700009C7

207

S A N G A L K A M

IRRIGATIONS

PRINCIPES ET DISPOSITIONS

Mai 1979

SANGALKAM

IRRIGATIONS : PRINCIPES ET DISPOSITIONS

MISE A JOUR AVRIL 1979

I - DEFINITION DES NORMES D'ARROSAGE

1) Evapotranspiration maximale

Les observations effectuées à Sangalkam par l'équipe de chercheurs de l'ORSTOM indiquent une évolution de l'évapotranspiration maximale, calculée à l'aide de la formule de RICU, à partir des résultats du bac d'évaporation, passant de 3 mm/jour en août à 4,5 à 5 mm/jour en saison chaude et sèche (maijuin).

En pratique et pour simplifier les instructions destinées aux ouvriers chargés des arrosages, on adoptera les valeurs moyennes suivantes pour l'évapotranspiration :

- 4 mm par jour pour la période du ler juillet au 31 mars,
- 5 mn par jour pour la période du ler avril au 30 juin.

2) Dé-termination des besoins en eau d'irrigation

Ces dispositions rendent compte d'une application pratique des **résultats** de la recherche et pourraient, à l'occasion, être modifiées si un écart sensible était constaté entre ces **normes** et les observations du bac d'évaporation servant de **référence**.

L'adoption de ces normes conduit à l'estimation suivante des besoins annuels :

4 mm x 274 jours = 1.096 mm 5 mm x 91 jours = 455 mm 1.551 mm La pluviométrie moyenne dans la région s'élève à 612 mm. Si on admet qu'une partie de cette eau est perdue par ruissellement ou percolation en profondeur, on peut estimar qu'au moins 50 p.100 de l'eau apportée par les pluies est utilisée par les plantes.

Les besoins annuels, en eau d'irrigation, ramenés à l'hectare seraient alors de :

15.510 m3 - 3.000 = 12.510 m3, arrondi à 12.500 m3/ha/an.

Il est intéressant de rapprocher ce chiffre, découlant des observations faites à Sangalkam, des estimations établies à partir d'observations réalisées dans d'autres conditions, et qui avaient dû être retenues faute de renseignements plus précis. L'évapotranspiration avait été estimée à 7 mm par jour et les besoins annuels en eau d'irrigation s'élevaient à environ 22.000 m3/ha/an.

Outre l'intérêt scientifique, l'économie réalisée grâce à l'installation d'une Station agrométéorologique apparaît ainsi clairement.

3) Caractéristiques des sols

L'étude des caractéristiques physiques des sols? effectuée par l'ORSTOM et liée à la rétention en eau des différentes parcelles irriguées, nous conduit à retenir les capacités suivantes, exprimées en mm :

- a) pour les sols diors et pour une profondeur utile de 60 cm = 15 mm,
- b) pour les sols moyens de milieu de pente et pour me profondeur de 60 cm, 36,3mm
- c) pour les sols de bas de pente et pour 50 cm de profondeur : 55 mm,
- d) pour les sols de bas-fonds : 79,2 mm.

4) Doses d'arrosages

Les doses d'arrosages se déduisent de ces résultats:

- a) dans les sols diors, la dose ne doit pas dépasser 15 mm, en principe pour éviter les pertes par infiltration en profondeur dont la plante ne profite pas ;
- b) dans les sols de milieu de pente, pour les mêmes raisons, la dose ne peut dépasser 36 mm;

c) dans les sols de types c et d, si on admet qu'après la saison des pluies, la réserve en eau du sol est reconstituée, on apportera une dose correspondante à l'évapotranspiration pour une période de référence : soit, en principe, la semaine. Les doses hebdomadaires seront donc :

- entre le ler juillet et le 31 mars : 28 mm,

• entra le ler avril et le 30 juin : 35 mm.

5) Rythme des arrosages

ce rythme est déterminé à partir des valeurs de l'évapotranspiration et des doses d'arrosages.

Périodes	Sols a	Sols b	Sols c	Sols d
1/7 au 31/3	$\frac{15}{4} = 4 \text{ j}$	28 = 1/5 4	28 - 7 j	$\frac{28}{4} = 7j$
1/4 au 30/6	 = 3 j 5	=====================================	$\frac{35}{5} = 7 \text{ j}$	35 = 7j 5

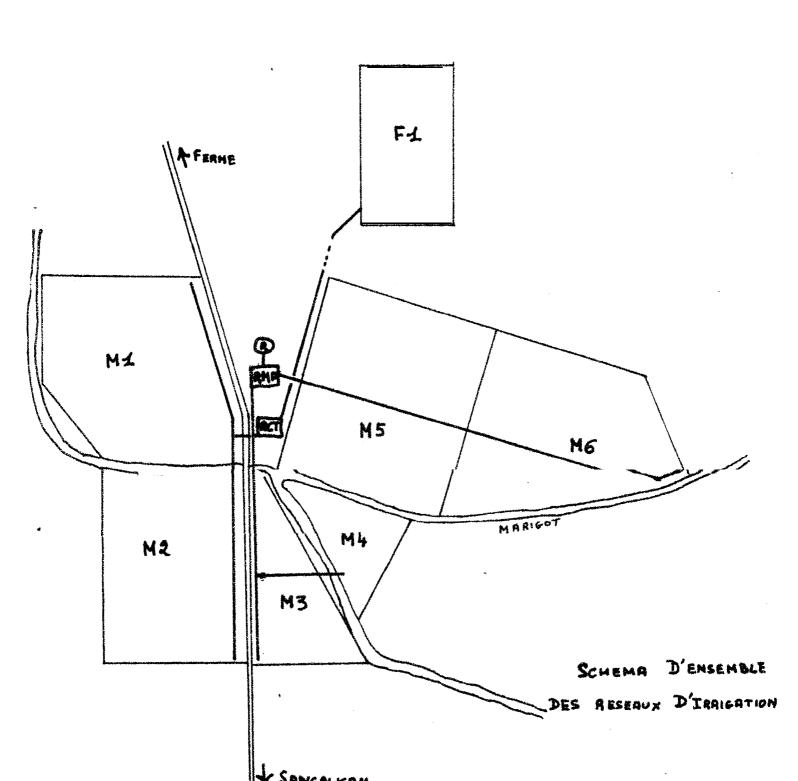
On constate une différence de rythme chez les sols de type "a" pour les deux périodes définies précédemment.

