre résistantes et sensibles à la chaleur ne montre aucune différence.

Le nombre de gousses par pédoncules était significativement différente d'une année à l'autre. La moyenne en 1999 était plus importante avec 1,9 contre 1,5 en 1998. Cependant une différence significative entre lignées n'a été observée que la première année. Dans aucune des années de test, la comparaison entre résistantes et sensibles à la chaleur ne montre aucune différence.

La taille des plantes n'était pas significativement différente d'une année à l'autre ; Ainsi le poids moyen de la paille sèche par plante était de 17,9 et 13.1 g respectivement en 1999 et 1998. Cependant la différence entre lignées n'a été significative qu'en 1999. Ainsi une interaction significative entre année et lignées a été observée. La comparaison entre groupes de lignées résistantes et résistantes à la chaleur ne montrait aucune différence significative.

La production de graines par plante a été significativement plus élevée en 1999 qu'en 1998 avec des moyennes de respectivement 20,2 et 11,8 g. La différence entre lignée n'a été significative que la seconde année de test. Les lignées résistantes et les sensibles à la chaleur n'ont pas eu de comportement différent dans aucune des années d'expérimentation.

L'indice de récolte moyen était signifikativement plus important en 1999 avec une moyenne de 54,1 % qu'en 1998 (45,5 %). Des différences significatives ont été observées la

seconde année seulement. Ainsi des différences dans le comportement des lignées d'une année à l'autre ont étaient observées. Les lignées résistantes et les lignées sensibles à la chaleur ont obtenu un indice de récolte sensiblement le même

L'effet de l'interaction année x variétés pour le rendement en graines-n'est pas significatif, ainsi le classement entre lignées était relativement le même d'une année à l'autre. Des différences significatives ont cependant étaient observées entre lignées et entre années. Ainsi de meilleurs rendements ont été obtenu en 1999 avec toutes les lignées qu'en 1998. La moyenne de la première année était de 1918,3 kg / ha, alors qu'elle était de 1249,9 la seconde. Une seule paire montre de différence entre ses lignées composantes, ainsi CB5, sensible à la chaleur avec une moyenne de 1574,7 kg / ha était plus productive que H36, la résistante (1076,5 kg / ha). La comparaison entre groupe de lignées résistantes et celui des sensibles n'a montré aucune différence pendant les deux années de test. Ces résultats sont donnés dans les tableaux 1 et 2.

Les données de l'essai en 1999 à Thilmakha n'ont pas été exploités. Une mauvaise germination et une importante perte de jeunes plantes ont été observée.

Tableau 1 : Résultats de l'essai 'Résistance à la chaleur 'à Bambey.

Lignées	S O %	F1 95% l	Mat Gou/pl	Ped/pl	Gou/ped	Paille/pl	Pgr./pl	HI/pl	Rdt
CB5 (S)	37.0	61.2	21.6	11.9	1.7	20.1	22.2	53.1	1919.2
1393-2-I 1 (S	38.0	67.0	16.5	9.6	1.7	14.4	17.7	55.5	2084.5
H8-8-14 (S)	37.2	60.7	16.7	11.8	1.4	13.9	17.8	55.8	2044.0
H14-10-10 (S	38.0	61.2	16.9	11.1	1.5	15.7	16.0	52.9	1363.3
H35-5-6 (S)	38.2	63.0	12.3	6.2	2.4	12.9	13.3	51.8	1927.3
H8-14-18 (S)	37.7	59.7	18.7	1.2.6	1.5	14.5	17.8	56.9	2022.7
H36 (T)	37.0	59.0	17.1	7.7	2.2	12.8	14.3	51.6	1348.0
1393-2-I (T)	37.0	61.7	16.7	8.1	2.2	16.3	21.0	55.6	2095.9
H8-8-27 (T)	37.5	59.5	12.x	10.3	1.4	13.7	20.5	61.4	2104.5
H14-10-1N(T)	37.5	62.0	18.2	8.4	2.4	16.0	20.2	57.0	1894.8
H35-5-10 (T)	37.2	60.7	14.9	9.4	1.7	11.6	14.7	59.4	1699.4
H8-14-12 (T)	37.5	62.5	19.2	10.9	2.1	23.6	21.0	47.6	1890.8
Mouride	45.2	69.0	25.9	18.1	1.6	35.2	30.0	45.0	2110.2
Melakh	43.0	67.0	32.8	12.0	2.8	30.1	35.8	54.1	2350.6
Mean	38.4	62.5	18.60	10.6	1.9	17.9	20.2	54.1	1918.3
Prob	0.00	0.00	0.00	0.02	0.1""	0.00	0.01	0.23	0.00
LSD 0.05	0.81	1.14	8.3	5.3	1.0	9.3	10.7		391.4
Prob. T. vs S.	0.01"	0.00**	11s	0.2""	0.15'"	ns	n s	n s	n s

SO % Fl. = SO % Floraison; 95 % Mat. = 95 % Maturité; Gou / pl. = nombre de gousses / plante Pcd / pl = nombre de pédoncules / plante; Gou / ped = nombre de gousses par pédoncule; paille / pl = poids paille / plante; Pgr /pl = poids graines / plante: HI/pl = Indice de récolte / plante Rdt = rendement en graines.

Tableau 2 : Résultats combinés (98-99) de l'essai 'Résistance à la chaleur ' à Bambey.

Lignées	5 0 %	Fl 95% l	Mat Gou/	pl Ped/pl	Gou/ped	Paille/pl	Pgr./pl	HI/pl	Rdt
CB5 (S)	35. 0	59. 6	16. 0	9.5	1.6	15. 6	16. 7	50.5	1574. 7
1393-2-I 1 (S)	36. 5	62.9	15.1	9.1	1.6	14. 2	16. 4	54.0	1707.2
H8-8-14 (S)	35.6	59. 1	14. 9	9. 2	1. 7	13. 0	15. 6	53.7	1607.4
H14-10-10 (S)	36. 5	59. 9	14. 9	8. 6	1.8	14. 3	13. 7	49.9	1052.5
H35-5-6 (S)	35. 9	60.9	11.0	6.5	1. 9	13. 1	11. 9	47.5	1502.8
H8-14-18 (S)	35. 7	58. 4	14.2	9.4	1.5	11. 9	13. 2	52.9	1544.8
H36 (T)	35. 7	58. 9	14. 5	7. 2	2.0	12. 4	12. 0	47.9	1076.5
1393-2-1 (T)	35. 7	60. 5	14. 1	8. 0	1.8	15. 7	17. 3	51. 7	1687.6
H8-8-27 (T)	35. 9	58.5	12. 3	9. 2	1.4	13. 9	15. 8	52. 8	1668.0
H14-10-1N(T)	36. 1	61. 1	15.3	8.5	1.9	15.5	16. 2	51.1	1588. 9
H35-5-10 (T)	35. 1	58. 9	12. 1	8.1	1.5	11. 7	12. 2	53.1	1418. 5
H8-14-12 (T)	36. 0	61. 0	16.9	9. 9	1.9	21.0	18. 3	46.7	1571. 2
Momide	40. 5	64. 6	18.5	13. 7	1. 4	23. 9	20.7	47. 3	2063. 1
Melakh	38. 2	62. 2	22. 2	9. 9	2.1	20. 8	24. 2	52. 7	2114. 0
Mean	36. 3	60. 5	15. 2	9. 1	1. 7	15.5	160	50. 8	15x4. 1
Prob	0.00	0.00	0.00	0.01	0.11""	0.0004	0.00	0. 37' "	0.00
LSD 0.05	0. 63	1. 07	4. 7	2. 9			6. 01	•	307. 4

