ZV0001417

REPUBLIQUE DU SEHEGAL

one was any mile and one and any all all all and any and any any any any case of the

INSTITUT D'ELEVAGE ET DE MEDECINE VETERINAIRE DES PAYS TROPICAUX

PRIMATURE

DELEGATION GENERALE A LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE

not not not that this age not true said and that to

DIR/A.K.

EMBOUCHE INTENSIVE DU

MOUTON PEULH - PEULH SENEGALAIS

-:-:-:-:-:-:-:-:-:-

par H.CALVET et J.P.DENIS

SOMMAIRE

INTRODUCTION

- 1. Matériel et méthodes
- 2. Alimentation
- 3. Résultats
 - 1. Evolution des poids
 - 2. Consommation
 - 3. Indices de consommation
 - 4. Abautage et études des carcasses.
 - **3.4.1.** Animal vivant poids et mensurations
 - 3.4.2. Habillage
 - 3.4.3. Mensurations des carcasses
 - 3.4.4. Composition .des carcasses
 - 3.4.5. Indices et pourcentages
 - **3.4.6.** Organes.

4. Discussions

- 4.1, Comparaison des régimes
 - 4.1 .1. Comparaison des performances
 - **4.1.2.** Comparaison **des** consommations
 - 4.1.3. Comparaison des indices de consommation
- 4.2. Comparai son des traitements
 - 4.2.1. Comparaison des performances entre A et B
 - 4.2.2. Comparaison des consommations par kg de poids vif
 - 4.2.3. Comparaison des indices de consommation.

- 4.3. Comparaison des deux concentrés
 - 4.3.1. Performances avec les concentrés 1 et 2
 - **4.3.2.** Consommation par kg de poids vif durant les 2 périodes.
- 4.4. Comparaison des résultats à l'abattage
 - 4.4.1. Mensurations et poids sur l'animal vivant
 - 4.4.2. Comparaisons à l'habillage
 - 4.4.3. Comparaison des mensurations des carcasses
 - 4.4.4. Comparaison des compositions des carcasses
 - 4.4.5. Comparaison des indices et pourcentages
 - 4.4.6. Comparaison des organes
 - 4.4.7. Etude de diverses corrélations*
- 5. Esquisse économique
 - 5.1 Bilan à La production
 - 5.1.1. Régime R1
 - 5.1.2. Régime R2
 - 5.1.3. Ragime R3
 - 5.1.4. Traitements A et B
 - 5.2. Bilan à La boucherie

CONCLUSIONS,

EMBOUCHE INTENSIVE DU MOUTON PEULH-PEULH SENEGALAIS

Les connaissances concernant l'élevage ovin sénégalais sont encore fragmentaires dans de nombreux domaines.

En effet, les diverses races rencontrees sont imparfaitement identifiées, les conditions d'élevage et d'alimentation dans les différentes régions ou différents milieux mal connues, les capacités de production et la valeur bouchère des carcasses font encore l'objet de trop peu de données. Un seul fait demeure c'est le rôle socio-économique important que joue l'élevage ovin au Sénégal, comme en témoignent en particulier les statistiques concernant les abattages contrôlés dans la totalité du pays.

En 1372, ont été inspectés dans les divers abattoirs du Sénégal 92,076 mautons correspondant à plus de 1,105 tonnes de viande en carcasses dûment contrôlées.

Pour approfondir les connaissances concernant ce type d'élevage un certain nombre de recherches sont ou vont être entreprises au Laborntoire de Recherches Vétérinaires de Dakar ou dans les diverses stations qui en dépendent.

Dnns le domaine nutritionnel, deux premiers essais d'alimentation intensive ont eu lieu en 1973 et un nouvel essai plus important en 1974 dont les résultats font l'objet du présent rapport.

1/ MATERIEL ET METHODES

Les animaux d'expérience sont des moutons entiers tout venant achetés en février 74 sur le marché de Dahra. Ils sont en général âgés de moins d'un an et semblent correspondre aux caractéristiques assez vagues qu'il est convenu d'attribuer actuellement à la race "peulh-peulh".

Ces animaux sont de petite taille, la robe est en généralfoncée, noire en totalité ou plus ou moins tachée de blanc: le poil peut être plus ou moins abondant, mais il n'y a en général pas de laine.

A leur arrivée au Laboratoire, ces animaux sont pesés, mesures et subissent un examen coprologique pour estimer Leur degré d'infestation parasitaire.

Ils sont ensuite **répartis** en 6 lots de 5 individus, chaque lot étant alors introduit dans une loge particulière des étables du Laboratoire équippée d'un abreuvoir et de mangeoires.

Les données chiffrées en ce début d'expérience sont les suivantes:

- Périmètre thoracique moyen 75,3 ± 1,7
- . Longueur scapulo-ischiale moyenne 64,38 + 1,03

L'analyse coprologique de son côté révèle une forte infestation par les coccidies et les **strongles**.

Un traitement au cozurone (anti-coccidien Specia) administré à raison de 2 fois 1/2 sachet 3 12 heures d'intervalle est effectué sur la totalité de l'effectif suivi 8 jours après de l'admistration de Vadephen (1 comprimé bolà 0,600 par animal),

Après ce traitement, des symptômes de clavelée apparaissent sur 1/3 de l'effectif. Les animaux les plus atteints sont traités par des sulfamides injectables et la totalité de l'effectif est vacciné par le vaccin anti-claveleux prépare au Laboratoire.

En raison de ces divers aléas l'alimentation régulière ne peut être commencée avant le 4 mars 1974.

A partir de cette date les animaux sont **pesés** individuellement chaque semaine et ce jusqu'à la fin de **l'expérimentation** interrompue le 10 juin, soit après 14 semaines d'alimentation intensive.

2/ ALIMENTATION

L'aliment distribué deux fois par jour se compose d'un concentré mélangé intimement à de la coque d'arachide dans des proportions variables suivant les lots. Deux concentrés différents ont été útilisés successivement. Le premier jusqu'au 5 mai. Le second à partir de cette date jusqu'à la fin de l'essai.

Tableau nº1 : Composition du concentré nº1

La valeur calculée de concentré est de 0,94 UF et 97 MAD au kg.

Le rapport MAD/UF = 103

Le rapport Ca/P = 1,08

Tableau n°2: Composition du concentré n°2

Son de mais	552
Farine de sorgho	20
Tourteau de coton	22
Carbonate de chaux **********	2
Sel	1

Sa valeur calculée est de 0,93 UF et 111 MAD avec un rapport MAD/UF de 119 et un rapport Ga/P = 1,25.

Ce concentré est mélangé à 20 % de coque d'arachide dans le régime 1, à 30 % de coque dans le régime 2 et à 40 % de coque dans le régime 3.

L'aliment distribué dans les lots 1, 2 et 3 prend donc les valeurs théoriques suivantes :

1 ère pér	iode	2ème páriode
Régime 1	0,75 UF 73 MAD	! ! 0, 74 UF 39 MAD
Régime 2	0,65 UF 68 HAD	0,65 UP 77 MAD
Rágime 3	0,56 UF 58 MAD	0,65 UP 77 HAD 0,56 UF 66 MAD

Du régime 1 au régime 3 la concentration en énergie diminue alors que le rapport MAD/UF reste constant.

De la première à la deuxième période 1 'aliment s 'enrichit en azote. Le rapport MAD/UF passe de 103 à 119/

Plusieurs séries d'analyses bromatologiques ont été effectuées sur ces divers aliments. Les résultats moyens font l'objet du tableau n°3.

Tabbeau n °3

		1ère péri	.ode	2ème	pé t iode	• • • • • • • • • • • • • • • • • • •
	1	2	3	1	2	3
Matières sèches Matières minérales Matières grasses Matières protéiques	907,9 50,8 70,9 131,2	913,5 44,5 55,0	916,1 46,5 67,7 123,3	907,3 63,2 91,9 195,5	910,3 t 59,9 89,0 161,6	913,1 53,6 91,1 157,1
Cellulose (Wende) E.N.A. Ca	276,6 470,5 8,7 6,5	305,0 474,6 7,3 4,5	352.7 409,8 6,7 5,1	224.1 425,3 8,2 5,3	304. 7 364, 8 8, 4 4, 9	352.8 345,4 6,9 4,0

Cette expérimentation comporte encore une modalité supplémentaire visant à étudier l'effet d'un anabolisant non oestrogénique le Ralabol de SOVETAL*, dont un pellet est implante à La base de l'oreille sur la moitié des individus de chacun des régimes 1, 2 et 3 le 13 mars,

Finalement le schéma de cette expérimentation est le suivant : Tableau n^04 : Schéma général de l'expérimentation

Na ure du Concentré ,	lère période 4/3 au concentré nº1	ı 10/ 5	2ème période 10/5 au 10/6 concentré, N°2		
Nature du régime	1 20% coque	2 30% coque	3 40% coque		
Traitements	A B Anabolisants	A B	A B !		

3/ RESULTATS

Ils intéressent :

- . l'évolution pondérale dans les différents lots
- . la consommation
- . l'étude des carcasses après abattage.

3/1- Evolution des poids

Les résultats des différentes pesées individuelles effectuées sur la totalité de 1'expérimentation font l'objet du tableau $n^{\circ}5$

Excipient QSP..., 1 comprimé

Il est dzpourvu d'action hormonale.

^{*} Le Ralabol est un anabolisant protidique nature. Sa composition est la suivante:

u lactone de l'acide 6 - (5-10 dihydroxy-undecyle)

B resorcylique 1% mg

Tableau $n^{\circ}5$ Evolution pondirale dans les lots A

Lot	No	4/3	11/3	18/3	25/3 i	1/4	8/4	15/4	22/4	29/4	6/5	1 3/5	20/5	27/5	4/6	10/6
	353	28,0	27,3	28,5	27,8	30,2	32	31,5	31,8	30,4	33,3	35,0	35,0	35,7	40,0	38,5
	3 59	23,8	26,1	25,5	2 7, 0	27,2	28,0	27,2	26,7	26,9	28,3	29,8	32,Q	3 4, 2	36,2	36,0
	370	29,5	32,2	31,8	31,7	32,8	33,5	34, 4	34,7	35,8	35,5	34,5	33,6	33,7	34,3	33,8
1 A	371	29,4	32,0	33,5	34,5	35,0	36,2	38,2	38,9	41,2	40,9	39,0	39,s	39,8	39,0	37,0
	372	19,6	21,8	22,1	22,8	24,5	24,2	25,9	26,3	2 7, 5	28,0	27,3	28,3	28,5	29,6	27,7
	Ž	25,8	27,8	28,2	28,7	29,9	30,7	31,4	31,6	32,3	33,2	33,1	33,9	34,5	35,8	34,6
	378	31,3	31,0	35,5	34,0	36,5	37,8	38,9	39,7	42,0	42,0	42,0	40,0	42,5	44,0	44,8
	373	23,6	25,9	27,8	25,2	26,9	27,2	27,7	28,0	29,3	28 , 6	30,0	31,0	33,0	34,5	35,7
2 B	380	26,5	23,9	27,5	28,7	29,5	30,0	31,3	31,5	32,5	32 , 6	32,7	31,9	33,6	34,0	33,6
	381	27,6	27,5	29,0	28,4	29,9	29, 9	30,7	31,5	33,2	32,1	32,3	32,0	32,7	33,7	32,4
	382	23,1	26,0	28,0	27,9	29,5	30,0	31,0	32,2	32,4	32,7	32,7	33,6	32,9	32,0	32,5
	Ž	26,4	26,8	29,5	28,8	30,4	30,9	31,9	32,5	33 , 8	33,6	33,9	33,7	34,9	35,6	35,8
	388	26,3	28,4	30,1	30,1	31,5	31,4	32,2	34,3	34,0	34,c	34,Y	35,5	34, 9	35,51	35,5
	389	28,2	30,0	31,3	31,0	33,0	33,6	38,3	38,0	40,0	40,0	41,0	42,C	42,8	45,0	45,6
3 A	390	24,5	26,2	27,3	28,0	28,0	29,4	30,8	32,0	31,6	32,8	33,9	34,3	35,2	35,7	35,5
	391_	28,7	30,4	30,7	27,3	28,7	29,5	31,7	32,5	34,4	35,2	36,0	37,7	38,4	39,4	39,0
	392	22,1	25,3	28,0	25,0	28,3	29,3	31,1	32,6	33,0	32,8	31,3	30,3	29,9	29,3	30,0
	X	26,0	28,1	29,4	28,4	29,9	3 0,6	32,8	33,8	34,5	34,9	35,4	35,9	36,2	36,9	37,1
	i.	•	!	<u> </u>	1		<u> </u>	<u> </u>			<u> </u>			į		