Afin de faciliter la conduite des arrosages et supprimer les décalages qui se produiraient par l'adoption de ces cadences particulières, on retiendra pour les sols de type "a" un rythme bi-hebdomadaire avec un intervalle de 3,5 jours entre deux arrosages.

Ces dispositions sont compatibles avec les normes retenues pour la période chaude et humide. Par contre, pour la période sèche, les doses apportées devront être légèrement **supérieures** aux limites fixées en fonction de la capacité des sols.

Les rythmes et les doses actuellement appliqués sont résumés dans le tableau ci-dessous :

Périodes	Modalités d'arrosages	sols a	Sols b	Sols c	Sols d
1 - 7 31.3	Rythme : j Doses : mm	3 , 5	7 28	7 28	7 28
1 - 4 au 30.6.	Rythme : j doses : mm	3,5 17,5	7 3 5	7 3 5	7 35


6) Pluviométrie horaire

Compte tenu des caractéristiques physiques des sols, on admet que la pluviométrie horaire ne doit pas dépasser 6 mm.

II - RESEAUX D'IRRIGATION

Les parcelles exploitées à l'irrigation couvrent 18 ha et sont desservies par deux réseaux :

- l'un, fixe à couverture totale (tous les arroseurs étant en place), intéresse les parcelles M1 - M2 et F1, soit environ 8,5 ha
- l'autre, mobile, avec déplacement des arroseurs, couvre les parcelles M3, M4, M5, M6, soit environ 9,5 ha.

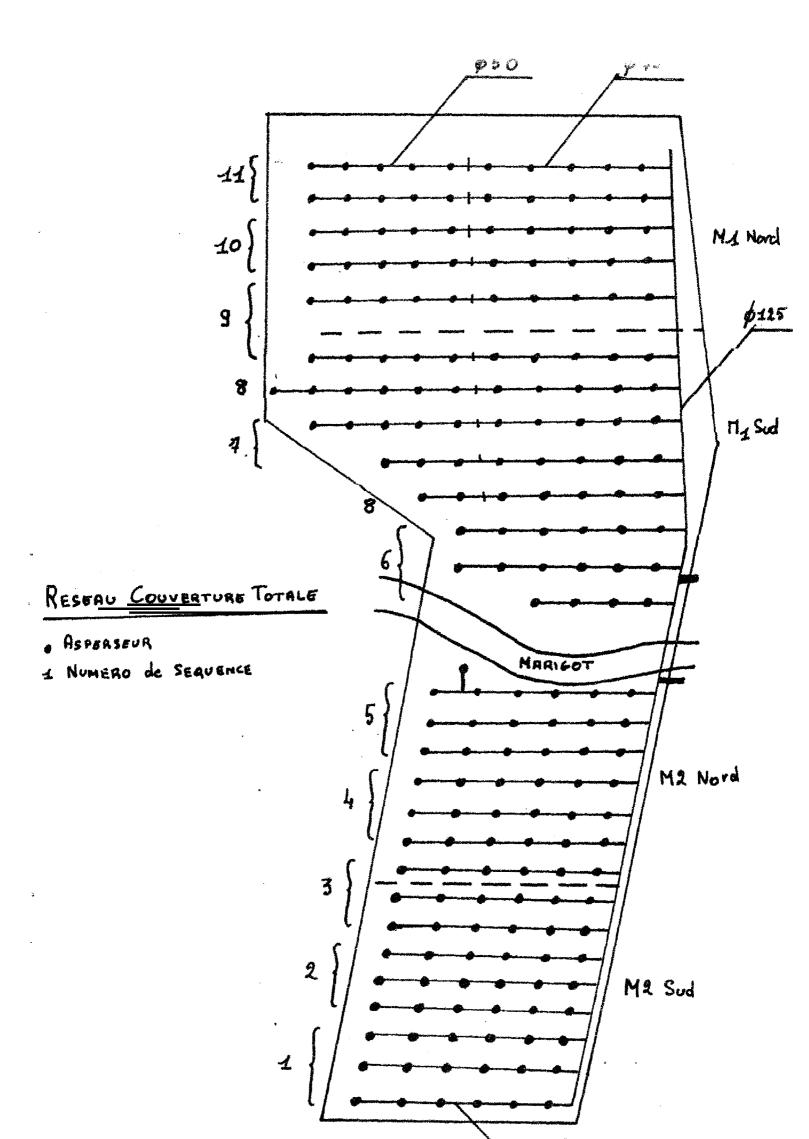
1) RESEAU FIXE A COUVERTURE TOTALE (C.T.)