ESSAIS AVANCES

L'objectif de l'essai était de tester la performance de 23 lignées issues d'un croisement entre les variétés Mouride et Mélakh. Il a été mené sur les stations de Bambey et Thilmakha. Les deux parents de croisement constituaient les témoins. Un dispositif à blocs complets, randomisés avec 4 répétitions a été utilisé. La parcelle était constituée de 4 lignes de 5 m de long, semées aux écartements de 50 x 25 cm. La distance entre parcelle était de 50 cm. Des observations ont été effectuées sur les dates de semis, levée, floraison et maturité. Les gousses des deux lignes centrales ont été récoltées pour l'évaluation des rendements.

Des rendements élevés ont été obtenus sur les deux stations, avec des moyennes de 2878,7 et 1049,4 kg / ha respectivement à Bambey et Thilmakha (tableaux 3 et 4). Certaines nouvelles lignées (ISRA 888 ; 871 ; 900 ; 870 ; 874 ; 907) ont des performances élevées sur les deux stations. Le cycle du semis à la maturité de ces lignées, est généralement compris entre celui des deux parents. Cependant la lignée ISRA 888 semble être relativement plus précoce que Mélakh. La taille des graines est également comparable à celle des témoins, avec un poids moyen des 100 de 19,2 et 21,5 g à Bambey et Thilmakha. Le criblage pour la réaction au chancre bactérien et au virus de la mosaïque a été effectué durant le processus de sélection, et les différentes lignées semblent être résistantes à ces maladies. La caractérisation de ces lignées sera complétée par un test de leur réaction aux pucerons, bruches et striga.

Tableau nº 3 : Résultats de l'essai avancé' à Bambey.

Lignées	50%Floraison	95%Maturité	100graines(g)	Rendt.(kg/ha)
900	40.7	66.7	20.1	3535.3
874	40.7	67.2	18.9	3350.7
867	4 1	68.0	17.4	3270.1
871	41.7	66.2	19.4	3270.1
888	37.2	64.2	18.3	3225.4
932	41.0	67.5	19.1	3150.5
903	45.0	69.2	20.7	3055.1
875	40.7	68.2	19.2	3043.4
870	41.2	66.0	19.3	3013.9
907	42.7	69.2	17.9	2927.5
880	43.7	68.0	19.1	2923.5
908	41.0	68.0	19.7	2922.2
922	46.2	71.2	20.8	2890.0
878	40.5	66.0	19.9	2882.7
914	41.2	68.2	20.6	2857.2
881	43.2	68.5	18.9	2745.4
898	42.5	67.2	16.8	2688.4
931	43.5	71.0	17.8	2682.5
Mélakh	39.0	65.0	20.1	2669.1
921	39.5	66.2	19.5	2655.6
893	41.0	68.7	20.3	2622.3
Mouride	42.0	69.0	17.9	2588.6
887	41.7	67.7	18.7	2467.8
890	39.5	68.2	22.7	2414.2
868	37.2	64.7	16.8	2116.3
Moyenne	41.4	67.6	19.2	2878.7
L.S.D.	1.5	1.5	1.4	633.89
C.V.	2.64	1.62	5.1	15.6

Tableau nº 4: Résultats de l'essai avancé:a Thilmakha.

Lignées	50%Floraison	95%Maturité	100graines(g)	Rendt.(kg/ha)	B b - T h	(kg/ha)
888	42.0	60.7	21.1	1407.5	23 16.5	
871	43.0	60.5	22.1	1300.5	2285.3	
900	46.0	63.2	22.6	1223.0	2379.1	
931	43.7	60.5	19.9	1216.5	1949.5	
870	45.5	61.7	23.3	1214.2	2114.1	
874	45.2	62.7	20.7	1146.2	2248.5	
880	46.0	62.0	21.9	1145.2	2034.4	
907	46.2	63.2	19.6	1140.7	2034.1	
914	44.2	61.7	21.9	1127.2	1992.2	
898	45.2	61.5	19.2	1100.5	1894.5	
903	45.7	65.5	23 .0	1078.0	2066.6	
Mélakh	42.5	61.0	22.5	1065.3	1867.2	
881	45.5	62.0	20.5	1062.0	1903.7	
878	44.2	61.7	21.8	1059.0	1970.9	
867	45.2	62.0	19.9	1052.2	2161.2	
922	46.0	64.0	22.4	1022.2	1956.1	
908	44.5	63 .0	20.9	994.0	1958.1	
875	45.0	63.5	21.8	967.5	2005.5	
Mouride	45.7	64.0	18.9	912.2	1750.4	
887	46.5	64.0	23.9	906.2	1687.0	
890	44.2	63.7	25.1	893.2	1653.7	
932	45.7	63.5	21.1	855.2	2002.9	
868	44.5	62.7	19.7	803.7	1460.0	
921	43.5	61.5	20.5	780.0	1717.8	
893	45.2	63.2	21.8	763.0	1692.7	
Moyenne	44.9	62.5	21.5	1049.4	1964.1	
L.S.D.	1.6	1.3	1.4	268.7	341.3	
C.V.	2.6	1.5	4.5	18.2	176	

ESSAIS PRELIMINAIRES

L'objectif de l'essai était de tester la performance de lignées issues de croisements réalisés pour atteindre les objectifs d'adaptation aux conditions physiques et biologiques de la zone de culture du niébé. Il a été mené sur les stations de Bambey et Thilmakha. Les témoins étaient Mouride et Mélakh. Un dispositif à blocs complets, randomisés avec 3 répétitions a été utilisé. La parcelle était constituée de 2 lignes de 5 m de long, semées aux écartements de 50 x 25 cm. La distance entre parcelle était de 75 cm. Des observations ont été effectuées sur les dates de semis, levée, floraison et maturité. Les gousses de toute la parcelle ont été récoltées pour l'évaluation des rendements.

