BIOLOGI AL ACTIVITY OF THE SHRUB Boscia
 ser walensis (PERS.) LAM. EX POIR
 (CA PARACEAE) ON STORIED GRAIN INSECTS

 M. MinRLIER. ${ }^{2}$ C. GASPAR, and M. SEVERI

Faculte' de's Sciences agrommigurs
sape des Deportes. 2. B. 5030 (acmblowa, Bolgum

Abstract

 grain insec: Wher atded to cowpers at ? 4% is wh tresh shat d taits and signific: y reduced both encrestace and damate of the F, gateny senegalensi ha and leaves as well an pure methyliwethicyatrate whtC, on Tribolin astancum HERBSI. Stmphilus aman MOTSCH athi (for the plan insues. compared to those of pure molentere mothate hat the biological at ..nty of B. senegalensis os due th the theration of Mlis. from

Key Word methylisoth latus (F.). I Sitotroga as aflu (OIIV.) Tribolum castant umi HIRBSI wieq: :a

INTRODUCTION

Insect infestation of stored : reduction of commercial $\%$: several control measures ha: ods. Synthctic insecticides a but arc often frequently use insecticide resistance is an (Gcorghiou, 1990). This s synthetic pesticides. Botan able option. The effectiven grain insects has been desc Singh et al.. 1978; Jacobso 1985: Lognay ct al., 1991:

WC investigated the ! LAM. (Capparaceae), a pl: Senegal (Bille and Poupon against stored grain insects. active components of this η it.

Plant tnatcrial was ri. Our material has been iden: de Belgique (BR) as B. ser November 1990. Fruits all: 1991

Four cxperiments we (trial 3), and pure molecu! test insects, Callosobrud : alella OLIV. (Lep.. Geler trychidae), Tribolium cast zeamais MOTSCH. (Col. ditions ($32 " \pm 2^{\circ} \mathrm{C}$ and carried out under these co: grade.

Trials 1 and 2 . The: leaves (FGL). fresh entil ground fruits (FGF). The unguiculata (L.) WALP 4 in trial! : and $0.5-2 \%$ for
insecticide(s) has been rep $\begin{gathered}d \\ \text { i } \\ \text { at least } 500 \text { specte of insects and mote: }\end{gathered}$

$\therefore \quad$ HODS AND MATLRRALS

in causes weight and quality lonses that lead 10 a and seed gemmination. Fo reduce this danage. oeen taken. which mostly invols e chemical meth not only a drain on the farmer's meager ressures heyond permissible safe limits. The incidertie ot a growing problem. Resistance to one or more thon has increaned the meed tor alternatic © 0 insecticides are a less expensive and biodenrad , of raw parts and plant extracts against stored ind hy many authors (Jotuani and Sircar. 965: 1983: Golob and Webley 1980): Grainge a at. ck et al. 1991: Haubruge et al, 1989)
ogical activ ity o t Boscia venc:ulensis (PIRS.) hat is found throughout north-central and nothern 1972), where it is traditionally used by fimmers , addition. we isolated and identified bioloy cally
mly harvested in the region of Thies (Sengat). .d and deposited al the Jardin Botanique Nitional . llensis. Leaves used for trial 1 were harvested an aves used for triah ? and i were collected m Mar
nducted with plant parts (trials I and 2), catrats tria1 4) using five stored-grain insect specico. The moulatus (F.) (Col., Bruchidac). Sitotroge 'ertlac), Prostephanus. Iruncolas HOKN. (Col Busum HERBST. (Col.. Tencbrionidae), Silomhila, arculionidae). were reared under controlled con$\pm 10 \%$ relative humidity | Bioassays were allon ons. All chemicals and wolvents were of ans ! theal
rst t w o trials were performed with fresh fround aves (FEL), dry leaf powder (DLP), and fresh t materials were added to con pea seeds. Vigna Black Eyed) at 1.32% for FGl. FEL, and DI.P \because and FGL in trial 2. FGl and FGF were prepared
using a small laboratory and then passed through : 20 g of cowpeas were , concentrations in Petri d old C. maculatus adult: 10 insects. Each treatns: Mortality assessment wa when F, adults started " 10 days. Numbers of ho damage was calculated.

Data werc subjecte: the means (Duncan's mu:

Trial 3. Fifty gran: a Waring blender and k : then filtered and concen:: a B. senegalensis aceton: by volume of water.