Tableau nº 5 Evolution pondérale dans les lots B

Lot	No	4/3	11/3	18/3	25/3	1/4	8/4	15/4	22/4	29/4	6/5	¹ 13/5	20/5	27/5	4/6	10/6
	373	22,5	24,3	24,7	25,5	27,5	20,2	23,9	30,3	31,3	32,2	32,3	31,2	32,9	33,2	34,3
	215	23,0	24,9	27,5	29,0	28,0	29,2	28,8	29,0	29,0	30,0	31,6	32,4	32,7	35,0	36,5
1 B	375	25,9	26,5	26,8	27,1	25,2	28,8	30,3	30,8	31,7	31,5	31,0	30,3	32,6	34,2	35,0
	365	28	28,5	30,4	31,4	32,6	33,8	35,3	36,5	38,8	39,5	39,3	39,3	40,9	41,1	41,1
	Ϋ́	24,8	26,0	27,3	28,2	28,5	30,0	30,8	31,6	32,7	33,3	33,5	33,3	34,7	35,8	36,7
	383	22,7	24,6	24,6	22,8	23,3	22,9	24,1	26,1	27,2	26,5	27,7	28,5	30,1	31,7	32,6
	384	30,3	31,0	33,9	31,5	35,0	35,1	37,7	39,2	39,0	41,3	42,4	41,0	43,6	44,8	44,1
2 B	385	24,7	26,2	27,5	28,4	30,8	32,0	33,9	35,4	36,4	35,2	38,2	38,5	40,7	40,0	42,0
	363	30,9	32,0	32,7	35,1	36,0	36,4	39,6	39,7	41,2	40,7	41,3	40,6	42,6	45,0	43,1
	387	19,4	16,0	19,0	20,4	16,0	16,3	19,9	20,5	21,0	22,8	24,0	24,2	22,1	25,2	26,8
	X	25,2	25,9	2 7, 5	27,G	28,2	28,5	31,0	32,1	32,9	33,3	34,7	33,7	35,8	37,3	37,7
	393	22,9	25,2	27,9	29,0	29,0	30,4	31,4	31,3	30,0	34,0	35,0	35,0	36,5	39,3	39,9
3 B	394	23,0	25,1	27,5	29,2	29,7	31,0	31,2	32,2	33,0	34,0	36,0	35,8	36,9	38,3	39,9
	395	28,2	29,0	32,4	32,3	34,2	34,1	36,0	38,1	39,8	38,3	39,4	41,7	40,7	41,0	41,3
	ž	24, 7	26,4	29,3	30,1	30,9	31,8	32,8	33,8	34,2	35,4	36,8	37,5	38,0	39,5	40,3
	<u> </u>	*		1			t	1				<u> </u>		4	ł	<u> </u>

7

A l'examen de ces tableaux on constate pour le même individu une très grande variabilité dans les poids d'une mesure à l'autre. Il apparaît alors que la meilleure approximation du gain de poids sera donné !par la pente des droites de régression des poids en fonction du temps "Ce calcul a été effectué pour chaque animal et les résultats sont port& dans les tableaux N°7 et N°8.

Tableau n°7

ļ		i n	1		2 A	1	3	A
Ио	Pente	Terme constant	Ио	Pente	Terme consta	nt Nº	Pente	Terme constant
3 68	0,882	25,23	378	0,926	32,31	3 88	0,592	28, 45
339	0,777	23,55	3 7 9	0,711	23,98	389	1,255	26,52
370	0,251	31,69	380	0,605	26,41	330	0,800	25 , A1
371	0,515	32,65	381	0,420	27,41	391	0,365	27,251
372	0,625	21,23	382	0,591	26,29	392	0,429	26,32
moy.	0,633	26,99		0,796	25,60		0,730	27,13

Tableau nº3

1		1 B			2 B	3 B			
No	Pente	Terme constar	t Nº	Pente	Terme constant	No	Pente Terme	constant	
373	0,302	23,67	383	0,063	21,71	393	1,051	24, 42	
215	0,740	24 , 59	384	1,077	30, 44	394	1,061	24 , 7 6	
375	0,617	25,59	385	1,213	25 , 45	396	0,955	29,66	
365	1,022	28,60	363 387	0,932 0,627	31,93 16,51				
moy.	0,7 96	25,50	: !	0,902	25,10	f	1,025	26,29	

Les gains de poids **totaux** et **les** gains quotidiens sur 14 semaines **calcul**és à partir des droites de **régression** sont alors les suivants.

	1 A		!	2 .A		-	3	A
Ио	Gain total	kg CQM gr	No	Gain totalkg	CQM gr	No	Gain total	kg 'CQM gr
368	12,34	126	378	12,96	132	388	8,28	8 4
369	10,87	111	3 7 9	9,95	101	369	17,58	179
370	3,51	3 5	380	8,45	86	390	11,20	114
371	8,61	37	381	5,88	60	391	12,11	123
372	8,75	3 9	382	8,27	84	392	6,0	61
moyenne lots	8, 86	9 0		11,14	113	Carlos or many or	11,06	112

Tableau n°10

GAINS DE POIDS CALCULES DANS LES LOTS B

	1 B			2 В		3 B			
Но	Gain total	CQ11	Иo	Gain total	CQH	Ио	Gain total	o c qui	
373 21 6 375 3 65	11,22 10,36 14,30	114 105 22 1 45	333 384 335 363 387	9,28 1 5,97 17,06 13,04 8,77	94 153 174 133 89	393 394 396	14,71 14,85 13,52	150 151 138	
moyenne lots	11,14	113	•	12,62	122	•	14,35	145	

En définitive le gain moyen total dans les lots Λ et B a été pour Λ 9,54 kg \pm 1,87

pour B 12,57 kg + 1,76

Le gain quotidien moyen sur 14 semaines \dot{s} \dot{s} \dot{s} :

lots A 98r+ 19

lots B 12gr + 18

Sur la totalité de l'effectif soit sur les 27 animaux et durant 98 jours le gain quotidien moyen (CQM)s est élevé à 113 gr \pm 18.

Tableau n°11 : Consommation journalière moyenne dans les lots A et B

	•	1 A			2 A	•		3 A	į
	par Animal	par kg vif	par kg MBS	par Animal	par kg vif	par kg MBS	Jani mas	/ kg if	/ kg RAS .:
13# púriode	1362 <u>+</u> 74	45,6 <u>+</u> 2,9	106,6 + 6,2	1485 ± 167	48,5 <u>+</u> 3,0	114,1 ± 8,4	1574 ± 140	50,9 <u>+</u> 2,3	120 ± 5,3
2èmpériode	1380 <u>+</u> 124	40,2 ± 5,1	94,4 ± 11,4	1586 <u>+</u> 78	45,9 ± 3,0	111,5 🛧 6,7	1763 ± 90	48,8 <u>+</u> 1,9	120 ± 3,4
moyenne	1371	42,9	100,5	1535	47,2	112,3	1658	49,8	120,1
		1 B			2 B			3 B	
1èm période	1488 <u>+</u> 60	49,4 + 4,1	113,5 + 9,1	1558 ± 191	51,5 ± 3,7	120,8 <u>+</u> 10,0	1680 <u>+</u> 156	55,2 <u>+</u> 2,6	131,7 ± 6, 7
2èmepériode	1400 <u>+</u> 8 5	42, 5, <u>+</u> 3,0	102,1 ± 6,8	1801 <u>+</u> 165	50,9 ± 1,7	124,2 ± 5,5	1945 <u>+</u> 144	55,3 <u>+</u> 2,7	134,7 <u>+</u> 7,2
moyenne	1444	45,9	107,8	1679	51,2	122,5	1812	55,2	133,2

3/2/ Consommation

Dans les tableaux suivants sont présentées les consommations moyennes par jour par animal, par kg de poids vif par kg de poids métabolique*

Nous distinguerons les lots Λ et B,deux périodes,la première d'une durée de 10 semaines au cours de laquelle a été utilisé le concentré 1, la deuxième de 4 semaines qui a vu l'utilisation du concentré 2.

/

^{*} Poids métabolique : Metabolic • body • Size (MBS) = 0,75 poids vif élevé à la puissance 0,75 Pvif

3/3/ Indices de consommation

Ils correspondent au nombre d'UF qu'il a fallu apporter dans chaque lot pour obtenir 1 kg de gain.

Tableau nº12

Indices de consommation

	1 A	2 A	3 A	1 B	2 B	3 B
UF mation/j our	1,02	0,99	0,93	1,08	1,09	1,01
CQLi	90	113	112	113	120	143
Indice consommation moyen	11,33	8,76	ි , 3 0	9,55	8,51	ა,91
•						

indice général = 8,89

On constate que 1 'indice de consommation diminue lorsqu'on passe du régime 1 au régime 3 c'est-à-dire lorsqu'on augmente la proportion de coque d'arachide.

D'autre part, les indices sont plus faibles dans les loto B. Le traitement par les anabolisants a donc permis une meilleure valorisation de la ration,

3/4/ Abattages et étude les carcasses

Les abattages ont port6 sur 1 'ensemble des animaux expérimentaux; par contre l'étude détaillée des carcasses n'a été effectuée que sur 4 animaux du lot A et du lot B. Les résultats sur les animaux témoins proviennent d'une étude actuellement poursuivie sur la valeur bouchère du mouton tout venant présent& à 1 'abattoir.

3/4/1 Animal vivant: poids et mensurations

Ces données prises sur les animaux juste avant leur abattage (2) sont différentes de celles observées en début d'embouche (1). Les données comparative s apparaisent au tableau n°13 et au tableau n°14.