Des rendements élevés de 2 à 3 t ont été obtenus par 17 nouvelles lignées à Bambey indiquant leur haut potentiel de rendement. Ces lignées sont de cycle précoce à intermédiaire avec un poids de 100 graines supérieur à 20g pour certaines d'entre elles, celui ci atteigne parfois 25 g. La lignée ISRA-8 19 est de graines rouges, elle est issue du croisement entre la variété locale ND. Aw avec Mélakh son rendement moyen à Bambey et Thilmakha est de respectivement 2684,6 et 1297 kg /ha (tableaux 5 et 6). Sa moyenne (1990 kg / ha) sur les deux stations est la seconde plus élevée àprès celle (2069,3 kg / ha) de la lignée ISRA-2032. ISRA-8 19 dépasse en performance les témoins Mouride et Mélakh à Bambey et Thilmakha. Elle est aussi précoce que Mélakh. Des tests préliminaires montrent que cette lignée a un bon comportement vis à vis des pucerons. La famille dont elle est issue a été sélectionnée en F3 pour la résistance au chancre bactérien après une infestation artificielle. Cependant sa propre réaction devra être confirmée.

Tableau n° 5: Résultats de l'essai préliminaire à Bambey.

Lignées	Pedigree	50%Floraison	95%Maturi t é	100graines (g)	RDT.(kg/ha)
2032	504 x (504 x B21)	40.0	64.7	23.9	2911.2
1018-2	416 x (504 x B21)	44.0	70.7	22.5	2877.7
998	504 x 2x3	47.7	72.7	22.7	2818.9
886-2	504 x 275	42.7	65.7	17.3	2698.1
819	ND Aw x 504	41.7	64.7	22.1	2684.6
799	437 x 2246-4	45.7	70.0	21.9	2496.6
2085	275 x 58-77	43.7	69.7	16.3	2470.3
886-1	504 x 275	42.0	65.7	18.2	2434.4
2055	275 x 58-77	42.3	69.0	16.4	2426.3
776	416x(283x2246-4)	41.0	68.3	21.2	2403.4
740	57x(283x2246-4)	45.3	72.0	22.7	2383.5
758	57x(283x2246-4)	47.3	73.0	23.1	2387.1
906	275 _X 504	45.0	74.3	22.4	2344.3
mouride		42.0	68.3	17.5	2277.2
855	437x(2246-4x504)	41.7	66.3	22.7	2157.8
912	275 x 504	43.3	72.0	18.1	2158.6
755	57x(283x2246-4)	43.0	68.3	23.9	2128.8
915	275 x 504	40.0	66.7	19.1	2043.9
985	283 x 504	37.3	63.0	26.6	1992.1
2044	504 x 58-77	40.0	67.3	18.3	1917.9
787-2	416x(283x2246-4)	43.0	69.0	24.3	1881.9
2052	275 x 58-77	38.0	65.7	22.4	1876.5
976	504 x B21	42.7	75.0	23.0	1836.0
792	437 x 2246-4	42.3	67.7	19.0	1832.3
Mélakh		38.3	65.0	20.8	1799.5
878	504 x 275	40.3	66.7	21.3	1794.1

Tableau n° 5: Suite des résultats de l'essai préliminaire à Bambey

Lignées	Pedigree	50%Floraison	95%Maturité	1 00graines (g)	RDT.(kg/ha)
999	504 x 283	50.3	73.3	24.7	1745.9
757	57x(283x2246-4)	42.3	68.3	26.1	1751.1
2045	504 x 58-77	45.3	69.3	17.2	1727.7
787-1	416x(283x2246-4)	44.0	71.7	26.3	1724.8
800	437 x 2246-4	47.7	74.7	22.5	1644.8
877	504 x 275	41.0	69.3	23.1	1610.6
911	275 x 504	41.3	65.7	20.6	1545.1
977	504 x B21	42.0	66.3	25.9	1495.3
993	283 x SO4	39.7	66.3	21.9	1477.5
736	57x(283x2246-4)	45.7	72.7	26.7	1471.6
910	275 x 504	42.3	72.3	19.9	1461.6
2043	504 x 58-77	46.7	73.3	12.7	1437.4
937	283x(283x2246-4)	40.3	63.7	20.1	1425.8
816	ND Aw x 504	37.3	62.7	20.9	1424.2
2065	275 x 58-77	38.7	63.7	20.9	1391.7
774	416x(283x2246-4)	49.3	75.0	23.4	1284.8
721	57x(283x2246-4)	41.0	68.3	17.9	1258.4
716	57x(283x2246-4)	45.7	72.7	22.6	1205.9
2025	416 x (504 x B21)	34.7	62.7	21.1	1124.3
779	416x(283x2246-4)	44.0	74.3	25.9	1102.8
717-1	57x(283x2246-4)	45.0	73.7	21.6	1021 .5
735	57x(283x2246-4)	46.3	73.0	17.2	858.5
815	ND Aw x 504	49.0	76.0	21.8	748.8
961	B21 x SO4	47.3	75.0	29.0	675.5
moyenne		42.9	69.3	21.6	1832.9
L.S.D.		4.7	3.1	1.9	800.9
C.V.		6.8	2.7	5.6	26.9

Tableau n^{o} 6: Résultats de l'essai préhmihaire à Thimakha.

Lignées	50%Floraison	95%Mat	urité 100graines	(g) (RDT.(kg/ha)	Bb-Th (kg/ha)
816	40.0	60.0	21.1	1432.5	1428.3
937	42.0	60.0	18.5	1430.0	1427.9
985	41.0	60.7	25.3	1404.3	1698.2
877	43.3	62.3	23.7	1318.8	1464.7
819	41.0	60.7	22.7	1297.0	1990.8
2032	40.0	62.3	23.7	1227.3	2069.3
911	44.0	62.0	20.2	1174.0	1359.6
2065	42.3	62.0	20.7	1140.7	1266.2
915	41.3	61.7	17.9	1145.0	1594.4
999	46.7	67.3	26.8	1119.3	1432.6
886-2	47.0	66.3	18.1	1051.0	1874.5
855	44.7	62.7	23.5	992.1	1574.9
2025	41.3	63.0	20.0	895.0	1009.6
906	45.3	64.0	23.0	878.0	1611.1
776	44.3	63.0	20.5	864.4	1633.9
755	43.0	63.0	25.2	856.7	1492.7
878	44.3	63.0	20.4	859.3	1326.7
Mélakh	42.7	62.7	20.8	830.3	13 14.9
2044	42.7	62.7	19.7	825.3	1371.6
mouride	45.0	65.3	18.5	827.0	1552.1
993	41.0	63.0	22.9	806.7	1142.1
1018-2	46.3	68.7	23.4	793.3	1835.5
787-1	46.0	65.7	27.7	781.7	1253.2
799	46.0	68.0	22.3	774.7	1635.6
976	47.0	69.7	25.0	776.3	1306.2
910	43.3	63.7	21.9	756.0	1108.8
2052	38.3	62.0	23.5	753.3	13 14.9

Tableau nº 6: Suite des résultats de l'essai préliminaire àThilmakha.