a) Déscription du réseau

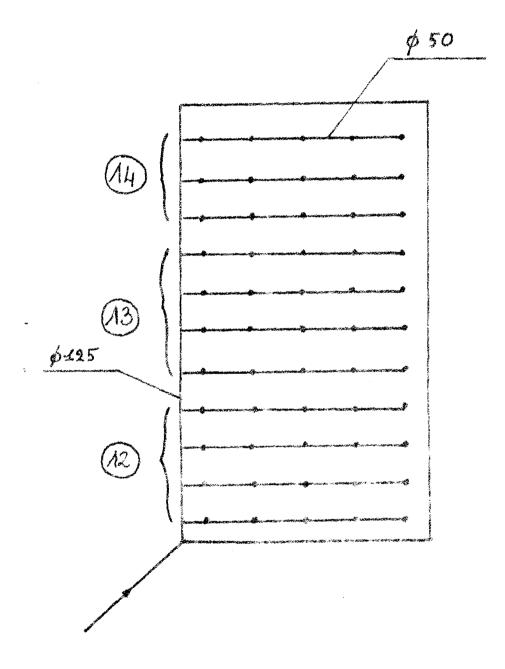
Ce réseau alimenté à partir des forages 2 et 5 est mis sous pression par une station de reprise (SCT) distribuant l'eau dans un ensemble de tuyauterie PVC enterrées à 70 cm.

Les arroseurs utilisés sont des 70 MW TNT (F1, M2, M1S) et 70 CW TNT (M1N) à deux buses 5,0 x 7/64 sur un maillage 18 x 18 m fonctionnant à me pression de 3,5 kg/cm2 et débitant 2,45 m3/heure pour une pluviométrie moyenne de 7,56 mm/heure. Cette pluviométrie un peu élevée est imposée par la présence de la buse arrière rendue obligatoire du fait du régime des vents provoquant une trop forte dispersion avec la buse unique.

Le réseau comporte 14 séquences d'arrosage soit =


- en M1 : 6 séquences dont 1 de 16 arroseurs, 2 de 18 arroseurs et 3 de 20 arroseurs,
- en M2 : 5 séquences de 18 arroseurs
- en F1 : 3 séquences dont 1 de 15 arroseurs et 2 de 20 arroseurs

Parcelle M2


No séquena	Nombre de rampes	Nombre arroseur
1	3	1%
2	3	18
3	3	18
14	3	18
5	3	18

Parcelle M1

No Séquence	Nombre de rampes	Nombre arroseurs
6	3	16
7	2	18
8	2	1 8
3	2	20
10	2	20
11	2	20

Legende

@ nument de la sequence

and BAMA

. . OFFISELLY

Reseau Conventure totale R.C.T.
Parcelle Fa

Nⁿ séquence	Nombre de rampes	Nombre arroseurs
12	4	2 0
13	4	2 0
14	3	15

Parcelle F1

b) Sols

- les sols de la parcelle Ml (3,5 ha) sont des types c et d
- les sols de la parcelle M2 (3 ha) sont des types b et c
 - les sols de la parcelle F1 (2 ha) sont du type a.

c) Temps d'arrosage

Périodes	Sols a	Sols b	sols c	Sols d
01/7 au 31/3	14 7,56 = 1h50	$\frac{28}{7,56} = 3h40$	28 7 356 = 3h40	$\frac{28}{7,56} = 3h40$
01/4 au 30/6	17,5 7,56 = 2h20	35 7,56 ⁼ 4h40	35 7,56 = 4h40	35 7,56 = 4h40

d) Organigramme des arrosages

Les 3 séquences de F1 (12, 13, 14) doivent être arrosées 2 fois par semaine; pour des raisons d'organisation hebdomadaire des arrosages et de nature du sol, il en sera de même pour les séquences 1, 2, 3 et 5 de la parcelle M2 (sud).

L'organigramme des arrosages sera le suivant :

	'Lundi	Mardi	Mercredi	Jeudi	Vendredi	Samedi	Dimanche
Matin soir Nuit	1 4 5 6	1 12 7	2 13 a	3 1 4 4	5 1 9)	1 2 2 1 0	13 3 11

e) <u>Estimation des pertes de charges</u> Répartition des asperseurs sur les rampes

Séquences	1-2-3	6	7	5 - 8	8	7-9-10- 11	12-13-14
Nombre d'asper- seurs par ram-	6	4	8	7	11	10	5
pe_							l J

1) Estimation des pertes de charges par rampe selon le nombre d'asperseurs

Mombre d'asperseurs par rampe	Nº des asper- seurs	Longueur m	Ø mm	r Q m3/h	J m∕m	Pertes m	Pertes cumulée m
4	1 2 3 4	9 18 18 18	50 50 50 50	9,8 7,35 4,90 2,45	0,09 0,05 0,03 0,008	0,81 0,9 0,54 0,14	0,81 1,71 2,25 2,39
5	1 2 3 4 5	9 18 18 18 18	5 0 5 0 5 0 5 0 5 0	12,25 9,80 7,35 4,90 2,45	0,13 0,09 0,05 0,03 0,008	1,17 1,62 0,9 0,54 0,14	1,17 2,79 3,69 4,23 4,37
6	1 2 3 4 5	9 18 18 18 18	5 0 5 0 5 0 5 0 5 0 5 0	14,7 12,25 9,80 7,35 4,90 2,45	0,18 0,13 0,09 0,05 0,03 0,008	1,62 2,34 1,62 0,9 0,54 0,14	1,62 3,96 5,58 6,48 7,02 7,16
7	1 2 3 4 5 6 7	9 18 18 18 18 18	75 75 75 75 75 50 50	17,15 14,70 12,25 9,80 7,35 4,90 2,45	O,O3 0,025 0,018 0,013 0,008 O,O3 0,008	0,27 0,45 0,32 0,23 0,15 0,54 0,14	0,27 0,72 1,04 1,27 1,42 1,96 2,10
8	1 2 3 4 5 6 7 8	. 9 18 18 18 18 18 18	75 75 75 75 75 50 50	19,6 17,15 14,70 12,25 9,80 7,35 4,90 2,45	0,04 0,03 0,025 0,018 0,013 0,05 0,03 0,008	0,36 0,54 0,45 0,32 0,23 0,9 0,54 0,14	0,36 0,90 1,35 1,67 1,91 2,81 3,35 3,49