Tableau n°13: Poids et mensurations sur le vivant

			Pó	ids	PT	i	! но	3	н	5	LSI	(I)	L	c	17		L	3	111		LS:	t (2)
:	Lot	n°	I	II	I	II	I	II	I	11	I	II	I	II	I	II	I	II	I	ΙΞ	I	II
Bed edic ratios de la cultura auth la raman aus	1	369 369 370 371 372	27,8 27,0 31,7 34,5 22,8	38,6 36,0 33,8 37,0 27,7	76 75 82 79 71	83 79 78 83 73	66 62,5 66 66,5 62	68 67 64 66 6 7, 5	40 36 38 3 7, 2 38	444 34	57 54 59 57 54	66 61 68 62 56	20 19 21 20,5 19	22 21 22 23 20	12 11 12 12 11	12 12 12 13 12	19 17 17 19 16	22 21 20 22 23	14 12 18 15 14	15 15 16 17 15	62 61 66 67 68	70,5 65,5 68 72 65,5
A	2	379 379 380 301 302	34,0 26,2 28,7 28,4 27,9	44,0 35,7 33,6 32,4 32,5	77 71 74 74 76	83 78 77 73 77	7 0 6 5 66 65 59	69 69 66 7 0 65	38 38 38 35 39	30 39 40 45 37	61 54 56 6 1 59	63 61 63 64 53	22 19 20 21 80	22 22 21 21 21	12 14 12 12 10	12 13 11 12 12	20 20 18 20 19	21 20 21 21 21 20	14 12 14 15 19	17 15 16 16 15	67 60 66 65 63	74 67 69 68 68
	3	388 389 390 391 392	30,1 31,C 28,0 27,3 25,0	36,5 45,6 35,5 39,0 30,0	81 71 74 72 79	83 05 78 80 74	63 57 55 69 63	68 71 65 68 66	41 42 38 41 35	39 43 39 39 40	56 56 53 54 \$5	50 63 58 65 5 9	19 21 19 21 20	22 21 21 22 22	12 13 12 12 14	12 12 11 2 2 12	20 20 19 20 20	20 19 20 21 18	15 17 15 14 13	15 17 15 £4 14	68 69 62 64 65	56,5 75,5 55,5 70,5 68,5
	1	373 216 375 365	25,5 29,0 27,1 31,4	34,2 36,5 35,0 41,1	69 75 72 78	80 78 7 8 84	61 69 64 61	62 7 0 68 7 3	36 41 36 36	38 39 42 42	56 54 58 54	62 5 7 60 62	19 21 21 20	20 22 22 21	11 12 11 12	12 13 12 12	18 19 19 19	20 21 21 21	14 16 14 15	17 16 17 17	63,5 63,5 64,5 63	66 70 71,5
В	2	383 384 385 363 38 7	22,3 31,5 28,4 35,1 20,4	32,6 44,1 42,0 43,1 26,8	75 71 73 34 67	78 83 82 87 69	63 7 0 63 6 7 63	71 67 65 68 - 66	35 40 39 38 87	43 40 3 7 39 39	53 61 54 55 52	58 60 65 62 53	18 20 20 21 19	20 22 22 22 19	12 12 12 13 11	11 12 12 17 17	19 18 18 17 17	20 21 20 22 17	13 14 15 15 17	16 17 17 17 14	61 69 63,5 645 60	68 60
	3	393 394 396	29,0 29,2 32,3	39,9 39,9 41,3	77 84 78	83 85 78	64 65 64	7 2 65 63	39 37 29	44 36 34		63 61 63	20 20 19	21 22 20	12 12 13	12 12 12	20 19 2 2	22 20 21	13 15 15	17 17 16	63 63 67	70,5 68 69,5

⁽¹⁾ longueur scapulo ischiale prise au compris d'épaisseur

(2) " " mêtre ruban

Alon ussideT

	rongueur vosi oluq		sərgues Fantente	į	ga rr o Hauteu	1	Perimi prorac	sį	Poto	
ΞI	I	II	I	II	Ī	II	Ι	į II	Ē	•
77	7.2	72	72	L 7	L Z	Lt	71	27	72	u
1653	4051	1701	1020	1820	1750	712¢	2013	Z*766	2 177 ·	X
28020	S⊄302	१५८ ६३३	78 ' E918E1	175032,25	2,723611	172270	123215	37262,13	.55381°24	7 ^X
O7 * T 9	18 °55	૭૭ ° ૯૬	S . 7 £	2 7 ° L 9	18 ° 79 °	LL 6L	à	36,02	78 ° 27	;
17 6 1	∠oʻī	76*0	to°t	ço'ī	1,10	09 *1	E7 e1	T° 98	ī	
orndeza	ancugnod.	eəqoueq x	rensenn en	εκοπῶε	anənSuoq	916	Largeur té	ə:	iêt weugaod	
2	Ţ	7	Ī.	. S	ī	7	ī	2	ī	
72	7.2	1 2	72		72	7.2	72	72	72	u
3787	8871	727	388	55.5	609	324	356	9 .८	6 8 \$	3%
76 7 92		:	2622	らかかなる		3896	3952	12310	10803	2xg
-	E0"I 8E"79	7°0 0°91	75°0 76°31	67 ° 0 55 ° 07	15°0 58°31	0,10		0°39 9°40	८ ° °० ८°°०	구 X

(1) fin d'expérience.

3/4/2 - Habi 11age

Les animaux sont abattus par égorgement et placés immédiatement après sur des chevalets. Le tissu conjonctif sous-cutané est dilacéré au moyen d *air comprimé.

Le 5ème quartier est constitué de 1 'ensemble de 1 'appareil digestif abdominal, des pteds, de la tête, de la peau.

Las résultats de cette opération apparaissent respectivement aux tableaux n°15 et 16, pour les lots expérimentaux et témoins.

3/4/3 Mensurations des carcasses

La définition des différentes mensurations est donnée au tableau $n^{\circ}17$. Les résultats apparaissent au tableau $n^{\circ}18$.

3/4/4 -Compostion des carcasses

La carcasse est découpée en ces divers composants sur le modèle de la découpe de référence mise au **point par BOCCARD et DUMONT.**

La découpe est effectuée en 8 morceaux principaux qui sont: le gigot, la selle, le filet, le carré couvert, le carré découvert, l'épaule la poitrine, le collier et dont la défini tion est la suivante:

Gigot entier:

La coupe DE passe au niveau de l'angle externe de l'ilium et entre la dernihre et l'avant dernière vertèbre lombaire; Ce gigot entier se décompose en gigot raccourci et selle qui sont séparés en suivant la ligne AB qui passe par l'angle cotylofdien de l'ilium au tas de la crète iléopectinée C et va à l'extrêmi té du sacrum.

Filet limite postérieure DE

Limite antérieure FG perpendiculaire à l'axe vertébral passant entre les vertèbres lombaires 1 et 2.

Tableau nº15 : Habillage des lots expérimentaux

Lot	Ио	Poids vi	Contenu	Poids peau	Poids 54 quartier	Poids carcasse chaude	Poids carcasse f70id;
IA	363 369 370 371 372	37,3 34,4 32,8 38,0 27,4	4,0 3,1 2,3 3,0 2,5	3,2 3,0 3,0 2,3	12,7 10,5 9,5 11,1	19,8 19,4 19,8 21,3 15,4	18,7
[n Sx 2 Sx 2 x +	5 169,9 5845,25 33,98 5,27	5 14,9 46,15 2,913 0,82	5 15,5 49,53 3,10 0,75	5 51,5 544,29 10,3 8,31	5 95,7 1851,29 19,14 2,75	
IB	1373 216 375 365	35,0 34,0 39,4	2.6 3,1 2,6 2,5	2.7 3,3 3,3 2,9	10,5 10,5 9,5 13,6	18,4 19,6 19,8 22,7	
	Sx2 Sx +	4 144, 4 5229, 36 36, 10 3, 73	4 10,8 89,38 2,70 0,42	4 12,2 37,48 3,05 0,47	4 44,1 495,71 11,02 2,83	80,5 1630,05 20,12 2,90	
ПА	378 379 380 381 382	44,0 32,8 32,7 31,4 29,7	3,6 3,0 2,6 2,2 2,1	3,5 3,5 2,6 2,6 2,4	13,3 10,5 10,1 8,8 8,4	22,2 17,8 17,3 19,0 17,0	21,0
	n Sx2 x +	5 167.6 5694,18 33,52 5,42	15 13,5 37,97 2,70 0,76	5 14,6 43,78 2,92 0,66	51,1 537,15 10,22 2,39	5 93,3 1758,97 18,66 2,63	
ILB	383 384 385 363 387	30,2 42,3 39,0 41,0 25,0	4,0 3,2 3,6 3,0 2,7	3,0 3,6 3,6 3,3 1,9	9,0 15,0 14,4 13,5 6,9	16,6 24,2 22,3 22,7 13,5	23,4 20,8
1	m qx ₂ x ±	177,5 6528,33 35,5 9,36	5 16,5 55,49 3,30 0,63	5 15,4 49,42 3,08 0387	5 58,8 743,22 11,76 4,47	99,3 2056,03 19,86 5,69	

IIIA	386 390 391 392	41,9 33,4 36,4 28,1	3,4 2,8 2,7 3,4	2,75 2,3 3,7 2,0	13,4 10,5 12,9 8,8	19,3 23,4 18,5 19,2 14,8	21,8 18,2
	* 2 2×2 x +	5 174,6 6196,78 34,92 6,20	5 15,1 46,09 3,02 0,43	5 14,3 43,23 2,86 0,94	5 55,9 639,75 11,18 2,39	5 95,2 1349,98 19, Q 4 3,79	
шв	393 394	36,0 36,5 39,0	3,5 1,7 4,2	3,6 3,1 3,2	13,9 13,4 11,1	80,7 20,6 22,0	19,5 19,6
	y, 3×2 , 3x ² : x ÷	11î,5 4149,25 37,16 3,98	9,4 32,78 3,13 3,20	3 9,9 32,81 3,30 0,65	38,4 495,98 12,80 3,70	3 63,3 1336,85 21,5 1,93	

Tableau nº16: habillage des lots témoins

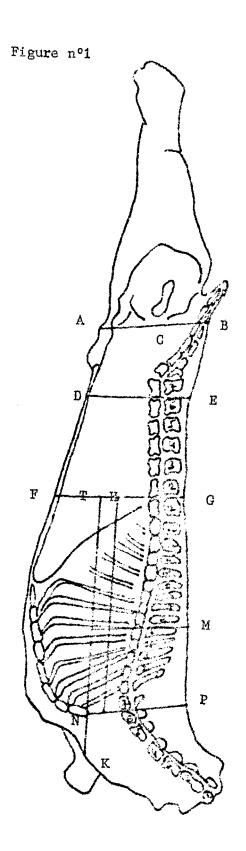
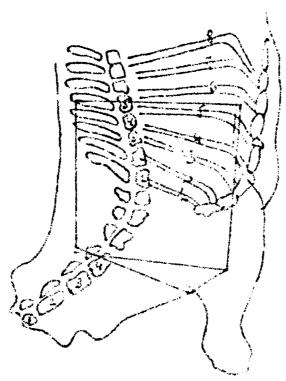