Lignées	50%Floraison	95%Maturité	1 00graines (g)	(RDT.(kg/ha)	Bb-Th (kg/ha)
736	46.0	69.0	27.3	727.7	1099.6
912	47.7	69.0	19.8	723.0	1440.8
2085	45.7	69.0	15.5	701.7	1585.9
998	47.0	69.0	26.6	701.3	1760.1
721	42.3	63.0	18.4	702.0	980.2
757	45.3	64.0	26.1	697.3	1224.2
2045	47.3	65.7	18.0	679.3	1203.5
977	44.7	63.0	26.0	650.7	1072.9
740	46.0	68.7	22.5	622.0	1502.7
2043	49.0	67.3	12.3	600.3	1018.7
787-2	45.7	66.7	26.4	554.8	1218.4
779	48.0	69.7	26.9	549.7	826.2
758	46.0	67.7	21.1	536.3	1461.7
716	46.7	70.0	24.6	499.0	852.5
717-1	49.0	69.7	23.5	467.8	744.7
2055	46.3	69.7	16.3	440.0	1433.2
792	45.7	65.0	19.7	425.1	1128.7
815	51.0	69.3	24.3	373.5	561.2
886-1	45.7	62.7	19.5	370.4	1902.4
774	49.0	69.7	23.0	367.3	826.1
800	48.0	70.0	23.9	279.7	962.3
735	46.0	69.7	17.9	251.4	554.9
961	48.0	70.0	29.2	242.0	458.8
moyenne	44.9	65.4	22.1	803.4	1318.2
L.S.D.	2.9	2.8	2.3	378.6	440.2
C.V.	3.9	2.6	6.3	29.1	29.3

ESSAIS 'RESISTANCE AUX THRIPS'

Ces essais avaient pour objectifs d'évaluer la réaction aux thrips de lignées introduites ou issues de croisements entre d'une part Mouride, Mélakh et de l'autre 58-77 comme source de résistance. Ces lignées ont été divisées en deux essais installés à Bambey, en des dispositifs à blocs complets randomisés. Trois répétitions étaient utilisées dans chaque dispositif La parcelle était constituée de quatre lignes de 5 m de long semées aux écartements de 50 x 25 cm. La distance entre 2 parcelles adjacentes était de 50 cm. Aucun traitement contre les thrips n'a été appliqué. Le premier prélèvement de thrips a eu lieu pendant la floraison, au 40" jours après semis, Le second une semaine plus tard, au 47° jour. Les prélèvements ont été effectués sur les deux lignes centrales de chaque parcelle.

Les populations de thrips étaient relativement faibles à la floraison, avec des moyennes d'environ 5 à 8 thrips par prélèvement sur les deux essais (tableaux 7et 8). Le nombre de thrips entre les deux prélèvements n'a pas été significativement différent, dans l'essais 1.

Seules les lignées Ejura Red et Ex-adidane ont obtenu une population de thrips supérieure à celle de la moins attaquée (Sanzi sambiri) au second prélèvement. Dans l'essai II, le nombre de thrips par plante était significativement plus élevé au second prélèvement qu'au premier.

Ainsi les lignées ISRA-2042, 2044 et Mouride obtenaient un nombre de thrips, plus élevé au second prélèvement qu'au premier. Les lignées Bun 22 et Dagartie ont été les moins attaquées. Des différences significative4 entre lignées ont été observées à chaque prélèvement. La variété Mouride a obtenu les populations de thrips les plus élevées pendant les deux échantillonnages.

Les lignées ISRA-2065, 2052 ont obtenu ces deux années des rendements supérieurs à 1200 kg / ha en conditions non traitées et un niveau d'infestation en thrips relativement faible. La variété Mélakh avait aussi des rendements moyens supérieurs à 1 tonnes pendant les deux années, en essais non traités contre les thrips.

Tableau n° 7: Résultats de l'essai (I) résistance aux thrips.

Lignées	50%Florais	Nombre de th	nrips/5 fleurs 2°prélévement	95%Mat.	Gousses/pl	Rdt(kg/ha)
Daipel	42.7	5.0	5.3	63.7	11.3	765.6
Ejura red	46.0	3.7	15.3	69.7	5.3	383.3
Kintimpo	44.0	7.0	5.7	65.7	5.6	302.5
Sanzi samb.	43.3	6.3	3.0	64.7	23.7	666.5
Bl 9	44.7	3.3	7.0	65.0	15.2	825.1
Ex.adidane	41.3	6.3	11.0	63.0	32.9	783.5
Tvu 1509	43.0	3.7	6.0	64.3	30.4	563.1
Tvx3236	45.7	3.7	7.7	67.3	18.4	1133.1
Kvx404-8-1	43.0	4.0	4.7	66.7	25.1	1089.5
Kvx404-22-2	3.3	6.0	5.7	65.3	15.1	946.1
IT89k-349	45.7	6.0	4.7	70.0	7.1	588.4
It89k-374-57	43.0	3.7	3.7	66.0	16.2	554.9
58-77	42.0	5.0	8.7	67.3	23.5	795.5
mouride	43.3	6.7	6.7	66.3	28.1	1091.1
Mélakh	41.7	3.3	9	65.3	26.1	792.6
moyenne	43.5	4.9	6.9	66.0	18.9	752.0
L.S.D.	4.0	4.5	7.6	5.0	17.7	319.5
C.V.	5.5	55.4	65.5	4.6	55.8	25.4

Tableau nº 8: Résultats de l'essai (II) résistance aux thrips.