10	1 2 3 4 5 7 8 9 10	9 18 18 13 18 18 18 18 18	75 75 75 75 76 50 50 50	24,5 22,05 19,60 17,15 14,70 12,25 9,80 7,35 4,90 2,45	0,06 0,05 0,03 0,03 0,025 0,13 0,09 0,05 0,08	0,54 0,9 0,72 0,54 0,45 2,62 0,54 0,54	0,54 2,16 2,15 3,19 7,11 8,55 6,59
11	1 2 3 4 5 6 7 8 9 10 11	9 18 18 18 18 18 18 18 18	75 75 75 75 75 50 50 50 50	26,95 24,5 22,05 19,60 17,15 14,70 12,25 9,80 7,35 4,90 2,45	0,07 0,06 0,05 0,04 0,03 0,18 0,13 0,09 0,05 0,03 0,008	0,63 1,08 0,9 0,72 0,54 3,24 2,34 1,62 0,9 0,54 0,14	0,63 1,71 2,61 3,33 3,87 7,11 9,45 11,07 11,97 12,51 12,65

2) Pertes de charges par séquences

% de la rampe	Tronçon	L m	Ø mm	Q m3/h	J m/m	Pertes m	Pertes cumulées n
Séquence 1							
1	SCT-1 rampe	300	125	44,1	0,012	3,6 7,16	3,6 10,76
2	1-2 rampe	18	12 5	29,4	0,005	0,09 7,16	3,69 10,85
3	2-3 rampe	18	12.5	14,7	0,0015	0,03 7,16	3,72 10,88
Séquence 2							
1	sm-1 rampe	246	125	44,1	0,012	2,95 7,16	2 0 2,95 10,11
2	1-2 rampe	18	3.25	29,4	0,005	0,09 7,16	3,04 10,20
3	2-3 rampe	18	125	14,7	0,0015	0,03 7,16	3,07 10,25
Séquence 3 1	SCT-1 rampe	192	125	44,1	0,012	2,30 7,16	2,30 9,46

	-	1	_	1	1		_
2	1-2 rampe	18	125	29,4	0,005	0,09 7,16	2,39 9,55
3	2-3 rampe	18	125	14,7	0,0015	0,03 7,16	2,42 9,58
Séquence 4							
1	SCT-1 rampe	138	125	44,1	0,012	1,66 7,16	1,66 8,82
2	1-2 rampe	18	125	29,4	0,005	0,09 7,16	1,75 8,91
3	2-3 rampe	18	125	14,7	0,0015	0,03 7,16	1,7 8 8,94
Séquence 5							
1	SCT-1 rampe	8 4	125	46,55	0,013	1,09 7,20	1,09 8,29
2	1-2 rampe	18	125	29,4	0,005	0,09 7,16	1,18 8,34
3	2-3 rampe	18	125	14,7	0,0015	0,03 7,16	1,21 8,37
Séquence 6							
1	SCT-1 rampe	3 8	125	9,8	0,0007	0,03 2,39	0,03
2	scr-2 rampe	2 0	125	29,4	0,005	0,09 7,16	0,12 7,28
3	2-3 rampe	13	125	14,7	0,0015	0,03 7,16	0,15 7, 31
Séquence 7							
1	SCT-1 rampe	7 4	125	44,1	0,012	0,89 3,49	0,89 4,38
2	1-2 rampe	18	125	24,5	0,004	0,07 8,69	0,96 9,65
Séquence 8	_						
1	SCT-1 rampe	4 6	125	44,1	0,012	0,55 2,10	0,55 2,65
2	1-2 rampe	5 4	125	26,95	0,005	0,27 12,65	0,82 13,47
<u> </u>	 	<u>I</u>	<u> </u>	 	<u></u>	<u> </u>	<u> </u>

1						1	
S éauence 9	SCT-1 rampe	128	125	4 9	0,013	1,66 8,69	1,66 10,35
2	1-2	2 0	125	24,5	0,004	0,08 8,69	1,74 10,43
Séquence 10 1	SCT-1 rampe	166	125	4 9	0,013	2,16 8,69	2,16 .0,85
2	1-2 rampe	18	125	24,5	0,004	0,07 8,69	2,23 10,92
Séquence 11	SCT-1 rampe	202	125	4 9	0,013	2,63 8,69	2,63 11,32
2	1-2 rampe	18	125	24,5	0,004	0,07 8, 69	2,70 11,39
Séquence 12	SCT-1 rampe	450	125	4 9	0,013	5,85 4,37	5,85 10,22
2	1-2 rampe	18	125	36,75	0,007	0,13 4,37	5,98 10,35
3	2~3 rampe	18	125	24,50	0,004	0,07 4,37	6,05 10,42
4	3-4 rampe	18	1 2 5	12,2 5	0,001	0,018 4,37	6,07 10,44
Séquence 1	SCT-1 rampe	522	125	ħĝ	0,013	6,79 4,37	6,79 11,16
2	1-2 rampe	18	125	36,75	0,007	0,13 4,37	6,92 11,29
3	2-3 rampe	18	125	24,50	C 3 0 0 H	0,07 4,37	6,99 11,36
ц	3-4 rampe	18	125	12,25	0,001	0,018 4,37	7,01 11,38
Séquence 1	14 SCT-1 rampe	576	125	36,75	0,007	4,03 4,37	4,03 3,40
2	1-2 rampe	18	125	24,50	0,004	0,07 4,37	4,10 8,47
3	2-3 rampe	18	125	12,25	0,001	0,018 4,37	4,12 8,49

f) Cohérence du secteur

Les conditions de fonctionnement de la station de reprise s'établissent ainsi :