Ио	Poids vif	Contenue panse	Poids peau	Poids 59 quartier	Poids carcasse chaude	Poids carcasse froide
6 7 8 9 10 16 17 18 19 20 27 28 29 30	20,5 25,5 22.2 17,3 21,4 23,5 27,6 27,2 24,5 25,0 27,7 32,2 40,5 38,4 24,0	4,0 4,5 3,1 2,9 2,8 4,4 4,0 4,3 4,2 3,2 2,5 8,0 4,4	1,4 1,6 1,8 1,4 1,3 1,4 2,4 2,0 2,0 1,5 2,0 1,6 2,6 2,9	6,4 7,1 9,0 5,8 6,9 7,4 9,5 9,5 3,1 8,9 8,7 12,6 12,0	10,4 11,6 11,9 8,9 9,9 11,0 13,6 12,7 12,1 13,0 15,8 16,2 19,6 19,3 12,6	9,9 12,3 11,4 11,2 11,7 14,2 15,2 17,4 17,9 11,4
n Sx2 Sx ±	15 397,5 11094,63 26,50 3,51	ii 64,0 302,02 4,26 0,7 9	15 27,6 53,81 1,34 0,27	15 1112,120 3,41 1,051		13,26

Tableau nº13

liesures	Définitions
Longueur	Se prend au ruban mêtrique de la naissance de la queue
externe	È la base du cou - (PALSSON).
Longueur	Av. ruban métrique, distance du bord antérieur de la symphyse
interne	pubienne au milieu du bord antérieur de la première côte.
Forme du	(MAC - MEEKAN) au mâtre rigide c'est la distance la plus courte
gigot	entre le périnée et la surfane articulaire torso-métatarsienne.
Largeur aux	A la toise, c'est la largeur de la carcasse à sa partie la
gigots	plus large au niveau des trochanters (PAL3SON)
Laggeur	(Ballon) et al). C'est la largeur maximale de la carcasse
aux cotes	relevéent la toise au niveau des côtes.
Zpaisseur de la noix A	O'est l'Épafsseur du longissants dorsi sensiblement au milieu de la largeur et à son maximun de développement sur la surface de section entre la première et la deuxième lombaire.
Epaisseur de la noix B	O'est la mensuration exactement perpendiculaire sur la section du longissinus dorsi.
Surface du lon-	Cette surface est prise par décalque sur papier transparent
gissinus dorsi	et mesurée par planimétrie.


Tableau n°13 Mensurations des carcasses

Lot	I1 o	Longueur externe	Longueur interne	Forme gigot	La rgeur gigot	Largeur côtes	épaisseur noix Λ	ipaisseur noix B	surface long.dors 2
	6 7 8	56,0 52,5 57,0	51,3 47,0 52,Q	30,5 25,8 31,5	17,5 18,5 21,0	20,5 23,0 20,5	26,0 32,0 30,5		1562 1 5 2 5 1312
	9 10	55,0 53,0	55,2 52,8	31,0 25,3	12,5 18,0	20,0	30,5 27,0	•	1032 1640
T	16 17 18	55,5 58,5 58,5	51,8 56,4 56,1	32,0 32,3 33,5	21,0 22,0 21,5	20,0 20,0 19,0	24,0 22,5 22,5	48,5 4 7, 5 48,0	*** ***
	19 20	58,5 55,0	53,5 53,5	32,0 29,7	21,0 20,1	19,0 20,0	23,5 25,0	48,5 46,5	M .
	26 2 7 28 29	61,2 61, B 68,2 68,2	57,3 57,4 65,0 52,0	30,6 31,3 40,0 40,2	22,0 24,0 23,5 24,0	21,0 22,0 23,5 23,0	24,5 30,0 28,0 23,5	50,0 57,0 47,0 54,5	1456 170 8 15 84 1224
4	30	54,5	52,7	31,1	21,0	2.350 M	24,0	43,0	1180
and the second control of the second control	n ox2 ox ±	15 872,6 51086,42 58,17 2,67	15 825,7 45710,07 55,04 2,38	15 480,3 15573,51 32,02 2,06	14 293,6 6214,26 20,07 1,20	13 268,5 5560,75 20,65 0,83	15 393,5 10467,75 26,23 1,78	10 490,5 24204,25 49,05 2,87	10 14216 20655232 1421 59,23
A	368 378 389 391	61,0 66,5 63,0 58,3	53,3 60,0 858,5 60,6	31,3 34,5 34,3 32,0	22,0 23,0 22,0 22,0	23,0 22,0 22,0 23,0	30,0 30,0 31,0 29,5	43,0 47,0 53,5 49,0	1468 1630 1330 1395
	n Sx ₂ Sx_ x	4 248,8 15511,14 62,20 5,49	237, 4 14093, 49 59, 35 1,78	4 131,1 4301,85 32,77 2,06		90,0 2026,0 22, 5 0,91	120,5 3530,12 0,99	192,5 9321,25 48,12 6,93	5924 3030640 1401 2 13,5,7
*	304 3 85 393 394	65,5 62,5 64,5 62,0	60,9 60,4 60,2 58,3	34,7 32,0 32,8 31,8	2 5,5 22,0 24,0 23,0	23,0 10,0 18,0 22,5	38,5 30,5 30,0 32,0	57,5 54,0 52,0 58,0	1148 1 15 1500 1540
	n Gx2 Sx2 X	4 254,5 16206,75 63,62 2,62	239, 8 14379, 9 59, 95 1, 30	4 132,1 4367,01 33,02 1,92		182,5 1720,25 20,62 3,93	4 131,0 .4336,57 32,75 6,24	221,5 12290,25 55,37 4,56	5532 10871904 1648 33,57

D'après BOCCARD et DUMONT (1955)

Figure n°2 24

Draprès BOGARARD et DUMONT

(1955)

Epaule: Limite postérieure RQ perpendiculaire à la ligne du dos passant par L situé entre la 5ème et la 6ème côte, R étant situé entre les 5ème et 6ème articulations chondrocostales limite supérieure QS parallèle à la ligne du dos, passant par le bord supéro-antérieur du cartilage de prolongement du scapulum limite inférieure RT quisuit les 3ème, 4ème et 5ème articulations chondro-costale, prolongé jusqu'au bord antérieur de la postrine limite antérieure SU prolongé. S'est situé sur QS au niveau du bord antérieur de l'apophyse épineuse de la 4ème vertèbre cervicale. U situé au bord inféropostérieur de la 4ème vertèbre cervicale.

carhamite postérieure FG

Limite antérieure NP Bord antérieur de la lère sterhebre et passent entre la 7ème cervicale et la lère dorsale, ligne latérale de section musculaire IH. 1 milieu du bord antérieur de la première côte. H est situé sur la froite FG double de la largeur de la noix de côtelette. Cette coupe n'intéresse que les côtes couvertes c'est à dire de la 6ème à la 13ème. Ligne latérale de section osseuse, NU parallèle à IJ passant par le bordd antérieur de la 1ère sternebre.

Poitrine : prolongement de JN en K.

Collier : limite NP et NK

Les figures $n^{0}1$ et 2 permettent de suivre le tracé de ces découpes.

Les **résultats** des découpes apparaissent au tableau **nº19** qui donne la composition **pondérale** et au tableau **nº20** donnant cette **composition** en pourcentage du poids global des **différents** morceaux découpés, On y adjoint la baron qui représente les morceaux de **l'arrière** soit gigot, selle, filet .t et dont **l'importance** est grande sur le plan de la sélection.

3/4/5 - Indices et pourcentages

L'indice de compacité de la carcasse correspond au rapport du poids de la carcasse sur la longueur de cette carcasse. L'indice de compacité du gigot répond à la même définition au niveau du gigot.

Tableau nº19 : composition de la carcasse en poids.

Lot	No	gigot	gigot racc.	selle	fi let	carré entier:	carr é couvert	carró découvert	śpaule	poitrine	collier	total morceaux	gras rog oo n	baron
T	16 17 18 19 20 26 27 28 29 30	2,82 3,99 3,66 3,66 3,92 4,08 5,0 6,06 6,04 3,76	2,13 2,84 2,66 2,84 2,84 2,96 3,58 4,42 4,58	0,34 1,04 1,0 1,02 1,08 1,12 1,42 1,42 1,44 1,46	0,55 0,90 0,74 0,74 0,95 1,22 1,35 1,24 1,38 1,14	1,26 2,22 1,92 1,76 2,26 2,56 2,56 2,66 2,92 1,90	0,54 1,12 0,96 0,83 1,15 1,30 1;40 1,22 1,48	0,52 1,10 0,95 0,80 1,10 1,26 1,3 1,44 1,44	1,72 2,25 2,18 2,24 2,14 2,48 2,46 1,42 3,54 2,28	0,65 1,06 1,10 0,74 1,03 1,44 1,5 1,78 2,02 1,12	1,08 1,02 0,92 1,0 1,3. 1,46 1,44 £,5	11,4 10,52 10,05 11,36 13,68 14,48 15,5 17,4 11,08	0,02 0,06 0,06 0,06 0,20 0,20 0,16 0,24 0,22 0,14	3,38 4,78 4,40 4,40 4,88 5,30 6,36 7,30 7,42 4,90
	x 2 x +	10 42,88 194,14 4,28 0,76	10 31,36 104,09 2,26 0,56	10 11,52 13,99 1,15 0,20	10 10,24 11,21 1,02 0,20	10 22,16 51,45 2,21 0,36	10 11,16 13,03 1,11 0,17	10 11,0 12.73 1,1 0,12	10 24,72 64,03 2,47 0,40	10 12,5 17,3 1,25 0,3	10 4,2 13,33 1,12 0,2	_10 123;7 1612,90 12,37 2,16	10 1,36 0,238 0,136 0,05	10 53,12 297,70 5,31 0,93
1	353 378 309 391	4,92 5,92 5,02 5,16	3,63 4,2 4,34 3,76	1,05 1,72 1,50 1,4	1,4 1,60 1,50 1,46	2,04 3,50 3,46 2,9	1,56 1,94 1,76 1,44	1,20 1,64 1,70 1,46	3,10 3,36 3,76 3,0	1,54 1,9 3,04 1,68	1,55 1,84 1,05 1,64	15,33 10,28 10,72 15,34	0,42 0,50 0,52 0,22	5,32 7,50 7,50 5,62
	n Sx ₂ Sx ÷	4 22,02 122,11 5,50 0,85	4 16,16 65,61 4,04 0,43	4 5,86 8,66 1,46 0,43	6,12 9,41 1,53 0,19	4 12,78 41,25 3,19 0,60	4 5,70 11,36 1,67 0,34		4 13,82 44,03 3,30 0,53	4 7,16 12,96 1,79 0,35	4 6,90 11,96 1,72 0,23	4 68,2 1171,43 17,05 2,69	4 1,66 0,745 0,410 0, 21	20,14 199,28 7,03 1,05
В	384 385 393 394	6,16 5,80 5,52 5,48	4,32 4,0 4,04 3,92	1,84 1,30 1,43 1,56	1,72 1,7 1,6 1,58	4,24 3,24 3,08 3,28	2,10 1,63 1,62 1,80	2,17 1,56 1,46 1,48	3,78 3,68 9,42 3,35	2,2 2,65 1,74 1,8	2,32 2,02 1,76 1,92	20,42 19,1 17,12 17,41	0,50 0,42 0,24 0,28	7,88 7,50 7,12 7,06
7	n Sx ₂ Sx	4 22,95 132,00 5,74	15,20 55,35 4,07	5,53 11,24 1,57	4, 5,50 10,90 1,55	4 13,84 40,72 3,46	4 7,2 13,09		4 14,23 5C,74 3,55	4 3,4 13,1 3 2,1	4 6,02 16,24 2, 0	74,05 1377,93 18,51	1,44 0,532 0,350	19,56 213,90 7,39
•	!	0,43	· 0,427	0,28	0,11	0,33	0,33	0,51	0,32	0,67	0,37	2,45	0,19	0,60

Tableau nº20 : Composition de la carcasse en pourcentages.