Lignées	50%Florais.	Nombre de	thrips/5fleurs	s 95%Mat.	Gousses/pl	Rdt(kg/ha)
		l ^e prélévement	2 ^e prélévement			
Bun 22	40.0	2.3	2.3	71.7	17.4	184.3
Simbiri	42.7	5.3	6.7	64.7	21.7	670.8
2042	52.7	3.0	13.0	68.7	2.2	95.2
2044	45.3	4.7	11.3	69.0	13.2	438.1
2045	45.7	5.0	10.3	69.3	9.7	407.3
2085	44.7	5.0	8.3	69.0	12.3	443.2
2065	40.0	3.7	6.0	62.7	34.0	1426.5
2052	40.0	4.3	3.7	65.7	25.9	1242.1
Tvx3236	44.7	6.0	7.0	69.0	15.7	573.7
Mouride	42.7	8.7	17.7	69.0	12.4	699.7
Melakh	40.0	6.0	5.7	65.7	28.8	1368.2
Dagartie	40.4	3.0	2.7	65.3	15.4	528.3
moyenne	43.2	4.7	7.9	67.5	17.4	673.1
L.S.D.	1.7	4.2	8.3	10.1	15.6	264.3
C.V.	2.3	53.3	62.0	8.8	52.3	23.2

LIGNEES FOURRAGERES

Cet essai avait pour objectif de tester pour la seconde année consécutive, des lignées utilisées pour la production de fourrages et de graines au Niger et ayant la capacité de conserver leurs feuilles à la maturité. L'essai a été installé à Bambey, et était constitué de 4 blocs complets randomisés. La parcelle elémentaire était constituée de 7 lignes de 5 m de long semées aux écartements de 50 x 50 cm. A la floraison et à la maturité la partie aérienne sur deux lignes ont été récoltée.

Le rendement en paille à la maturité était significativement plus élevé qu'à la floraison (Tableau 9). La variété témoin 66-35 avait la meilleure production de paille sèche sur les deux années. Les lignées TN3-78 et TN12 1-63 donnaient de bons rendements en graines à chacune des deux années et leur production en paille de 1999 était excellente.

PEPINIERE D'OBSERVATIONS

Environ cent (100) lignées ont été introduites de l'IITA dans le cadre du réseau niébé de l'Afrique de l'ouest et du centre (RENACO). Ces lignées ont été mises dans cinq (5) différents essais intitulés ; Maturité précoce (24 lignées), Maturité moyenne (24), Résistance aux virus (20), Résistance au striga (19) et Haricots verts (10). Les lignées de chaque essais ont été semées sur des parcelles de 5 m de long avec des écartements de 50 x 25 cm. Les parcelles étant distantes l'une de l'autre de 75 cm, une seule répétition a été utilisée par essais. Des observations ont été effectuées sur le cycle et la réaction aux virus. Les rendements en graines et en paille ont été évaluées (tableaux 1 0-14).

Tableau nº 9: Résultats de l'essai 'lignées fourragéres'.

Lignées	50%Florais.	95%Mat.	Rdt. Paille (kg / ha)	100 graines	Rdt.(kg/ha)
			Floraison	Maturité		
TN3-78	54.7	83.7	2684.7	4550.0	20.0	1727.5
TN93-80	57.0	83.7	2175.7	3362.5	16.6	1263.2
TN121-80	57.0	84.0	3043.4	3912.5	17.4	2286.2
TN256-87	57.0	84.0	2840.1	3400.0	17.4	2063.2
Gaba local	54.7	83.7	2701.3	3300.0	19.3	747.5
TN88-63	54.7	84.0	2753.6	3762.5	12.6	1082.2
58-74	51.0	76.5	2610.9	4425.0	11.9	1815.7
66-3 5	52.7	78.0	2611.5	4337.5	12.3	689.5
Moyenne	54.9	82.2	2677.7	3881.2	15.9	1459.4
L.S.D.	1.6	0.8	815.0	1211.1	1.2	682.7
C.V.	2.0	0.7	20.7	21.2	5.3	31.8

(CONCLUSIONS

Pour la réalisation des objectifs de création variétale, les générations F2 et F3 d'environ 60 populations ont été réalisées pendant la contre saison 1999 et durant l'hivernage, leurs 'F3 et F4 ont été menées. En plus des lignées nouvellement créées ont été testées dans différent essais variétaux.

L'objectif de l'essai 'résistance à la chaleur' était de tester si les hautes températures constituaient une contrainte à la culture du niébé au Sénégal. Les résultats de deux années de test, semblent montrer que la chaleur n'afecte pas le rendement en graines du niébé et ses principaux composants. Elle ne constitue donc pas une contrainte à sa culture au Sénégal. Un programme d'amélioration variétale du niébé pour la résistance à la chaleur n'est donc pas nécessaire à initier pour le moment.

Les populations de thrips à la flo aison restent relativement faibles dans les zones principales de culture du niébé. Mais ce niveau d'infestation était suffisant pour diminuer de plus de SO % les rendements. Les lignées ISRA-2065, 2052 et la variété Mélakh ont obtenu pendant ces deux années d'essais, des rendements moyens supérieurs à 1200 kg / ha et un niveau d'infestation en thrips relativement faibles dans les zones niveau d'infestation était suffisant pour diminuer de plus de SO % les rendements. Les lignées ISRA-2065, 2052 et la variété Mélakh ont obtenu pendant ces deux années d'essais, des rendements moyens supérieurs à 1200 kg / ha et un niveau d'infestation en thrips relativement traible, en conditions non traitées. Il semble donc possible d'obtenir des rendements élevés avec ces nouvelles lignées sans traitement chimique contre les thrips.

Des lignées hautement productives avec des caractéristiques agronomiques correspondant aux objectifs du programme, ont été identifiées des essais avancés et préliminaires, Certaines d'entre elles ser ont introduites en essais multilocaux en stations et milieu paysan. C'est le cas particulière lent de la lignée ISRA-819 à graines larges et rouges, qui donne des rendements élevés, avec un bon comportement vis à vis des pucerons, du chancre bactérien et des virus.

L'objectif de l'essai 'lignées four ragères' était, de tester pour la seconde année consécutive, des lignées utilisées pour la production de fourrages et de graines au Niger et ayant la capacité de conserver leurs feuilles à la maturité. Les rendements en paille à la maturité étaient plus élevés qu'à la floraison. La variété témoin 66-35 avait la meilleure production de paille sèche sur les deux années. Les lignées TN3-78 et TN121-63 donnaient de bons rendements en graines à chacune des deux années et leur production en paille de 1999 était excellente.

OBSERVATIONS RENACO 1999

MEDIUM MATURITY

Tableau nº 10.