		Séquences												
	1	2	3	4	5	6	7	8	9	10	_11	12	13	14
Débit m3/h	44,1	44,1	44,1	44,1	46,5	39,2	44,1	44,1	4 9	4 9	4 9	49	4 9	36,8
нмт	45,9	45,2	44,6	l43 , 9	43,4	42,3	44,6	48,5	45,4	45,9	46,4	46,3	46,4	43,6

Les rampes à 6-10 et 11 arroseurs présentent des différences de pertes de charges entre asperseurs extrêmes supérieures à 10 % ce qui conduit à une hétérogéneité des distributions d'eau sur les parcelles.

Les différences de pertes de charges entre séquences sont acceptables, ce qui permet un fonctionnement régulier de la station de pompage, pour laquel le un ballon surpresseur avec un contacteur à pression assure la protection du réseau et de la pompe.

g) Fonctionnement des forages

Débit romimal des forages

F2 = 25 m3/h

F5 = 30 m3/h

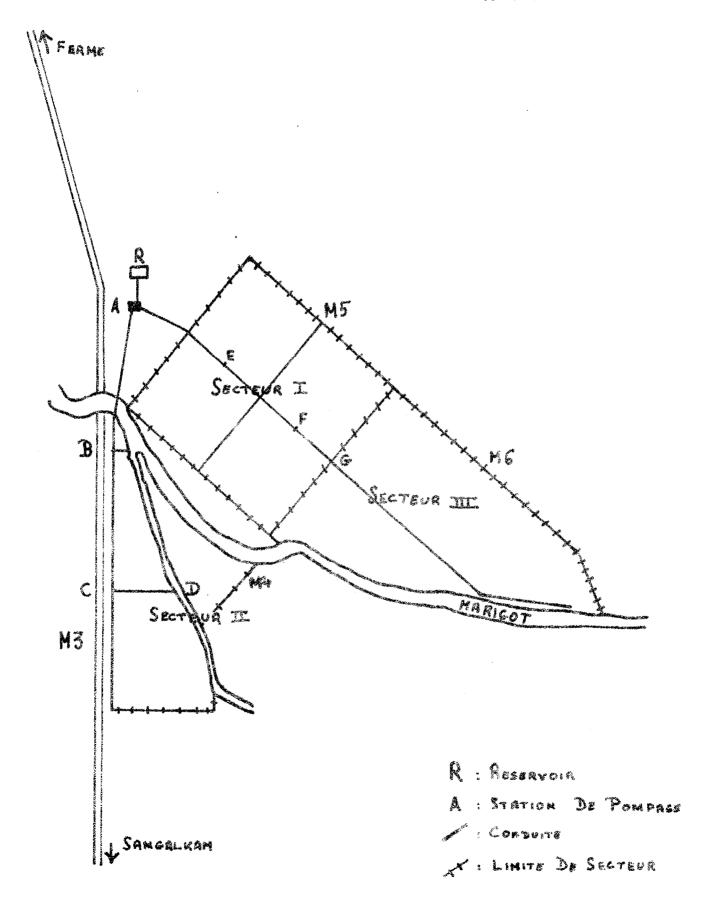
Total= 55 m3/h

Périodes	Séquences nº	Débit/ séquence en m3/h	Durée des arrosages	Quantités distribuées en m3	Durée de fonctionne- ment des forages par séquence
01/7 au 31.3	1-2-3-5	44,1	1h50	81	1h30
	12-13	49	1h50	90	1h40
	14	36,75	1h50	67	1h12
	6	39,2	3h40	143	2h40
	4- 7 -8-	44,1	3h40	161	2h40
	9-10-11	49	3h40	179	3h15
01/4 au 30.6	1-2-3-5	44. , 1	2h20	103	1h50
	12-13	49	21120	114	2h05
	14	36,75	2h20	86	1h35
	6	39,2	4h40	1.83	3h20
	4-7-8	44,1	4h40	205	3h45
	9-10-11	49	4h40	228	4h10

2°) RESEAU MOBILE PERMANENT (M.P.)

Ce réseau est alimenté par les forages 3 et 4 qui débitent dans un réservoir au sol de 200 m3. L'eau est reprise par un groupe motopompe Guinard (station MP) et distribuée avec des modalités différentes selon les types de matériels utilisés dans les trois secteurs qui composent ce réseau.

Caractéristiques du groupe :


vitesse du moteur : 2100 **t/m**n

débit : 45 m3 - H M T = 60 m

moteur Diesel Hatz type 108 - 29 CV.

. . / . . .