Lot	No	gigot	selle	filet	carré couvert	carré découvert	Epaule	poitrine	collier	Baron
T	15 17 18 19 20 25 27 28 29 30	28,6 24,91 25,04 25,24 25,0 22,62 24,72 26,62 26,32 28,0	8,39 9,12 9,41 10,13 9,5 3,56 9,8 9,87 8,39 9,92	7,34 7,89 6,96 7,35 8,45 9,32 9,39 7,46 7,93 10,28	8,39 9,82 9,03 8,74 10,21 9,93 9,65 7,34 8,50 9,02	8,13 9,64 9,03 8,74 9,68 9,63 8,97 8,67 8,27 8,12	22,57 19,62 20,52 22,26 18,83 18,96 16,98 20,6 20,34 20,57	9,29 10,35 7,35 9,5 11,0 10,35 10,72 11,60	7,87 9,47 9,60 9,14 8,80 9,93 10,08 8,67 *8,62 7,94	44,35 41,92 41,43 43,73 42,94 40,51 43,92 43,97 42,64 44,22
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sx2 Sx X ±	10 .254,07 6679,11 25,40 1,16	10 93,09 870,51 9,30 0,47	10 82,37 689,24 8,23 0,78	10 90,64 828,4 9,06 0,62	10 88,88 793,35 8,88 0,43	10 201,45 4082,38 20,14 1,17	992,3 9,89	10 90,12 817,48 9,01 0,54	10 429,64 18474,63 42,96 0,94
A	368 378 389 391	25,13 22,97 23,18 23,73	6,9 9,4 8,97 0,83	9,11 9,19 8,44 9,21	10,15 10,61 9,4 9,09	8,33 8,97 9,08 9,21	20,18 18,38 2 0,08 10,93	10,39 10,89	10,15 10,06 9,93 10,35	41,14 41,57 40,59 41,79
The second secon	5 8x ₂ 3x +	95,01 2259,56 23,75 1,54	4 34,1 294,39 8,52 1,76	35,95 323,5 8,98 0,58	39,25 386,58 9,81 1,1	35,59 317,12 8,89 0,62	77,57 1506,63 19,39 1,4	439,3	40,49 409,95 10,12 0,27	165,09 6814,51 41,27 0,84
В	384 385 393 394	21,15 20,94 23,59 22,57	9,01 9,42 8, 64 3,95	8,42 8,9 9,34 9,07	10,28 8,79 9,46 10,33	10,47 8,16 8,52 8,5	18,51 19,26 19,97 19,24	13,92 10,16 0,50	11,36 10,57 10,28 11,02	30,50 39,26; 41,50; 40,55
	n Sx2 Sx2 x +	4 88,19 1948,99 22,04 1,97	4 55,03 324,84 9,0 0,50	4 35,73 319,6 8,93 0,31	30,06 379,14 9,71 1,16	35,65 321,04 8,91 1,67	4 75,98 1 32,54 19,24 0,84	485,23 10,83	4 43,23 467,39 10,8 0,75	4 159,97 6402,96 39,99 2,12

Quant à l'indice de gras, il est le résultate du rapport du poids gras de rognon sur le poids de la carcasse froide multiplié par 100.

Ces différents indices sont donnés au tableau n°21.

La perte au **ressuyage** est donnée en p.100 de la carcasse chaude. La perte à la découpe **représente** la proportion de déchets **rejetés**. En fait dans la découpe **effectuée** !par nos soins, le paragc est minime, la selle est **présentée** avec os et accompagnée du tenseur du **fascia** (tableau n°19).

Les rendements vrais et commerciaux apparaissent au tableau n°22.

3/4/6/ Organes

Les poids des différents organes scut donnés au tableau n°23.

Tableau na 21: Différents indices et pourcentages

1		i				1
Lot	Mo	Indice compacité	Indice degras	Indice compacité gigot	Perte au ressuyage en %	Perte à la découpe
T	16 17 10 19 20 26 27 28 29 30	0,191 0,218 0,203 0,209 0,218 0,247 0,264 0,267 0,288 0,216	0,20 0,48 0,52 0,53 1,70 1,40 1,05 1,37 1,22	6,81 8,79 7,94 8,25 9,56 9,67 11,43 11,05 11,39 8,55	10,0 9,55 10,23 7,43 10,0 10,12 6,17 11,23 7,25 9,52	23,03 7,31 6,84 10,17 2,90 7,88 4,73 4,59 2,79 2,80
	34 12 13 14 14 15 15 16 16 17	10 2,32 0,547 0,232 0,02	10 9,69 11,627 0,96 0,35	10 93,344 895,83 9,34 1,12	10 91,5 860,84 9,15 1,15	10 73,04 863,60 7,30 4,32
A	360 378 323 391	0,320 0,350 0,373 0,300	2,24 2,38 2,38 1,20	12,33 12,17 12,65 11,75	5,50 5,40 6,33 5,20	17,86 12,95 14,12 12,96
; -	22 22 21	4, 1,343 0,454 0,335 0,04	4 8,20 17,736 2,05 0,90	48,9 598,22 12,22 0,59	22,93 133,09 5,73 1,17	57,89 854,01 14,47 3,69
В	384 385 393 334	0,384 0,344 0,323 0,334	2,13 2,01 1,23 1,43	12,44 12,19 12,31 12,32	3,20 6,72 5,79 4,05	12,73 8,17 12,20 11,17
	/ x '2 x L	1,385 0,481 0,346 0,03	4 6,8 12,134 1,7 0,69	49,26 606,66 12,31 0,16	4 20,65 113,09 5,16 2,31	4 44,27 502,41 11,06 3,23

Tableau nº22 : Rendements vrais et commerciaux

:		À		В		<u>t</u>	1	Ĺı	I	ĬI.	Témo	ns
Ио	R V	RC	R V	RC	RV	RC	RV	RC	RV	RC	RV	RC
	59, 4 59, 3 60, 7 60, 45 56, 97 61, 98 64, 91 60, 85 61, 84 59, 73 57, 47 65, 06 61, 59 60, 31 59, 91	53,08 54,14 55,84 55,38 52,74 56,39 60,36 56,05 56,2 54,26 52,9 60,5 57,23 55,45 52,66	61,51 62,99 63,69 59,19 56,79 59,57 63,05 63,35 61,89 59,73 60,53 63,51	57, 61 57, 21 57, 17 57, 5 56, 43 50, 47 54, 44 58, 23 54, 96 55, 36 54, 0 56, 41	59,4 61,98 64,91 160,8 5 61,84 56, 7 9 59,5 7 63,05 61,51	53,08 56,39 60,36 56,05 56,2 52,57 54,44 50,23 57,61	59,3 59,73 57,47 65,06 61,59 63,35 61,39 62,99 59,73 60,53	54, 14 54, 26 52, 9 60, 5 57, 23 54, 96 57, 21 57, 17 55, 36 54, 0	60,31 60,7 60,45 50,97 59,91 63,60 59,10 63,21	55, 45 55, 32 55, 38 52, 74 52, 66 57, 50 56, 43 56, 41	63,03 55,23 62,30 61,0 53,22 57,5 57,6 55,4 59,6 60,9 60,3 59,7 64,2	50, 73 45, 49 53, 6 51, 44 46, 26 46, 8 49, 3 46, 7 20, 4 52, 0 57, 0 50, 3 48, 3 50, 2 52, 5
The second secon	15 Q10,47 55333,96 60,69 1,24	15 833,18 46364,24 55,54 1,36	1 \ 735, 0 45130, 73 61, 29 1,36	12 671,89 37652,37 55,99	9 549,99 33642,56 61,10 1,75	9 504,93 28377,65 £3,1 0 1,91	10 611,64 37455,98 61,16 1,6	10 557,13 31151,94 55,77 1,6	8 484,43 89366,15 60,55 1,78	8 442,39 2484,78 55,29 1,45	15 892,98 53302,9 59,53 1,76	15 750,02 37636.14 50,0 1,71

Tableau n°23 : Organes

			Foie	Coeur + poumons	Rognons	Testicules
	Témoins	n Sx Sx2 x +	15 5,75 2,30 0,383 0,04	15 7,26 3,72 0,484 0,06	15 1,36 6,149 0,090 0,02	15 1,06 0,294 0,212 0,16
Poids	A	n Sx Sx2 x +	4 2,14 1,15. 0,535 0,07	4 2,56 1,67 0,640 0,16	4 0,30 0,0252 0,075 0,04	4 2,22 1,25 0,555 0,12
	В	n Sx Sx2 x +	4 2,22 1,20 0,555 0,2	4 2,76 0,690 0,13	4 0,0792 0.14 0,02	4 1,62 ! 0.405 0,10

4 - DISCUSSIONS

Ces discussions vont porter sur la comparaison statistique des divers lots ullet

- 1) Comparaison des régimes
- 2) Comparaison des animaux non traités et traités par 1 lanabolisant
- 3) Comparaison des **concentrés** différents par le rapport MAD/UF (103 et 119) •
- 4) Comparaison des résultats à l'abattage
- 5) Esquisse économique

4/1 - Comparaison des régimes

Il convient de rappeler que les rations 1, 2 et 3 sont composées du même concentré qui est mélangé à des proportions différentes de coque d'arachide : 20 p.100 de coque dans R1, 30 p.100 dans R2 et 40 p.400 dans R3.

4/1/1 - Comparai son des performances

Les données utilisées pour cette comparaison sont les pentes des droites de régression des poids en fonction du temps pour chaque individu,

Le regroupement de ces pentes dans R1, R2 et R3 donne les résultats suivants :

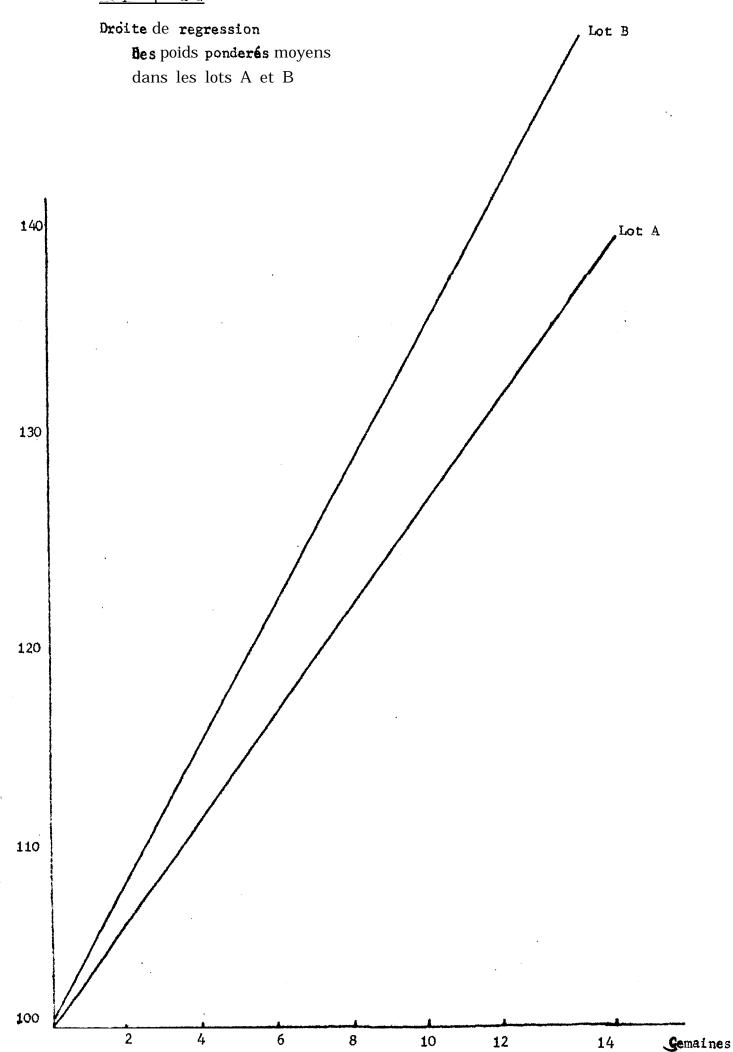
Tableau n°24 : Comparai son régimes

•_	R1	 R2	R3 8	
N	9	10		
SX	6,331	7,557	7,020	
sx ₂	4,825	6,374	6,661	
SX ₂ X	0,703	0,755	0,877	
L				

L'analyse de variance groupe à groupe donne pour F les valeurs suivantes $\boldsymbol{4}$