Bioassays were can: ml of BAFE were depo in another desiccator us:. evaporated completely ; were then introduced is: experimental condition tality readings were rec (LT-,,) of the insects : probita and calculating '

Andysis of volatile. $(100 \mathrm{~g})$ were steam-di extracted three times 1 I : drated with anhydrous the solvent at $38^{\circ} \mathrm{C}$. an using two types of coll was a CP-Wax 52CB i Chrompack; camer gato $240^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$; at $250^{\circ} \mathrm{C}$: apparatus: H Sil 8 CB (25 m long; camier gas was helium $5^{\circ} \mathrm{C} / \mathrm{min}$: cold "on-co apparatus: Carlo Erba *

Analysis of glucos. galensis $\mathrm{FGF}, \mathrm{FGL}, \mathrm{an}$

4Moulinex) I'or 5 min. DL.P was similarly: round 1 -mesh laboratory sleve. Following this pros . dure. ughly mixed with plant material at the sesired ($\phi 90$ mni) and infested is ith 10 unsexed dayreated cowpea seeds were similarly infested with including the control, was replicated fir a amen de after one to two days. Twenty-two das late age, insects were removed daily and counted tor ind unholed seeds were also counted and percent
nalysis of variance followed by a comparson at -range test) at $P \quad 0.05$
Boscia fruits were ground with 200 ml acchone in $\because 2 \mathrm{hr}$ at room temperature. The supernatam, were under vacuum to a final volume of 50 ml to , whtain it extract (BAFE, contaimng approximatel 30%
itt in $825-\mathrm{ml}$ sealed glass desiccators in 14 inch 5 Five milliliters of acetone were similarly p ontted ontrol. After 3 hr at room temperature, the whemt control. One hundred adults of different pectes desiccators. which were closed and placed under r various time exposures. Irom 1.5 to 12 hi. morfor each treatment. The time required to ki! 50\% In determined by transforming mortality wata 0 thal times (LT) (Snedecor and Cochran. 1907). Boscia senegalensis leaves. Freshly ground leaves for 45 m in and the aqueous distillate (90) ml) 10 ml diethvlether The ether solution was dehy1) sulfate, concentrated to 4 mb distillanon of ty analyzed by gas--liquid chromatography (iLC) inder the following conditions: The polar (wlum long. 0.32 mm II). $0.2 \mu \mathrm{~m}$ film thickness) from ielium at 100 kPal : temperature program from 30 'on-column" injector and FID detector mantamed Packard HP 5880 The apolar column was a (P m ID , $0.2 \mu \mathrm{~m}$ tilm thickness) from Chrompack: kPa : temperature program: from 30 to 241 C at injector and FID) detector mantained at 1$)\left(0^{\circ}\right.$?: 5160 .
S. Th c glucosinolates were analyzed in $B \times{ }^{\circ}$ 'E hy reverse-phace HPI (' after emay matu desul
fation according to the official EEC method I Suropean Economic Communty. 1990). Identification of BAFE glucosinolates 4 as performed by ($\mathrm{BC}-\mathrm{MS}$ anal yses of' trimethylsilylated molecules and by examination of' the ir degradation products liberated enzymatically under controlled conditions. For GC MS investigations. glucosinolates were ens matically (ransformed to desulfoglucosme lates and trimethyl-sity lated for 20 m i n all $110^{\circ} \mathrm{C}$ with 50μ of a reagent containing N-methyl- N-trimethylsilyltrifluorobuty ramide, 5% methylimiditole in acetone and trimethy chlorosilane $30: 15.3$ (v/v, v). The chromatographis conditions were as follows: Column SE-53 (25 m long. 0.35 mm ID. $0.2 \mu \mathrm{n}$ film thickness) was from Matherly-Nagel; carrier: helium at 50 kPa : temperature program: $\mathrm{SO}-780^{\circ} \mathrm{C}$ at $20^{\circ} \mathrm{C} / \mathrm{min}:$ cold "on-column" infection. The mass spec tra were recorded in the Emode on a Nemme R $10-10 \mathrm{C}$ spectrometer 70 eV source at $130^{\circ} \mathrm{C}$. interface at $280^{\circ} \mathrm{C}$. mass range scanned from 100 to 800 amu coupled to a Delsi DI-700 gas chromatogriph.