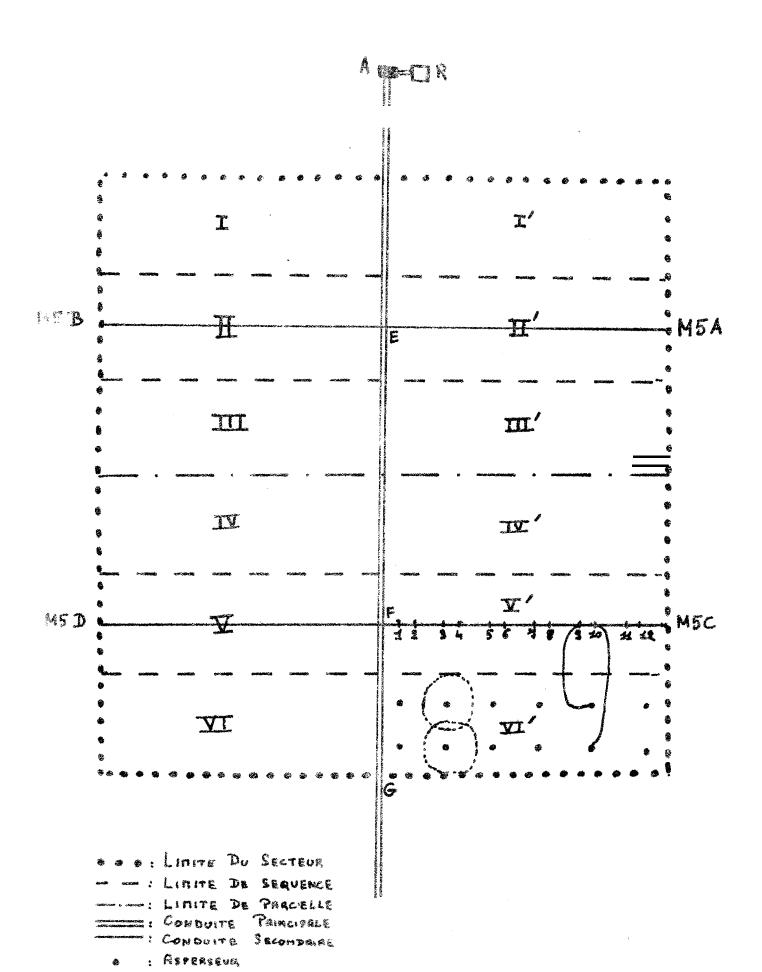
RESEAU MOBILE PERMANENT

A) SECTEUR I

a) Description

Il est desservi par une conduite PVC enterrée de 0 125 mm distribuant l'eau dans des tuyauteries ARC mobiles sur lesquelles les asperseurs sont raccordés par des conduites souples irriflex de 0 25 mm par l'intermédiaire de branchements MD.

Les arroseurs sont des 30 TNT à buses de 3/16 x 3/32, disposés en maillage 18 x 18 m, fonctionnant à la pression de 2,5 kg/cm2 et débitant 1,71 m3/h avec une pluviométrie horaire de 5,28 mm.


Le secteur qui correspond à la parcelle M5 (4 ha) est partagé en deux par la conduite PVC. Il est subdivisé en 6 séquences d'arrosages identiques réparties symétriquement par rapport à la conduite principale (1 à 6 et 1 à 6'). Chaque séquence comprend 24 arroseurs.

b) Sols

Les sols sont très hétérogènes et comportent les quatre types : a (M5A) b, c et d.

c) Temps d'arrosage

Périodes	Sols a	Sols b, c ou d			
01/7 au 31/3	14 5,28 - 2 h 40	$\frac{28}{5,28} = 5 \text{ h } 20$			
 01/4 au 30/6	$\frac{17.5}{5.28} = 3 \text{ h } 20$	$\frac{35}{5,28}$ = 6 h 40			

d) Organisation des arrosages

Les séquences 1', 2', 3' doivent être arrosées deux fois par semaine.

Pour des raisons d'organisation, leurs symétriques 1, 2, 3, le sont également.

e) Estimation des pertes de charges

- Sur la conduite principale, les pertes de charges sont les suivantes :

Sur les rampes., les pertes de charges sont figurées dans le tableau ci-dessous :

Asperseurs	Lm (2 m3/h	Ø	J m/m	Pertes e	Total
1 2 3 4 5 6 7 8 9 10 11 12	6 12 6 6 12 6 12 6 12	20,5 18,8 17,1 15,4 13,7 11,9 10,5 6,8 5,1 1,7	3" 3" 3" 2" 2" 2" 2" 2" 2"	0,026 0,021 3,018 0,016 0,013 0,010 0,049 0,033 0,023 0,013 0,008 0,002	0,16 0,13 0,22 0,10 0,08 0,12 0,29 0,20 0,28 0,08 0,05 0,02	0,16 0,29 0,51 0,69 0,81 1,30 1,58 1,66 1,71

- A **l'asperseur**, quelle que soit sa position, **g'ajoute** une perte de charge identique relative au tuyau **irriflex** et **estimée** à 2,50 m
- pour le secteur, les pertes de charges totales diffèrent selon la position des rampes de distribution en E ou en F.

Pour les rampes en E, les H M T sont :

Pour les rampes en F, les HMT sont augmentées des pertes de charges entre E et F soit 0,22 $\rm m$

H M T = 30 m

La cohérence du système est bonne puisque la différence entre arro-Seurs extrêmes est de l'ordre de 5 % et qu'elle est insignifiante entre les rampes.

B) SECTEUR II

a) Description

Il est desservi par une conduite PVC enterrée, de Ø 125 mm distribuant l'eau dans des tuyauttries Bauer mobiles équipées de prises LORBA.

Les arroseurs sont des SR 15 à buse de \emptyset 6 mm installés selon un maillage 18 x 24 m, fonctionnant à la pression de 2,5 kg et débitant 2,20 m3/heure avec une pluviométrie horaire de 5,09 mm.