11 n'y a donc pas de différence significative entre les **croîts** obtenus dans les trois groupes* Ceci tien& à la grande **variabilité** individuelle à l'intérieur des groupes,

11 n^4en reste pas moins une tendance nettement manifestée à un gain de poids supérieur avec le **régime** R3 comme en **témoignent** les **CQ**M calcul& pour chacun des lots.


$$CQM$$
 R1 = 100 g
11 R2 = 107 g
11 R3 = 125 g

On peut donc dire comme en **témoignele** graphique n^01 que le **régime** contenant le plus de coque d'arachide, donc le plus faiblement **concentré** en **énergie** semble produire un gain de p^0ids supérieur aux deux autres,

a) Consommation par kg de poids vif

Tableau n°25 : Comparaison de la consommation/kg vif dans chaque régime.

Graphi que nº1 Comparaison des **croits** avec chaque régime Droite de regression des poids pondérés moyens dans chaque regime Ge‡maines Graphi que nº2

Toutes ces comparaisons donnent une différence hautement significative. En régime R3, les animaux consomment d'avantage qu'en régime R2 et R1.

Mais on sait que Ri est composée de 80 p.100 de concentré, R2 de 70p.100 et R3 de 60 p.100.

Si I*on considère alors non plus la quantité d'aliment, mais les quantités de concentré consomnées, on obtient pour chacun des régimes une consomtnation identique en concentré..

> 33,8 Rί

R 2 34.6

R331,6

Si on étudie la consommation dans chacun des régimes par kg de poids métabolique, on obtient des résultats sensiblement comparables,

Tableau m°26: Consommation par kg de MBS

	R1		R2		R3
N	26		24		27
sx	2771	3	3050		3404
sx ²	298197	360	360945		432178
Χ̈́	106,5	1	117,3		126,0
	F	R 1	R2	pical Decel	12,41**
	F	R2	R3	=	12,41** 43,56 ^{**} 8,4 **
	F	R2	R3	****	8,4 **

4/1/3 - Comparaison des indices de consomnation

Les indices de consommation moyens dans chaque régime sont les suivants :

$$Rl = 10.44$$

$$R2 = 8,63$$

$$=$$
 10,44 R2 $=$ 8,63 R3 $=$ 7,60

L'indice de consommation diminue donc sensiblement de R1 à R3. C'est la ration contenant le plus de coque qui est la mieux utilisée.

On peut donc dire en résumé que le régime R3 semble produire un gain de poids supérieur, que si la consommation en aliment y est plus importante, la consommation en concentré est identique; enfin que 1 'indice de consommation est nettement inférieur à celui relevé dans les autres lots.

Des trois rations à concentration en énergie différente, le mouton peulh-peulh valorise le mieux celle à faible teneur en énergie.

4/2 - Comparaison des traitments

On sait que les animaux des lots B ont été implantés à l'oreille avec un pellet d'un anabolisant non oestrogénique ; le Ralabol.

4/2/1 - Comparaison des performances entre A . let B

Tableau nº27: Performances dans les lots A et B

	Pentes Lots A	P.e. n t
N	15	12
SX SX ²	10,345	10,777
SX T	7,968	10,126
X	0,689	0,898
	F A-B = 5	6,65*

Il existe une différence significative entre les gains de poids dans les lots A et B.

Le COM pour les lots A est de 98 g et pour les lots B de 128 g.
L'anabolisant a donc entraîné une amélioration de gain égale à 23 p.100.

4/2/2 - Comparaison des consommations par kg de poids vif
Tableau n°28: Comparaison des consomations dans les lots A et B

N	42	40
SX	1990	1956
sx ²	95229	101747
Σ̈	47,4	48,9

Il n'y a pas de différence dans la consommation moyenne par kg de poids vif chez les animaux traités ou non traités.

4/2/3 - Comparaison des indices de consommation dans les lots A et B

Les indices moyens pour ces deux groupes s'élèvent pour les lots A à 9,46 et pour les lots B à 8,32.

Le traitement a donc entraîné une meilleure valorisation de la ration,

En définitive, le traitement par un anabolisant a augmenté le gain de poids de façon significative et a entraîné une diminution très sensible de l'indice de consommation.

4/3 - Comparaison de deux concentrés

Durant tes 10 premières semaines, les divers régimes avantes à la bare le même concentré (0,94 UF et 27 MAD).

En fin d'essai et durant 4 semaines, on utilise pour la confection des rations un concentré plus riche en protéine : le concentré 2 dont la valeur est de 0,93 UF et 111 MAD.

Ces deux périodes vont être comparées suivant les critères précédents.

4/3/1 - Performances avec le concentré 1 et 2

Tableau n°29 : Comparaison des pentes durant la 1ère et 2ème période

		Première , période zoncentré 1	Deuxième période 'concentré 21
	N SX SX 2 X CQM	27 23,632 22,902 0,875	27 18,39 21,593 0,681
, -		F = 2,34	i

La différence dans les gains de poids entre les deux périodes n^{\dagger} est pas statistiquement significative. Cependant, Les CQM (125 et 97) dans les deux périodes semblent donner un avantage au concentré $n^{\circ}1_{\bullet}$

4/3/2 - Consommation par kg vif durant Les deux périodes

Tableau n°30 : Comparaison des consommations durant la Ière et 2ème période

		Première période concentré 1	Deuxième période concentré 2
1	N	5 6	2,4
]	SX	2811	1135
	SX	142550	54426
	ž 2	50,20	47,32
		F = 0,0	02

La consommation par kg de poids vif n est pas différente avec ces deux concentrés.

4/3/3 • Indices de consommation au cours des deux périodes

<u>Tableau nº31</u>: Indices de consommation dans les 2 périodes

	Premi ère période concentré 1	Deuxième période concentré 2
Valeur UF de la ration	0,99	1,06
CQM	125	37
Indice de consommation	7,92	10,92

L'indice de consommation est donc beaucoup plus élevé avec le concentré $n^{\circ}2_{\bullet}$

En définitive, l'augmentation de la teneur en protéine qui se produit quand on passe du concentré 1 au concentré 2 est défavorable tant du point de vue des performances que de l'indice de consommation.

4/4 - Comparaison des résultats à l'abattage

4/4/1 • Mensurations et poids sur 1 fanimal vivant

Les résultats des mensurations sont différents au dibut et à la fin des opérations d *embouche sauf pour la largeur de la tête (tableau n°32).

<u>Tableau n°32</u>: Signification des dif f érences des poids, et mensurations en début et fin d'expérience.

		F
\$*Significatif à 1 p .1 0 *Significatif à 5 p.1 0	T.g.T. (II)	48,5** 15,22** 10,36** 6,58* 47,67** 20,29** 0,17 23,67** 25, 10** 21,22**

Les différences sont donc en général très significatives, les animaux ont gagné en volume pendant l'opération. Gependant, toutes les parties de l. lanimal ne se sont pas développées de la même façon, ce qui se vérifie r sur les mensurations des carcasses,

Sur le tableau $n^{\,0}33$ apparaissent les pourcentages de vartation pour chacune des mensurations.

Tableau $n^{\circ}33$: Pourcentages de variation du poids et des différentes mensurations au cours de $1^{\circ}embouche$.

-	Variation en p.100
Poids	28,87
P.T.	5,95
H.G.	4,02
н• №	4,92
Lo (1)	10,01
L.T.	6 ,7 5
1 • T •	0
L.C.	9, 01
1.H.	11,34
L.S.I ⁽²⁾	6,33

- (1) compas d'épai sseur
- (2) mòtre ruban

4/4/2 - Habillage

Au tableau n°34, on trouve une analyse détaillée des résultats de l'habillage dans les différents lots.

Le premier point concerne l'absence de différence significative entre les animaux issus des différents régimes et des différents traitements.

En second lieu, il apparaît que les données sont significativement différentes dans les lots témoins et expérimentaux. Le tableau n°35 montre que ces différences ne sont pas uniquement dues à L'augmentation de format et de poids des animaux,

On peut remarquer que Le pourcentage de 5ème quartier n'est pas modif ié chez les animaux d'embouche.

Tableau n°34: Habillage

		Poids vif	Contenue panse	Poids peau	Poids 5ème quartier	Poids carcasse chaude
! Témoi ns	n # + !	15 26,5 3,51	15 4,26 0,79	15 1,33 0,27	15 3,41 1,05	15 13,24 1,76
Total expérimentaux	n V	2 7 35,01 1,79	2 7 2,97 0,24	3,03 0,21	27 11,1 0,87	27 19,52 1,05
F		25,58 ^{**}	16,79	49 , 53**	15,69**	46,60**
expé ri mentaux A	a x +	15 34,14 2,36	15 2,90 0,29	15 2,96 0,33	15 10,56 1,01	15 18,94 1,28
expérimentaux B	n + :	12 36,11 3,02	12 3,05 0,44	12 3,12 0,30	12 11,77 1,59	12 20,25 1,87
F ;	:	1,28 ^{NS}	0,44 ^{NS}	0,59 ^{NS}	2,07 ^{NS}	1,65 ^{NS}
expérimentaux I	n X +	9 34,92 2,70	9 2,85 0,39	g 3,07 0,35	10,62 1,34	9 19,57 1,53
expdrimentaux II	; x n ;	34,510 4,21	10 3,0 O, 44	10 3,0 0,42	11,03 1,90	19,26 2,44
expêrîmentaux III	n ±	8 286,1 3,37	3,05 0,51	3,02 0,53	0 i 11,78 1,55	8 19,81 2,15
F	!	, 0,16 ^{NS}	, 0,24 ^{NS}	,0,04 ^{IIS}	, 4,03 ^{NS}	,5,40 *

NS = non significatif

^{**} significatif à 1 p.100

^{*} significatif 8 5 p .100

Tableau	n°35	:	Habillage	en	pourcentage	du	poids	vif
---------	------	---	-----------	----	-------------	----	-------	-----

	carcasse chaude	contenue de panse	Poids de la peau	Poids du 5ême quartier
Témoins (15)	50,01 + 1,72	15,07 ± 1,62	6,93 <u>+</u> 0,55	31,94 - 1,70
Lots expirimentaux (27)	55,60 ± 0,93	3,53 ± 0,72	ε,62 ± 0,42	31,41 ± 1,24
F	43,40 **	104,9 **	25,35 **	0,28

4/4/3 - Mensurations des carcasses

L'analyse de variance appliquée aux données du tableau $n^{\circ}18$ donne les tésultats suivants (tableau $n^{\circ}36$).