For enzymatic degradation of B. senegelemsis glucosinolates, 0.1 ml acetate buffer (pH 4.5) and $50 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{ml}$ buffered solution of thioglucosidase (EC' 3.2.3. 1), purified from Simapis, alla L according to Appelqvist and Josefson (1967), were added to 0.1 ml of residual aquenus phase from BAFE or wa solution of pure methylglucosimolate (glucocapparin. Roth ref. 74851 Alter 24 hr. the degradation products were extracted n ith 2 ml diethylether and analyzed hy GLC on polar and apolar stationary phases. Methylisothiocyanate (MIC) from BAFE and glucocapparin were identitied by comparison of their retenton times with that of' a pure reference (Sigma ref M86.32)

Detection of MITC in Volatiles Liberated during Biotests. Acetone solutions of BAFE (5 mb) were imtoduced into conteal flasks. After craporation of ite tone, the vessels were hermetically closed and left for 24 hr al 32 2"C Headspace sampling was performed by purging the apparatus with nitrogen for 30 min . The volatiles were collected in 3 ml diethylether maintained in a cryogenic trap at $-20^{\circ} \mathrm{C}$. Fither solutions wert submitted to GC-MS in the aforementioned conditions except that the temperature program rate was tixed at $5^{\circ} \mathrm{C} / \mathrm{min}$. MITC was identitied on the basis of retention and mass spectral data. The mass spectra were compared with EPA-NIH and Wiley libraries

Trial 4 . To study the dose-mortality responses of B. semegulensin tionte and MITC. various amounts of FGF and FGL from (1 to $\quad X$ gliter (w/v) and pure MITC from 0 to 3 mg /iter (w, v) were deposited in 750 ml glass denccators containing 25 adults of each insect species. on four replications. After 24 ho under the experimental climatic conditions. insects were transferred to chath Petri dishes and maintained in controlled conditions until the next day for mor tality readings as indicated by Busvine (1981). Da ta were subjected to probit analysis (Finney, 1964). Log dose-probit line was analyzed for goodness of the by the chi-square test (Bussine. 1981), followed by computation of $1 . C_{\text {s }}$ values for cach material.

RESULTS

Trial 1

Mortality. FGL at a concentation of 4% (w/w) catsed 100% montality atter 24 hr . At $2 \%, 55.6 \%$ of the insects died within 48 hr , and at 1%, mortality ranged from 7.4 to 11.1% in one to two days. FEL scored $0-18.5 \%$ mortality and DLP 3.7-40.7\% within $24-48$ hr (Table 1).

Progen: FGL completely inhibited the production of C. matulutus progeny at 2%, but at $1 \%, 21.6$ adults comerged. At the vame the progeny ranged from 36.2 to 87.2 adults for FEI, and from 40.2 w 53.2 for DLP (Table 1).

ADelis. Fi Promida), ANH DAMage (MI Anst

Treathent	$\begin{aligned} & \text { Conc } \\ & (\%, w / w) \end{aligned}$	Corrected murtality (\%)		F. progers	1) mage (${ }^{\text {a }}$
		14 hr	48 hr		
FGl	1	74.	110	21.6 ab	$\because \mathrm{Ob}$
	2	6,306	55.6 b	0.10h	11.0h
	4	10100%	f(0):a	(1).0)	11.0 m
	8	10\% (\%)	100) ${ }^{\text {a }}$	(1).07	1). 17 h
	16	100) 0 al	1000	13. 16	1100
	32	10001%	H0\% ${ }_{\text {a }}$	1).01	0. 0 h
	Control			61.6.4	7113
FFi.	1	7.4	1×5	30.26	(4) 10
	2	1114	A tub	43 nab	36.41
	+		? 4ib	(19) (nat)	54. Sa_{1}
	*	6.6a	11.0)	$8 \times$	10.4.8ia
	16	0.0.8	${ }^{19.06}$	0. 4ibl	S\%
	32	0.1)	11.0 b	71.8.ah	00.54
	Control			6i. Gath	56.3 .1
OIP	1	11.10	37.0	53.2a	07.50
	2	3.7.i	18.54	+7.6: 5	4t tans
	4	11.1.	25.9.1	51.010	52 tath
	8	11.19	$33.3{ }^{\text {a }}$	49 \% 3	3 0 \%
	16	14.8:1	33.30	+11.2a	(i) 7alm:
	32	11.14	11). $7: 1$	4.5.8. 8	.31) 8 c
	Commol			4.5.0id	65. ab

[^0]FGL significantly reduced (muculatus progeny. compared to FEL and DI. P (Figure 1).