Ce secteur correspond aux parcelles

M3 = 1,5 ha

M4 = 0,9 ha

b) Sols

Les sols de ce secteur sont de type c ou d.

c) Temps d'arrosage

Du 1/7 au 31/3 =
$$\frac{28}{5,09}$$
 = 5 h 30

du
$$1/4$$
 au $30/6$ = $\frac{35}{5,09}$ = 6 h **5**0

d) Organisation des arrosages

Le secteur est divisé en 3 séquences d'arrosage selon le tableau ci-dessous :

Séquences No	Rampes N ^e	Nombre d'as- perseurs
7	2-3-4-5-6-7-8	20
8	1-9-10-11	19
9	12-13-14-15-	20

Limites de secteur While principale - haufie d'arrosage up 17 Aspersours PVC L. 100 m \$ 125 FFVC L- 180 m \$ 125 PVC L- 108 m \$ 125 PVC L= 70 m \$ 125 Galva L= 48 m \$ 3" Galva L= 72 m \$ 3" 8 - C 6-114 C-D D_ 12 D-17 B 17 16 5 8 9 10

e) <u>Estimation des pertes de charges</u> Répartition des asperseurs sur les rampes

N⁰ des rampes	1	2-3-4- 5-6	7 – 8	g-10-11	12-13 14-15	16	17
Nombre d'asper- seurs par rampe	1	2	5	б	4	3	2

1) Estimation des pertes de charges par rampe selon le **nombre d'asperseurs** SR 15

Nombre 1'asper- 3eurs par rampe	No des asperseurs	Longueur m	Ø	Q m3/h	J m/m	Pertes m	Pertes cumulées m
1	1	9	2"	2,2	0,005	0,045	0,045
2	1 2	9 1 8	2 " 2 •••	4,4	0,012	0,11 0,09	0,11 0,20
3	1 2 3	9 1 8 1 8	2 m 2 ^{t1} 2m	6,6 4,4 2,2	O,O2 0,013 0,005	0,18 0,23 0,09	0,18 0,41 0,50
4	1 2 3 4	9 18 18	2 " 2 " 2 "	8,8 6,6 4,4 2,2	0,036 O,O2 0,313 0,005	0,32 0,36 0,23 0,09	0,32 0,68 0,91 1,00
5	1 2 3 4 5	9 18 18 18	3 " 3" 2 " 2"	11 8,8 6,6 4,4 2,2	0,008 0,006 0,02 0,012 0,005	0,07 0,11 0,36 0,22 0,09	0,07 0,18 0,54 0,76 0,85
6	1 2 3 4 5 6	9 18 18 3.8 18	3" 3" 3" 2"	13 2 18,8 6,6 4,4 2,2	0,009 0,006 0,005 0,012 0,005	0,11 0,11 0,09 0,22 0,09	0,11 0,38 0,47 0,69 0,78

2) <u>Par séquence</u>

N° de la rampe	Tronçon	L: m	Ø mm	Q m3/h	J m∕m	Pertes m	Pertes cumulées
a) Séquen	і фе 7						
2	A-2 rampe	180	125	ffff	0,007	1,26 0,20	1,26 1,46
3	2-3 ranpe	24	125	39,6	0,007	0,17 0,20	1,43 1,63
4	3-4 rampe	24	125	35,2	0,004	0,096 0,20	- 1,53 1,73
5	4-5 rampe	24	125	30,8	0,0035	0,084 0,20	1,61 1,81
6	5-6 rampe	24	125	26,4	6 3 0°0	0,072 0,20	1,68 1,88
7	6~7 rampe	24	125	22	0,002	0,048 0,85	1,73 2,58
8	7-8 rampe	24	125	11	0,0005	0,012 0,85	1,74 2,59
b) Séquen	ce 8						
1	A-1 Rampe	156	125	41,8	0,007	1,09 0,045	1,09 1,14
9	1-9 ranpe	192	125	39,6	0,007	1,34 0,78	2,43 3,21
10	9-10 rampe	24	125	26,4	0,003	0,07 0,78	2,50 3,28
11	10-11 rampe	24	125	13,2	0,0005	0,012 0,78	2,51 3,29
c) <u>Séquen</u>	<u>ce 9</u>						
14	A-D rampe	350	125	1114	O ₃ 0 0 7	2,45 1	2,45 3,45
13	D-13 rampe	24	311	17,6	0,02	0,48 1	2,93 3,93
12	13-12 rampe	24	31"	8,8	0,005	0,12 1	3,05 4,05
15	D-15 rampe	24	3"	17,6	0,02	0,48 1	2,93 3,93
16	15-16 rampe	24	311	8,8	0,005	0,12 0,50	3,05 3,55
17	16-17 rampe	24	3*1	2,2	೦್ಯ೦೦2	0,05 0,045	3,10 3,14

.../...

f) Cohérence du secteur

Les conditions de fonctionnement de la pompe s'établissent ainsi :

	Séquences						
	7	a	9				
Débit m3/h	4 4	41,8	44				
нмт	27,5	28,3	29				

Les différences de pertes de charges entre les rampes, pour chaque séquence, sont généralement inférieures ou égales à 10 % de la pression aux asperseurs, ce qui est donc acceptable.

Les H.M.T. des différentes séquences sont très comparables et on peut considérer que le secteur est cohérent. La pression à la sortie de la pompe devra être de 2,9 kg/cm2.

SECTEUR III

a) Description

Ce secteur qui correspond à la parcelle M6 (3,5 ha) prolonge le secteur I. Il est alimenté par la conduite PVC de Ø 125 mm jusqu'en G puis par des tuyauteries A B C de Ø 4" et en fin de réseau par des conduites galvanisées de Ø 3".