Code	Variétés	pl./parcelle	50 % fl.	95 % mat	Virus	Rdt grains	Rdt paille
101	IT95K-207-15	65	51	69	V	106,9	4666,6
102	IT95K-222-3	66	43	66	-	1229,3	4666,6
103	IT96K-113-6	67	44	68	-	806,1	3333,3
104	IT97K-818-28	36	44	68		1328,8	2533,3
105	IT97K-400-3	10	47	69	_	20,8	800
106	IT97K-499-35	63	36	61	_	1696,6	2800
107	IT97K-491-7	57	43	66	-	558,6	2800
108	IT97K-1038-94	43	42	66	_	493,8	6533,3
109	IT97K-569-9	40	42	66	v	1347,4	7733,3
110	IT97K-568-19	37	55	69	_	20,1	4800
111	IT97K-556-6	49	42	66	-	1152,2	3200
112	IT97K-460-1	39	39	66	-	1648,6	5200
113	IT90K-277-2	20	41	66	-	508,8	6400
114	IT89KD-349	42	44	68	-	838,6	3333,3
115	IT96D-757	32	55	68	-	178,6	5466,6
116	IT96D-733	10	59	70	-	27,06	6266,6
117	IT93K-637-1	54	43	65	-	728	3333,3
118	IT97K-819-132	59	43	66	-	668,5	6666,6
119	IT95K-207-2-1	18	44	69	-	348	3600
120	IT95K-222-14	28	44	66	-	1168,5	11200
12]	IT96D-666	40		-	-	18,6	2733,3
122	IT93K-734	41	41	66	_	1551,3	4533,3
123	IT95K-181-9	45	44	68	_	1071,6	3466,6
124	IT95K-193-12	28	41	66	_	1033,7	3733,3
125	Mouride	42	38	66	Phil	1205,4	2000

OBSERVATIONS NURSERY STRIGA 1999 RENACO 1999

BAMBEY 1999

Tab	leau	n"	-11

	ableau n° 11				,	,	
<u>Cocode</u>	Variétés	pl./parcelle	50 <u>% fl.</u>	95 %mat	Virus	Rdt grains	Rdt paille
101	IT95K-348-15	59	44	69	-	1020,8	5133,3
102	IT96D-748	57	55	69	V	79,4	5066,6
103	IT95K-1072-57	49	44	65	-	357,3	7066,6
104	IT97K-819-14	52	44	64	v	712	2533,3
10:5	IT97K-818-35	65	44	66	-	1576,6	3466,6
106	IT97K-837-8	40	44	66	v	736,5	3066,6
107	IT97K-338-7	51	47	70	-	244,4	8533,3
108	IT97K-819-45	75	43	65	v	1238,8	3200
100	IT97K-340-1	52	44	69	_	553,6	5400
11()	IT97K-819-180	47	45	66	V	1298,2	2666,6
11 1	IT97K-825-15	56	44	64	_	1240,2	4533,3
11:2	IT97K-819-4	48	39	63		1735	2666,6
11:3	IT93K-2-8-21-23-6	21	47	66	_	533,3	800
1141	IT95K-1090-12	6	47	72	-	94,8	666,6
11:5	IT94K-437-1	4	41	66	_	204,9	400
1105	IT94K-440-3	11	41	66	_	333	2400
11'7	IT93K-693-2	10	43	66	_	80,4	400
118	IT96D-757	26	55	69	-	90,2	6000
119	IT95K-1095-4	19	42	65	v	605,6	1733,3
120	IT95K-2011-11	25	44	66	-	582,8	2000
12 1	IT93K-637-1	48	43	64	v	1009,4	7200
12:2	IT95K-627-34	29	39	64	v	659	4533,3
12:3	IT96K-733	13	55	70	V	280	5066,6
12,1	Mouride	44	39	64	v	496.8	6000

OBSERVATIONS NIJRSERY ESSAI EARLY MATURITY BAMBEY 1999 RENACO 1999

Tableau nº 12.

1	ableau n° 12.						
Code	Variétés	pl./parcelle	50 % fl.	95 % mat.	Virus	Rdt. grains	Rdt. paille
101	IT94K-2023-3	49	55	70	V	78,1	10.000
10:2	IT95K-286-4	23	43	66	Į	972,4	3333,3
103	IT93K-2045-29	39	36	66	V	608,4	5866,6
104	IT96D-657	32	41	65	V	1210,8	1400
105	IT93K-734	36	39	65	_	1602,2	9200
106	IT96D-618	52	47	66	V	307,7	3066,6
10′7	IT94D-437-1	37	39	60		1424,9	3466,6
108	IT95-627-34	28	39	63	-	1057,6	2133,3
109	IT93K-452-1	57	34	59	-	1518	3466,6
110	IT94K-440-3	31	39	61	ı	820,9	5066,6
111	IT94K-440-1	47	41	66	•	1637,4	666,6
11/2	Mouride	29	41	66	V	1160,9	5466,6
113	Mélakh	-	N	on semé			
114	IT95K-1093-5	55	41	64	V	1096	5466,6
115	IT95K-238-3	44	44	66	V	1466,1	5866,6
116	IT95K-1453-47	44	39	64	-	661,4	8800
11′7	IT97K-497-2	59	35	61	-	958,8	2933,3
113	IT97K-1068-7	58	39	61	-	548,1	7866,6
119	IT97K-499-38	67	35	59	-	1206,8	3733,3
120	IT97K-499	61	34	59		1939,7	5466,6
121	IT97K-461-4	55	35	59	-	1422,8	2533,3
12:2	IT95-1090-12	36	43	64	V	428	4533,3
123	IT95K-1156-3	69	39	64	V	912	2733,3
124	IT93K-686-2	52	39	64	V	773,6	2800
125	IT95-1381	54	35	59	V	1040,4	4133,9

OBSERVATION \$ NURSERY RENACO 1999 VIRUS RESISTANT

Tableau nº 13.

Code	Variétés	pl./parcelle	50 % flo.	95 % mat.	Virus	Rdt grains	Rdt paille
101	IT84D-449	38	36	59	-	1794	4533,3
102	IT85F-2627	28	41	64	_	1324,4	4000
103	IT85F-267-5	54	41	61	_	1326,6	4000
104	IT83D-442	30	41	64	-	1698,2	5600
105	IT91K-118-20	21	39	64	-	578,4	1466,6
106	IT845-2135	37	39	61	-	1526,1	2666,6
107	IT85F-2805	41	43	66	-	838,4	4800
108	IT83S-872	59	39	64	_	826,6	5333,3
109	IT93K-734	54	39	66	-	1468,3	4133,3
110	IT96D-740	37	35	69	-	296,6	8533,3
111	Ife Brown	61	36	66	-	1013,3	3466,6
112	1T85F-1380	48	39	61	_	1132,2	3333,3
113	IT85F-3139	55	36	64	-	1200,2	3285,7
114	IT90K-284-2	23	41	66	-	1020,2	2000
115	IT82D-889	43	39	59	_	1389,3	3333,3
116	IT83S-818	52	39	66	-	1066,6	4666,6
117	IT90K-277-2	27	41	66	_	665,8	4666,6
118	IT82E-16	53	39	61	-	1318,4	4800
119	IT96 D-7 19	54	39	65	-	326	5066,6
120	IT84D-448	54	44	((1000,5	7222,2

OBSERVATION! NURSERY RENACO 1999

VEGETABLE

Tableau nº 14.