La forme du gigot n'est pas modifiée, ce qui était a prévoir puisqu'il s'agit d'une mesure osseuse.

Par contre, dans l'ensemble, on note des différences très significativeç entre les mesures concernant Le lots B.uet celles concernant le lot témoin.

Entre le Lot t'emoin et le lot A, les diff'erences ne sont pas significatives ou significatives à 5 p.100.

Bien qu'entre les deux lots expérimentaux, on ne trouve pas des mensurations significativement différentes, on peut penser que Le lot B montre des animaux plus longs (externe et interne), dont la largeur aux gigots est plus importante, dont la noix (selon ses deux dimensions) est plus grosse. A ce sujet, il faut cependant noter que la différence entre Les divers lots n'est pas significative au niveau de la surface du longissimus dorsi bien qu'une tendance à la supériorité apparaisse dans le Lot B.

Tableau n°36

		•		g	ı			
	Longueur externe	Longueur interne	Forme gigots	Largeur gigots	Largeur cotes	épaisseur noix A		Surface! L.dorsi
Témoins lot A	2,41	3,70	0,15	1,40	6,46**	5,56*	0,14	0,24
Témoins lot B	4, 79*	4, 92*	0,27	5,49*	0,003	11,92**	8,0 7 *	3,86
Lot A Lot B	0,55	0,56	0,07	3,05	2,14	1,74	7,70	5,11

4/4/4/ Comparaison des compositions de carcasses

Ces comparaisons apparaissent au tableau nº37 et 33

Tableau n°37

- ⇒ Il n'y a pas de différence significative entre les résultats obtenus dans les deux lots expérimentaux A et B.
- En ce qui concerne le gigot, la selle et l'épaule, le lot A me montre pas de différence par rapport aux animaux témoins. Le lot B par contre est significativement différent.
- Pour toutes les autres données 1a signification existe avec une supériorité assez nette en faveur du lot B.

Tableau n°38

- Les pourcentages montrent peu de différences significatives au niveau des différents morceaux.
 - Cependant les significations observées ont une grande importance ;
- le pourcentage de gigot est significativement inférieur chez les animaux expérimentaux du lot B par rapport au lot témoin.
- le pourcentage de collier est significativement supérieur dans les lots expérimentatx
- le pourcennage de baron dans les lots A et B, est significativement inférieur à celui observa dans le lot témoin.
- Ceci montre que non seulement la composition de la carcasse n'a pas été améliorée par l'embouche, mais que la valeur a été diminuée au niveau des morceaux nobles et augmentée pour les morceau: de prix inférieur.

Tableau nº37 : Comparatson de la compostition des carcasses en poids.

norceaux	3,22 *	9,27 * 14,39 **	1,62
baron	32,64	9,27 %	90.0
collier	14,39 ** 5,04	75,39 **	4,33
poitrine	\$ 65 €5	11,13**	1,53
Epaule	65 %	13,29 **	0,63 1,53
carre découvert	% 0€*3	22,77 ** 11,47 ** 13,29 ** 11,13**	0,57
couvert d	15,03 **	22,77 **	0,70
£22et	11,39 **	18,32 **	3,05
Sigot entier	4,55	, 50 °C	95.0
selle	3,30	11, 45**	1, 1, 40
gigot race	£, 51	5,12**	0,02
NEBus non e	Tâmoins lotA f. 51	Témoins lot B 5,12** 11,45**	Lot A lot 3

Tableau nº35 : Comparaison de la composition des carcasses en pourtentage.

	Bigot	selle	f:let	S carré couvert	carrá découvert	épaule	poitrine	collier	baron
Témoins lots 3,50	3,50	2,76	1,73	2,32	9000,0	್ತಿ 73	0,32	7,01 *	5,97 %
Témoins lot B 13,54 ***	13,54 ***	0,73	1,48	1,71	0,003	01,1	1,32	18,42	14,45 **
Lot A - lot'B, 4,57	4 4,57	0,70	90.0	60 to	0,0005	70,0	0,36.	7,29 *	3,17

4/4/5 - Indices et pourcentages (tableau n°21)

Indice de compacité

La comparaison des valeurs prises 2 à 2 par analyse de variance donne les résultats suivants :

 Témoins - Lot-A
 F = 34, 22**

 Témoins - Lot-B
 F = 46,50 **

 Lot-A - Lot B
 F = 0,28 NS

Dans les lots embouchés, l'indice de compacité est le même, alors qu'il est très différent de celui du lot témoin. Les animaux embouchés ont un aspect boucher meilleur.

Indice de gras

Témoins - Lot-A F = 12,47 **Témoins - Lot-B F = 6,51 *Lot A - Lot-B F = 0,94 NS

Ici encore la différence entre lots témoins et expérimentaux est très significative. On note cependant qu'il y a une tendance probable à rencontrer moins de graisse chez les animaux du lot B.

Indices de compacité du gigot

Témoins - Lot-A F = 12,62 **Témoins - Lot-B F = 13,66 **Lot-A - Lot-B F = 0,22 NS

Dans les lots expérimentaux, la quantité de viande portée par les gigots est significativement plus importante que dans le lot témoin.

- Perte au ressuyage (tableau nº39

			F	_
!	Témoins-	Lot- A	15,85 **	1
	Témoins -	Lot -B	18, 15 **	
	Lot- A -	Lot -B	0,48	1
1				

La perte au ressuyage est supérieure chez les témoins en raison d'une graisse de couverture beaucoup moins abondante que chez les lots expérimentaux.

→ Perte à la découpe (tableau n°40)

5,08*	
1,41	
5,85	•
	1,41

La signification existant entre les lots t'emoins et A montre une perte plus importante dans le lot exp'erimental probablement en raison d'une graisse interne (abdominale et de bassin) plus abondante. Dans le lot B, cette quantit\'e de graisse semble plus raisonnable bien qu'il n'existe pas de diff'erence significative entre ce lot et le lot A.

- Rendements

L'analyse des données du tableau 22 donne les résultats suivants (tableau $n^041)$.

		F
	Rdt vrai	Rdt commercial!
Témoins - Lot Λ	1,34	13,19**
Témoins - Lot B	2,67	35,83 **
Lot A - Lot B	0,48	0,08
Lots I-II-III	0,18	0,17

En ce qui concerne les rendements vrais, on ne note aucune différence significative entre les différents lots, ce qui conduit à dire qu'il est en moyenne de 60,11 + 1,03 chez le mouton peulh-peulh.

Au niveau du rendement commercial par contre, la différence est: Frès significative entre les témoins et les lots expérimentaux. En fait, cette différence est probablement due en grande partie à un contenu de panse très significativement différent entre ces lots.

4/4/6 • Organes

L'analyse du tableau $n^{\circ}23$ conduit aux $r\acute{e}sultats$ exprimes dans le tableau $n^{\circ}42$

	Foie Coeur :Poumons	Rognons	Testicules :
Témoins • Lot A	12,3 ** 5,53*	0,50	21,00**
Témoins • Lot B	11,7** 10,3 **	5,135:	7,01*
Lot A - Lot B	0,09 0,64	17,0**	8,49*

Foie; coeur et pourons sont significativement plus lourds dans les lots \exp érimentaux.

En ce qui concerne les rognons, ils ont le même poids dans les lots témoins ct A, des poids diffkents entre les lots témoins et B, différents aus si entre les lots A et B.

Quant aux testicules, ils sont significativement plus lourds dans les lots exp'erimentaux mais avec une significati'en plus forte pour le lot B_{ullet} Les lots A et B sont significativement diff'erents \grave{a} ce sujet.

On peut penser que l'action de l'anabolisant n'est probablement pas étrengère à la valeur des deux derniers résultats, Il est cependant évident que le faible nombre de données ne peut permettre que de mettre en évidence une tendance et non une certitude. Ces phénomènes sont à étudier sur un nombre d'animaux beaucoup plus important.

4/4/7 • Etude de diverses corrélations

Tableau $n^{\circ}43$

-	Début embouche	! Fin	- !
Poids • périmètre thoracique (1)	0 , 639***	0,861**	-
Poids • longueur scapulo ischiale (prise à la toi toise)	0,481*	0,173 NS	:
Poids - longueur scapulo- ischiale (prise au mà- trë ruban des 2 cotés de l'animal	0 , 543**	0,696**	!
Gain de poids (2) dif- férence sur le périmètre thoracique même période	e 0 ,7 29**	ı	i

La mesure la plu5 intéressante est le périmètre thoracique (corrélations (1) et (2)). En fait, sur le mouton, la facilité de la pesée permet de ne pas avoir recours à des procédés d'apprécation barymétrique du poids qui ont un usage certain chez les bovins.

5/ ESQUISSE ECONOMIQUE

5/1 - Bilan à la production

Ce bilan ne fait 'ntervenir d'une part que les charges fixes comprenant l'achat des animaux et leur nourriture et d'autre part, le produit de la vente en carcasse immédiatement après l'abattage.

Un bilan de ce type va être établi pour chacun des 3 régimes.

Le prix de revient du concentré est dans les deux cas de 19,5 F/kg.

5/1/1 - Régime Ri

Le lot compte 9 animaux. Le prix de revient d'un kg d'aliment est de 15,6 Fr. La dépense à l'achat a été de $3500 \times 9 = 32,500$

Quantité totale de mourriture concommés durant llosgai

Quantité totale de nourriture consommée durant l'essai :

(1371 x 5 x 98) \div (1444 x 4 x 98) = 1238 kg

Prix de revient de la nourriture : 1238 x 15,6 = 19312

Total charge fixe (achat \div nourriture) = 50 50812

Poids des carcasses chaudes :(19,15 x 5) \div 20,12 x 43 = 176 kg

Produit de la vente à 275 \cdot 1e kg carcasse chaude = 43463

Le bilan est donc négatif (- 2349 f).

L'opération aurait été équilibrée pour un prix de vente en cheville de 288 fr le kg.

5/1/2 - Régime R2

Ce lot comporte 10 animaux. Le prix de revient d'un kg d'aliment est de 13,65 F.

Achat des 10 animaux : 3,500 x 10 = 35,000 F Quantités totales d'aliments consommes.

 $(1535 \times 5 \times 98) + (1679 \times 5 \times 93) = 1575 \text{ kg}$ Prix de revient de **l'alimenation**: 1575 x **13,65** = 21.500
Total des charges fixes 56,500

Poids des carcasses chaudes

 $(13,66 \times 5) + (19,86 \times 5) = 192 \text{ kg}$ Produit de la vente en carcasse 192 x 275 = 3.700 fr
L'opération aurait été équilibréepour un prix carcasse de 295 F /kg

5/1/3 - Régime. R3

Ce lot comporte 3 animaux. Le prix de retient du $\mbox{\em kg}$ d'aliment est de 11,7 F .