Damage. FGL gave 100% protection at 24 and 23% damage at 1% in the same conditions. damage was $30.9-64.8 \%$ for FEL and $30.8-67.5 \%$ tor DLP (Table 1).

Trial 2

Mortality. After 72 hr at concentration of 2%, mortality was 93.6% FGF and 24.8%. for FGL. After 4X hr, it ranged from 3.X to 79.8% for FGF compared to O-24.2 \% for FGL. After 24 hr , mortality ranged from 3.X to 73.8% for FGF and from 0 to 8% for FGL (Table 2).

Progeny. At 2%, FGF showed no adult emergence while 7.8 and 1338 adults emerged, respectively, in FGL and the control treatment. At 1%. 12 adults emerged from FGF compared to 104 for FGL (Table 3).

Damage. A t 1% concentration, damage was 8.7% for FGF and 63% for FGL. At 2% concentration. FGF gave 100% protection, while 6.1 damage was noted in the FGI. treatment (Table 3).

Trial 3
LT_{50} values were 2.3 hr for C. mactulus and 3.8 hr for P. Iruncalus (Table 4). For S. cerealella all adults died within 1.5 hr .

Fig. 1. Emergence pattern of (C. maculatus from conpea seeds treated with fresh ground leaves (FGL), fresh entire leaves (FEL), or dry leaf pouder (DL.P) of Bowcia semegrachsis at 1% conc. (w/w)
 ani）Lhaves（F（iL）To（．maculatus（Mians）＂

Treatment	Conc（\％，以以	Corrected mortality atter（\％）		
		24 hr	48 hr	72 m
Fif：	0.5	3.817	3.8	14
	1	6．41）	24.9 h	35．9n
	2	73．8．4	79.8 a	93．6a
Fili	0.5	0．04	0 （1）	2340
	1	3．8．1	58 ab	1303
	2	8.0 .4	$2+2.1$	2480

＂Means followed by the same lether within a column of cach tratment are but significantiy different at the 5% level（Duncan＇s multiple－range test）．
＂By Abbott＇s（1925）formula．

Table：3．Effect on Cowpea Treatmbat with B senegalensis Frfesh Grounn
Fruts（FGF）of Leaves（FGl．）on C．maculatus Emi：RGience and Damact in Cowplas（MEANS）＂

Treamment	（ ${ }^{\circ} \mathrm{nc}$ ．	Numbur ul chareded adults＇	Percentage Damage （先）	Redtution（\％）	
				－－．．．．．．－－．．．．．．．	－…－．．．
	（\％．w／w）			Emergence	Damage
F． iF	135	3．4．1	21．7a	6 K .2 a	73014
	1	1．0h	8．7a	90． 73	84.618
	2	0．0）	O． 010	$10{ }_{\text {a }}$	100 ar
J（il	0.5	4.21	40， $01 . \mathrm{a}$	＋1．76	45.26
	1	4.61	63.16	22.36	256 h
	2	1．81）	6．in	94.5 it	923
Control		4.9	84.0		

＂Means followed by the same letter within a column of each treatment ate not signiticanty different at the 5% level（Duncan＇s multiple－range lest）．
＂Log（numbers）

Trial 4

Acute Toxicity of B．senegalensis Fresh Ground Tissues and Pure MITC． FGF，FGL，and MITC exhibited a differential acute toxicity against three stored－ grain bectle species． LC_{9} ，values（in grams ground matter per liter volume） ranged from 1 to 4.23 for FGL and from 0.42 to 1.75 for FGF（Table 5）．IC

Table: 4. Lethal Time (LT) Vadues of Two Stored-Gram Insects Exposfid in: Vapors uf B. senegalensis Fruit Extract (BaFe)

Sprecies"	Stope \pm St:	1.5.45", 17.1. H
C. muctulatus	4.47 ± 1.71	2.3111015281
P. truncatus	$4.21+1.16$	380 (1.92-7.54)

Tabif. 5. Actite Toxicity of B. senegalemsis Fresh Groten Frumes (fGF) and Leaves (FGL) to Aduts of Three Stored-Gran Insecti Sprotes

	Fir		Fil	
Species:	Shore = SE		Shope : SE	$1.68,145 \% 11.1$
Tribolium castancum	8.60 ± 1.00	$1.75(1.63-1.86)$	0.14 ± 1.38	+23 1111.16.153
Sitophilus reamais	$7.12=0.79$	0.87 (0.80-0.94)		
Callosobruchus meatatus	491 ± 0.75	0.42 (0.36-(1).47)	$6.15 \pm 11.9 .3$	100 (1).