Code	Variétés	pl./parcelle	50 % f	lo.	95 % mat.	Virus	Rdt grains	Rdt paille
101	IT92KD-266-2-1	28	-		-	V	266,6	6133,3
102	IT92KD-267-2	23	44		66	V	364.6	2666.6
103	IT92KD-263-4-1	17	-		-	JV	L	4800
104	IT81D-1228-14	38	44		66		460,8	4.666.,6
105	IT83S-849	22	39		66	-	347.7	5733.3
106	IT86F-2014-1	16	42		66	P	520	1333.3
107	IT86H-2062-5	60	38		59	_	1531,7	1466,6
108	IT86F-2089-5	17	39		61	-	556,1	3066,6
109	IT93K-915	29	46		68	-	717,7	6666,6
1110	59-21	33	43		61	=	638,9	533,3

NB: Les variétés IT86F-2062-5 et IT86F-2089-5 sont les meilleurs de l'essai et peuvent être utilisées comme parents dans les croisements.

Tableau 15: Températures maximales et minimales annuelles de Bambey

	Ju	in	Juillet		Août		Septembre		Octobre	
∖nnée	T°max	T°min	T°max	Γ°min	Γ°max	Γ°min	T°max	T°min	Γ°max	T°min
1990	36.3	22.1	34.5	23.7	33.6	23.5	33.6	24.0	36.5	235
1991	36.8	19.3	34.1	2.3.8	33.9	24.2	34.6	23.1	35.7	22 1
1992	37.5	23.5	34.2	23.6	34.0	24.2	34.7	23.4	37.6	21.5
1993	37.2	23.2	34.7	23.9	33.8	24.1	33.7	23.8	36.7	22.6
1994	36.2	22.8	34.7	23.8	32.4	23.7	33.2	23.5	35.6	21.8
1995	37.2	22.3	34.2	24.6	32.9	23.6	33.6	23.4	36.7	22.4
1996	37.0	22.9	35.3	24.2	33.2	24.1	33.9	23.6	36.9	22.9
1997	36.3	23.6	35.4	24.2	34.3	23.6	33.5	23.9	38.1	23.3
1998	36.7	22.9	35.6	23.7	36.7	24.0	34.6	24.6	37.2	22.7
Moy.	36	22	3 4	23	33	23	33	23	36	22



Figure 1 : Evolution du taux de survie des espèces plantées en haies vives monospécifiques sur sol sableux latéritique à NDioungane

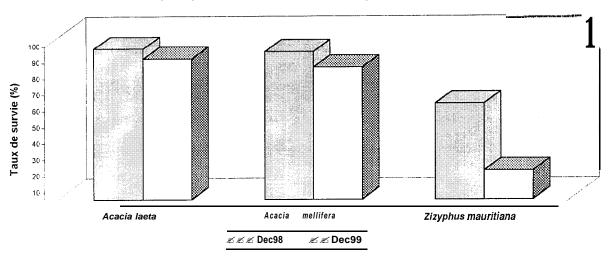
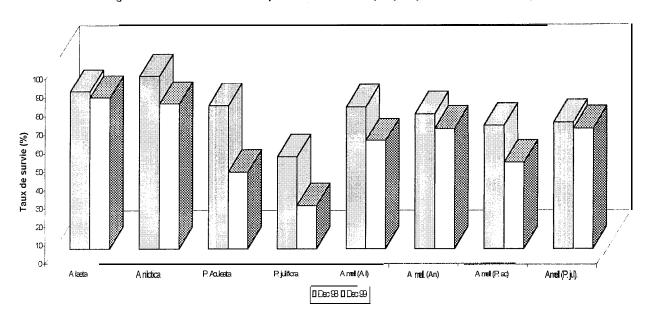



Figure 2 : Evolution du taux de survie des espèces utilisées en haies vives plurispécifiques sur sol deck dior à Moontroye.

A = Acacia; A. | = Acacia | laeta; A.ni = Acacia | nilotica; P;ac = Parkinsonia | aculeata; A. mell = Acacia | mellifera; P. jul. = Prosopis | juliflora | A. mell | Acacia | mellifera | dans | son | association | avec | Acacia | laeta | acacia | acacia

Figure 3 : Evolution du taux de survie des espèces utilisées en haies vives plurispécifiques sur sol dior à KeurNDiogou.

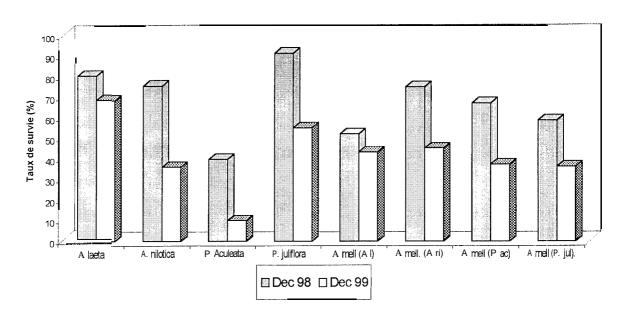


Figure 4 : Evolution de la hauteur moyenne des espèces plantées en haies vives monospécifiques sur sol sableux latéritique à NDioungane.

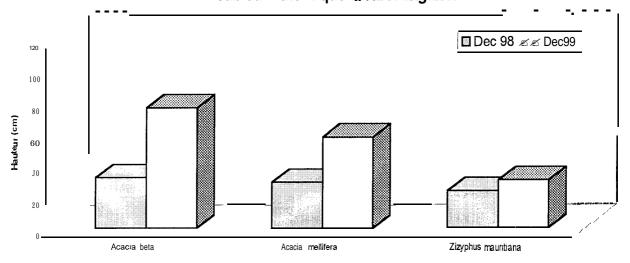


Figure 5: Evolution de la hauteur des espèces plantées en haies vives plurispècifiques sur sol deckdior à Mbomboye