Achat des 8 moutons: 3.500 x 8	20.000 F
Quantité totale d'aliments consommés:	
$(1662 \times 5 \times 98) + (1812 \times 3 \times 98) =$	1.350 kg
Prix de revient de l'alimentation : 1350 \times 11,7 =	15.795
Total des charges fixes :	43.795
Poids total des carcasses chaudes : (19,04x 5) \div (21,5 x 3) \rightleftharpoons	159 ,7 kg
Produit à la vente : 159 x 275	43.917
Le bilan est juste équilibré.	

Dans les conditions de l'expérience et pour un prix à la cheville de 275 fr/kg tel qu'il était pratiqué au moment de l'abattage des moutons; l'opétation d'embouche conduite durant 4 mois est déficitaire.

Un prix de vente au crochet de 300 fr le kg, très admissible compte tenu de la qualité de La production aurait permis dans tous les cas d'équilibrer le bilan.

Dans le lot 3 cependant qui associe le meilleur CQLI (125 gr) et le prix de revient de l'aliment le plus faible (11,7 fr le kg) les résultats économiques sont les plus favorables,

5/1/4 - Comparaison lots Λ et B

Les mêmes calculs appliqués respectivement aux lots A et B donnent aussi des bilans négatifs: mais on constate la perte est inférieure, quelque soit le régime d'environ 2/3 dans le lot B par rapport au lot A.

5/2/- Bilan économique à la boucherie

Le tableau $n^{\circ}44$ donne une idée du bilan économique au niveau de la boucherie. La valorisation des autres morceaux est la suivante :

Rognon	50 F	13 pièce
Coeur	6 0	11
Cervelle	G O	II

En fait l'épaule n'est presque jamais vendue en l'état (350 F/kg). Elle coûte 800 F/kg sous forme de palette et 500 F le kg entièrement désossée en morceaux*

En ce qui concerne les prix à l'habillage pratiqués à l'abattoir, ils sont les suivants:

Tableau nº44

d'amélioration	u- 40			Arte es	, addresselve 12	g affailte i gen	ing , gaya sathuga na t	% Y '/C	, ,			6.4	, , , , , , , , , , , , , , , , , , ,
Total		-40122	55000	25573	2557	-23265	36546	13281	3320	-24145	39252	15117	. 3779
Collier	300		3350				25.70				2405		
Poitrine Collier	300		3750				2148				2520		
epaures brutes	350		0652			e Parago d	4527				C267		
carres découverts	CO9		9299				3940	and the second	M	Name of the Company	3034		
carres	C 2 9		7254				4355				4530		
Filets	200		7162				4554			Notes for Joseph and with	4.520	gi om e emmessa	
Selles gigots	730		30016				15414			,	15072		
Carcasse!	275	40122	dy and			23255		R grissp		24145	<u>u</u> 1) wird		a, sano Merel .
	prix au leg	Achat m	Vente	Bénéfice	Bilan ;par	Achat	Vente	Bénéfice	Bilen par animal	Achat	Vente	Ménéfice	3i lan ' animal

La peau fraîche est vendue 90 F la kg.

L'embouche améliore le bilan économique par animal puisque le bénéfice calculé, ne tenant pas compte des charges du personnel, entrepot etc... est supérieur de 24,5 % dans le lot A et 41,7 % dans le lot B.

La plus grande partie de cette augmentation est due à l'accroissement du poids des carcasses des lots embouchés par rapport au lot témoin (respectivement + 20,8 % et + 36,2 % pour les lots A et B).

La composition de la carcasse n'est pas modifiée. L'importance du pourcentage du prix des morceauxxcomme le gigot et In selle tend même à diminuer. [74,8 % dans Le lot témoin, 66,2 et 66,5 respectivement dans Les lots A et B.

Si 1a valorisation du prix a la production est fixée a 300 F comme indiqué au chapitre précédent, le bénéfice par animal se modifie da 1a façon suivante (tableau $n^{\circ}45$).

** *

Tableau n°45

	Achat	25 380
Lot A	Vente	! 36 546
25	Bénêficc	11 166
	animal	2 791
•	Achat	, 26340
Lot B	Vente - Bénéfic e	39 262 12 922
	Bilan/ animal	3 230

Les bilans par animal dans les lots A ct B sont encore $sup\'{e}rieurs$ respectivement de 4,6 % ex 12,1 % .

CONCLUSION

Ce nouvel essai d'alimentation intensive avait pour but de tester Les aptitudes du mouton peulh peulh sénégalais à valoriser une ration.

L'aliment utilisé durant 96 jours comportait, d'une part, un concentre à base de son de maïs, de farine de sorgho, de tourteau de coton, de sels minéraux et d'autre part, un élément de lest, la coque d'arachide incorporée au concentré dans des proportions variables.

Les conclusions concernant les résultats de cet essai portent successivement sur lies performances obtenues et l'aspect alimentaire de ce mode de . production, et ensuite sur les résultas à l'abattage et l'aspect génétique du problème.

Dans le premier cadre, les résultats moyens sur l'ensemble de l'effectif peuvent se résumer ainsi :

- gain moyen journalier (CQM) : 17 : = 117 gr
- quantité consommée par jour et par animal = 1,500 kg
- quantité consommée par kg de poids vif == 43 gr
- quantité de matière sèche consommée pur 100 kg c de poids vif ,
 - == 4,5 log
- indice de consommation moyen = 0,0
- prix de revient brut du kg de gain == 257 fr

Le protocole mis en place à permis d'obtenir un certain nombre de conclusions supplémentaires.

1/- Les moutons peulh peulh valorisent mieux une ration contenant d'assem fortes proportions de lest. Dans le carrie de l'essai c'est la ration contenant la plus font proportion de coque d'arachide (40 %) qui a donné les meilleurs résultas.

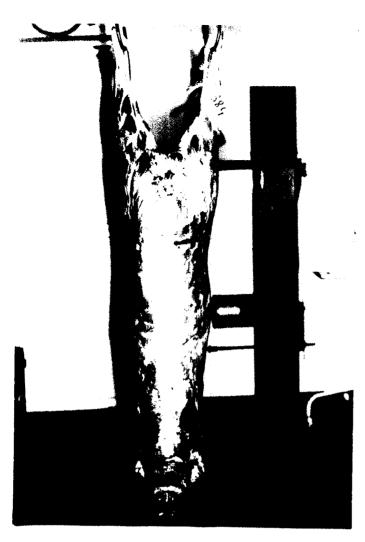
- 2º/ Les performances peuvent être améliorées par l'utilisation d'anabolisants. Le produit utilisé dans certains lots (Ralabol de Sovetal) ne r contenant aucun oestrogène et de ce fait ne subissant aucune restriction réglémentaire a permis d'obtenir une amélioration du CQM de plus de 20 %.
- 3°/ Les prix pratiqués à Dakar à la cheville (275 fr Le lig quelle que soit la qualité), n'ont pas permis de rentabiliser cette opération d'embouche.

Sur le plan des performances bouchères les pours importants sont les suivants:

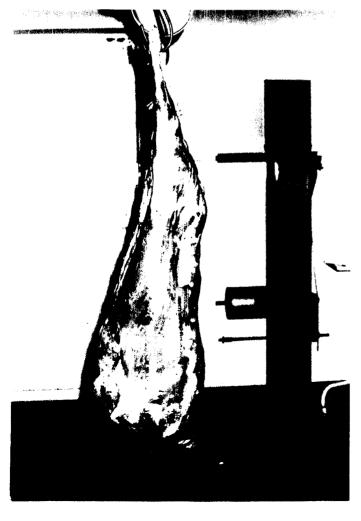
- Les rendements commerciaux ont été augmentés en moyenne de 11,0 % chez les animaux embouchés.
- Les animaux embouchés portent en général plus de viande, le gigot est plus trapu. L'augmentation des indices de compacité de la carcasse sont respectivement de 44, 4 % et 40 % pour les lots A et B. En ce qui concerne le gigot, l'indice de compacité augmente de 31 % en moyenne.
- -- Par contre sur le plan de la composition en morceaux, on ne note pas d'amélioration. Au contraire il apparaît une diminution relative des proportions des morceaux vendus aux prix les plus flevés.
- -- L'indice de gras est augmenté respectivement de 113,5 % et de 77 % dans les lots A et B. L'emploi des anabolisants (lot B) 3 permis d'ob-tenir moins d'engraissement.
- Linfluence des anabolisants est très nette. Ces produits permettent d'obtenir:
 - des rendements supérieurs
- « des indices de compacité (qui mesurent la quantité de viande portée par l'animal) plus élevés.
- " des indices de gras inférieurs à ceux rencontrés chez les animaux non anabolisés.
- Si l'on compare les performances de ces animaux à celles obtenues chez les animaux de races spécialisées dans La production de viande, on obtient le tableau suivant :

	Témoins	Lot A	Lot B	Flade France	Be u ichon du' cher
gigot	25,4 + 1,16	23,75 ± 1,54	22,04 + 1,97	27,17 ± 0,98	27,08 ± 0,75
Selle '	9,30 ± 0,47	3,52 ± 1,75	9,0 + 0,50	8,49 ± 0,48	8,41 ± 0,59
Filet	8,23 + 0,78	8,98 ± 0,58	3,93 ± 0,61	8,53 ± 1,12	9,01 ± 0,95
c carré t ;	9,06 ± 9,62	9,81 ± 1,1	9,71 ± 1,15	10,67 + 0,88	10,39 ± 0,81
carrá découvert	8,83 ± 0,43	8,89 <u>寸</u> 0,62	6,91 ± 1,67	6,63 ± 0,51	6,36 ± 0,36
Epaule	20,14 ± 1,17	19,39 ± 1,40	19,24 ± 0,94	20,21 ± 1,01	20,55 ± 0,54
Poitrine	9,89 + 0,88	10,47 ± 0,50	10,33 ± 3,6	10,91 ± 0,69	11,12 + 0,75
Collier	9,01 + 0,54	10,12 + 0,27	10,80 ± 0,75	6,50 <u>+</u> 0,50	6,52 ± 0,38

Tableau n°46: Comparaison des compositions des carcasses en %


Les différences apparaissent au niveau des proportions du gigo, du filet, du carré couvert qui sont plus faibles chez le peulh-peulh et du collier plus forteschez ce même animal.

Cependant il faut noter que les âges des animaux sont très différents pui sque ceux contrôlés par BOCCARD et DUMONT ont environ 3 à 4 mois au maximal alors que les animaux peulh-peulh abattus ont aux environs de 12-15 noir;


- Les moutons peulh-peulh étudiés manquent de précocité nais celle-ci est probablement due en grande partie à une alimentation déficiente dès le plus jeune âge qui ne permet pas une extériorisation des possibilités génétiques des animaux.
- "Au cours de 1 lembouche les croissances relatives de certains morceaux apparaissent facheusement divergentes.
- Pour permettre de conclure sur les problèmes de confomstion de la carcasse, il convient d'étudier de manière détaillée la croissance et l'évolution staturale dans un cadre où les possibilités des animaux puissent s'exprimers

- C'est sur ces bases qu'une sélection efficace pourra être effectuée.

Le mouton peulh-peulh apparait comme un animal très valable sur le plan boucher. Le sens des améliorations à rechercher actuellement sont une vitesse de croissance glus importante et une conformation de la carcasse meilleure nécessaire si la valotisation se fait sur la base de prix plus élevés pour certains morceaux./~