"Four replications of 20 insect were exposed w plant materials for 24 hr before the were transtem to Petri dishes and placed on controlled conditions ($30^{\circ} \mathrm{C}, 70 \%$ relative humbdrs) Ahatales uad counted after 24 hr of pest exposure (Busvine. 1981).
"Grams per liter volume, with Fiducial limits.
for MITC ranged from 0.73 to 2.38 ppm accordng to insect species. with 6 maculatus being the most susceptible (Table 6).

Chemical Investigations

GLC analysis of the volatiles from FGL showed one major peak (92% of the total area) at retention times of Y. 3 min and 6.5 min , respectively on polar and apolar columns, which corresponded to those of an authentic sample of MITC. The detection of MITC from B. senegalensis leaves (Figure 2) suggested that methylglucosinolate (glucocapparin) may be the main precursor of the mose ticidal compound. Glucosinolate enzymatic degradation leads to several by products among which isothiocyanates predominate (Tookey et al. 1980). Tu test the aforementioned hypothesis, we analyzed th c residual water phase of BAFE following a three-step procedure (HPLC, identification of glucosinolate by-product, and GC-MS). The HPLC retention time of pure desulfomethylglucosinolate (2 min) corresponded to that of the major peak detected in BAFE. On the other hand, the elution profiles liberated enzymatically from BAFE
 Stortid-Gkain Inshect Spet it:

Species"	Slupe \pm SE	$1 . C_{50}(95 \% \text { EL) })^{\prime \prime}$
Tribolium castancum	7.05 ± 0.58	$2.38(2.242 .52)$
Sitophilus zeamais	7.22 ± 1.18	1.25 (1.14-1.34)
Callosobruchus marulames	4.81 ± 0.59	(1.73 (1).04 (0.82)

"Four replications of 20 insects were exposed 10 plant materiats for 27 hr before they were transfered to petri dishes and placed in eontrolled conditions $30^{\circ}(5,70 \%$ relative humdity) Murtality wis eounted after 24 hr of pest exposure (Busvine, 1981).
"ppm, with Fiducial limits.
residual aqueous phase and methylglucosinolate are practically identical: MITC is distinguishable on the two chromatograms but is absent on the blank. The identiticntion of glucocapparin in BAFE was finally validated by CC-MS A typical mass spectra is shown in Figure 3. The mass fragments at $m / e=103$, 117. 137. 169. 204, 243. 271. 361 (base peak), and 451 were generated by the glucidic moiety of the molecule and were not of interest for the identification of the aglycone. Nevertheless, the ions recorded at $m / c=613(\mathrm{M})^{+}$. 598 $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{5}, 524(\mathrm{M}-\mathrm{CH},-\mathrm{TMS})$ and $508\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{TMSOH}\right)$ indicated clearly a glucosinolate bearing a methyl radical. As for all other alkylglucosinolates. the intensities of these characteristic mass fragments were lou The methylglucosinolate content of B. senegalensis material tested in trial 4 represented 23.6 $\pm 0.8 \mu \mathrm{~mol} / \mathrm{g}$ fresh leaves and $38 \pm 1.2 \mu \mathrm{~mol} / \mathrm{g}$ fresh fruits (HPLC determination with sinigrin as internal standard). Headspace sampling conducted undel the same conditions as trial 3 and trapping the volatiles in diethy i cther at $-20^{\circ} \mathrm{C}$ led to detection of MITC from the vapor phase. The total ion current (Figure 4) showed several peaks, among which was MITC ($\mathrm{K},=16.6 \mathrm{~min}$). The molecule was unambiguously identified by comparison of its mass spectrometric pattern with EPA-NIH and Wiley libraries and also on the basis of GLC retention time.