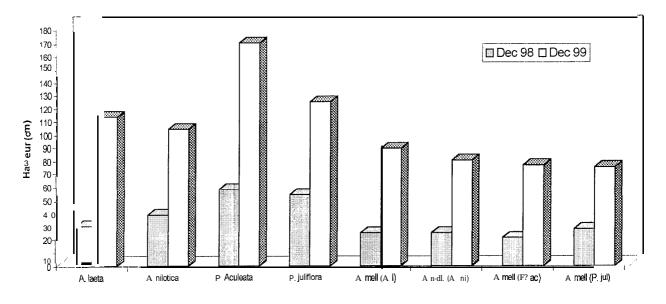
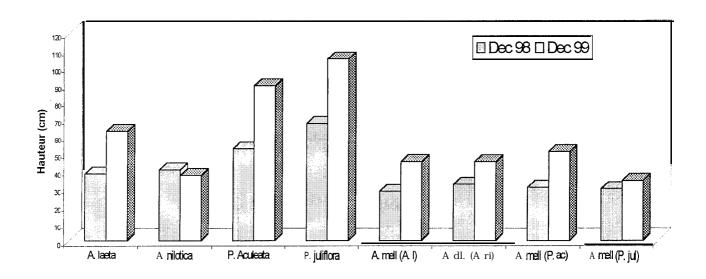



figure 6 : Evolution de a hauteur moyenne des espèces utilisées en haies vives pluris pécifiques sur sol dior à Keur NDiogou

9 "

Figure 7: Taux de survie des espèces plantées en haies vives plurispècifiques sur sol sableux latéritique à Ndioungane

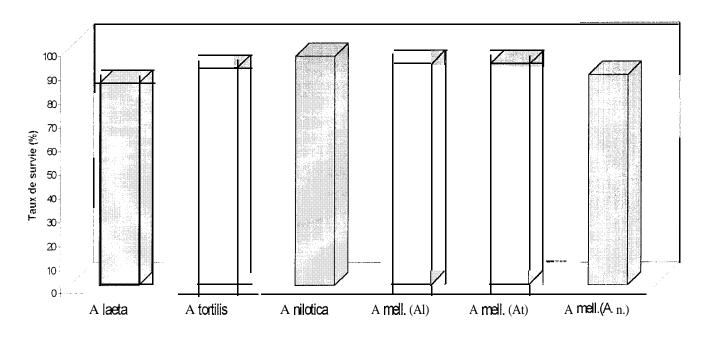


Figure 8 : Taux de survie des espèces plantées en haies vives plurispècifiques sur sol deck-dior à Kissane quatre mois après plantation

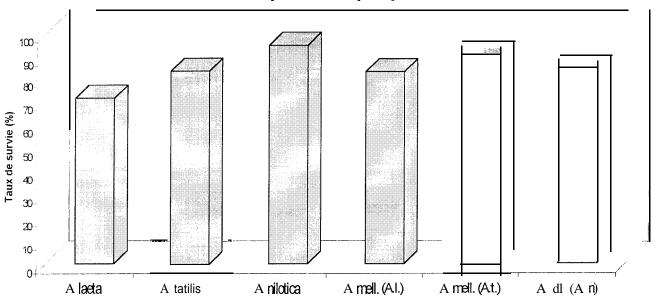


Figure 9: Taux de survie des espèces plantées en haies vives plurispècifiques sur sol dior à Keur Ndiogou

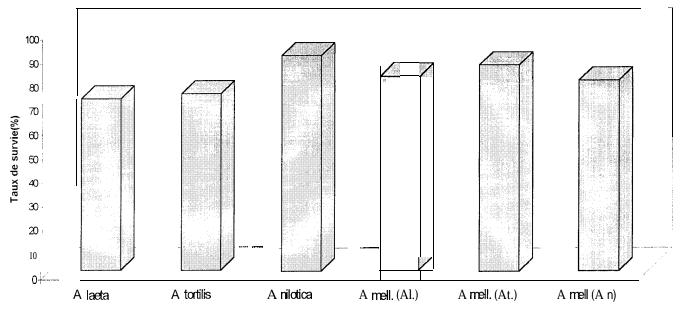


Figure 10: hauteur moyenne des espèces plantéesen haies vives plurispècifiques sur sol sableux latéritique à Ndioungane

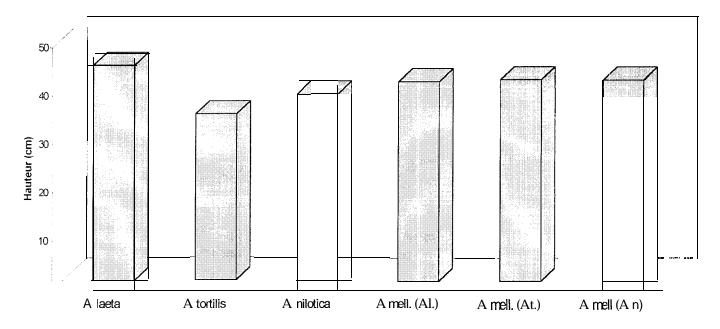


Figure 11 : Hauteur moyenne des espèces plantées en haies vives plurispècifiques sur sol deckdior à Kissane quatre mois après plantation

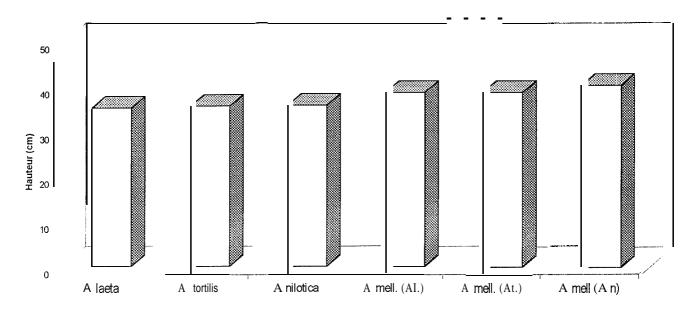
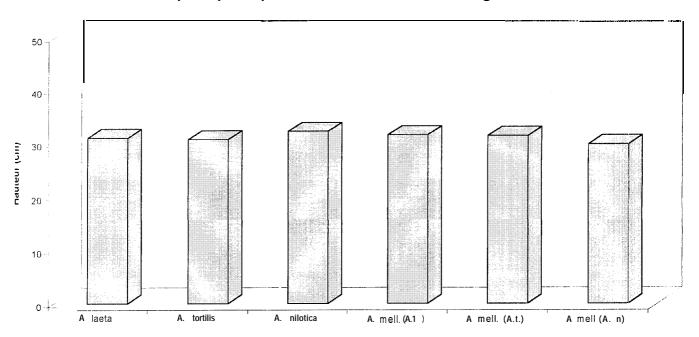



Figure 12: Hauteur moyenne des espèces plantées en haies vives plurispècifiques sur sol dior à Keur Ndiogou

* *