DISCUSSION

This research has demonstrated a significant biological effect of B. sencgalensis plant parts and extracts. The evidence in support of these results was obtained from four experiments. First, B. senegalensis FGL (when added to cowpeas at $4 \% \mathrm{w} / \mathrm{w}$) completely killed (C. maculatus adults within 74 hr . inhibited the production of F_{1}, progeny and prevented bruchid damage. Under the same conditions. FEL and DLP had almost no effect. Second, comparative

C
miv
D
ik
Control

B

Control
-

Pig. 2. Identification of methylisothiocyanate (MITC) from Boscia senegalensis Icaves with apolar column (A and B) and polar column (C and D).
evaluation of' FGF and FGL revealed that fruits were more toxic to C. maculatus and reduced both progeny and damage to a greater extent, than did leaves Third, BAFE exhibited a high f'umigant effect on threc stored-grain insect species, which had a differential time-mortality response. Finally, we quantified the acute toxicity of B. senegalensis fresh ground fruits and leaves as well as pure MITC and obtained dose-mortality responses for three stored-grainbeetles.
B. senegalensis is a shrub, growing up to 3 m high. that is frequently found on abandoned tennite mounds and on barren and fire-scorched soil of the Sahel. It is distributed from Mauritania to Niger. northem Nigeria. the northwest Cameroons, and across Aftica to Sudan and Ethiopia (Booth and Wickens, 1988).

Fig. 3. Mass spectrum of silylated desulfoglucocapparin from Boscia senegalensis Iruit extract.

FIG; 4. GC-MS total ion current of the volatiles liberated during the bioassays of Boscia senegalensis fruit extract.

Leaves and fruits are used as human food and animal fodder (Bernus, 1979: Baumer. 1981; Maydell, 1983; Burkill, 198.5: Becker, 1983). The leaves. bark. and roots are widely used in northem Senegal for their medicinal properties (Kerharo and Adam, 1974; Hooth and Wickens, 1988).

Alzouma and Boubacar (1985) reported on the toxicity of B. senegulensis leaves from Niger. which also reduced Bruchidius arolineatus Pic and C maculatus oviposition. but they gave no details about the active components. Kjaer et al. (1973) reported that B. senegalensis leafless twigs contained methyl and isopropyl glucosinotates.

Our bioassays, perfomed by comparing Boscia thsues and MITC. andicate that B. senegalensis fruits. leaves, and MITC were toxic to insects al varous levels, according to the species and the plant tissue. They also indicate, considering LC,,, values l'or FGF. FGL. and pure MITC on the one hand. and the amounts of glucocapparin found in the plant tissues on the other hand. that Boscia fruits and leaves contained sufficient glucocapparin to liberate MITC at levels comparable to the $\mathrm{L} \mathrm{C}_{51}$ of the pure molecule.

These results indicatc that in addition to its medicinal properties (Dalziel, 1948) and utilization as a famine food (Becker. 1986: Salih et al.. 1991), B. senegalensis also has potential in stored-grain protection due to a potentfumigant effect on different insect species. B. senegalensis has been traditionally used by African fat-mers as a gram protectant, but the basis of its effectiveness has never been explained. Wc have shown that B. senegalensis biological activity is linked to the liberation of methyl isothiocyanate from a glucosinolate precursor. glucocapparin, contained in its fruits and leaves. As the plant grows spontaneously in some of the poorest areas of the world (mainly in the arid sahelian regions). this research suggests a natural insecticide from B. senegatensis as an alternative to synthetic pesticides in developing countries.

Acknowledgments-We are grateful to Mr. JC (iilson for drawny heures and Mas A. Aan Meensel for typing the manuseript. Dr. J.-L. Hemponne and two amonyous revesuer mate valuable comments on the manuseript.

RIEFEREVCIS

 18:265-267
 daceae) sut certains aspects de la biologie de Bruchidius atrolinewthe et de Collowobradu. maculatus. Comm. Colloque sur les Légumineuses Alimentaties. Nianty. Niger.
Anonymous, 1990. Reglement CEE No. 1864/90. Graines oléagineuses-détemination des pitucosinolates par chromatographe liquide à hate perfomatice. J. Off. ('ommmen. Eikf. 1.170.27.

 Agric. 18:510.
 Sa consommation par le betail. Ret: Eles: Med. Vot. Paw Trop). 34(3):325-328
Becker. B. 1983. The contribution of wild plants to human nutraw in the Ferlo (northern Senceal) Agrofor. Syse 1:257-267.

[^0]: Means followed by the same letter withen a solumn at cach treatment are not significantly deferent al the 5 er ked (Duman st muluple-range kent
 "Br Abholt": (1925) formbata.