La conduite principale dessert des rampes Bauer équipées de prises LORBA.

Les arroseurs sont des 30 TNT à deux buses de $3/16 \times 3/32$ fonctionnant à 2,5 kg/m2 de pression et débitant 1,71 m3/h avec une pluviométrie horaire de 5,28 mm pour un maillage 18 x 18 m.

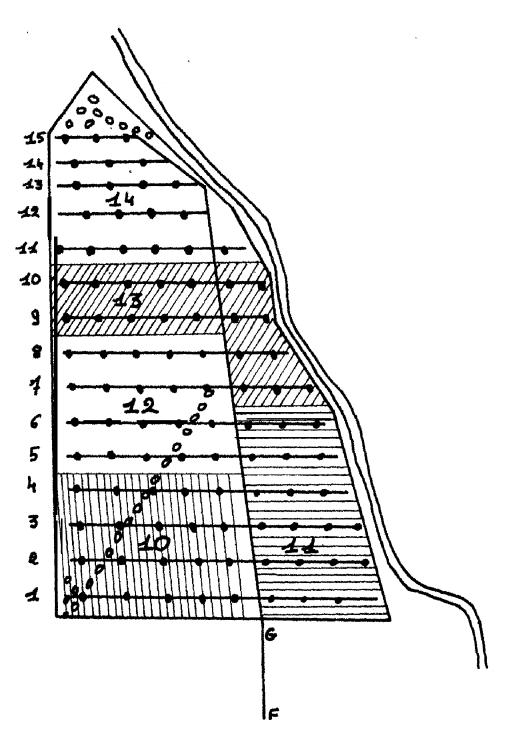
Le secteur est divisé en 5 séquences d'arrosage (10 à 14)

- .4 de 20 arroseurs (10-11-12-14)
- .1 de 19 arroseurs (13).

b) Sols

Le secteur comporte des sols de type a < séquence 12) b et d.

c) Temps d'arrosage


Ce sont les mêmes que pour le secteur I, soit

Périodes	Sols a	Sols b et d
01/7 au 31/3	14 = 2h40	28 5,28 = 5 h 2 0
01/4 au 30/6	$\frac{17,5}{5,28}$ = 3h20	

SECTEUR III

PARCELLE MG

SEQUENCES D'ARROSAGE

d) Organisation des arrosages

La séquence 12 doit être arrosée 2 fois par semaine. Pour des raisons d'organisation du travail, la **s**équence 13 l'est également.

e) Estimation des pertes de charges

1) Par rampe selon le nombre des asperseurs 30 TNT

Nbre	Иo	L	Ø	Q	J	Pertes	Σ
1	1	9	2 78	1,7	0,003	0,027	0,027
2	1 2	9 1 8	2" 2"	3,4 1,7	0,007 0,003	0,063 0,054	0,063 0,117
3	1 2 3	9 18 18	2 ¹³ 2 ¹¹ 2 ¹¹	5,1 3,4 1,7	0,017 0,007 0,003	0,153 0,126 0,054	0,153 0,279 0,333
4	1 2 3 4	9 18 18 _18 _	2" 2" 2" 2" 2"	6,8 5,1 3,4 1,7	0,021 0,017 0,007 0,003	0,189 0,306 0,126 0,054	0,189 0,495 0,521 0,675
5	1 2 3 4 5	18 18 18 18 _18 _	3" 3" 2" 2" 2"	8,5 6,8 5,4 1,7	0,006 0,004 0,017 0,007 0,003	0,054 0,072 0,306 0,126 0,054	0,054 0,126 0,432 0,558 0,612
6	123456	9 18 18 18 18 18	3" 3" 3" 2" 2"	10,3 8,5 6,8 5,1 3,4 1,7	0,008 0,006 0,004 0,004 0,007 0,003	0,072 0,108 0,072 0,036 0,125 0,054	0,072 0,180 0,252 0,288 0,414 0,468

. . / . . .

2) Pertes de charges par séquence

I								
a	équence		L	Q	Ø	J	Pertes	Σ
	1	AG rampe	252 m -	34m3/h	125 mm	0,005	1,26 0,61	1,26 1,87
	2	G-2 rampe	18 m	27,4	4 "	0,011	0,20 0,61	1,46 2,0 7
	3	2-3 rampe	18 m	20,5	4" -	0,007	0,14 0,61	1,60 2,21
	4	3-4 rampe	18 m	6 , 8	4"	. 0,0020 0,00		1,65 2,26
))Séquenc	e 11						
	1	AG rampe	252	34 	125	0,005	1,26 0,33	1,26 1,59
	2	G2 rampe	18	29,1	4"	0,013	0,23 0,67	1,49 2,16
	3	2-3 rampe	18	22,2	_ Ħ38	0,007	0,13 0,67	1,62 2,29
	4	4 3-4 rampe		15,4	ц"	0,004	0,07 0,33	1,69 2,02
	5 4-5 rampe		18	10,3	4 "	0,003	0,05 0,33	1,74 2,07
	6	5-6 rampe	18	5,1	Нıı	0,0025	0,04 0,33	1,78 2,40

				territaria de la compania de la comp		
) Séquence 12 AG	L 252	Q 34	ø 125	J 0,005	pertes 1,26	Σ 1,26
5 G- 5 rampe	72 	34 ***	<u></u>	0,017	1,22 0,61	2,48 3,09
6 5-6 rampe	18	27,4	rt is	0,011	0,20 0,61	2,68 3, 29
7 6-7 ranpe	18	20,5		0,007	0,13 0,61	2,81 3,42
8 7-8 rampe	18	6,8	 T 13	0,0025	0,04 0,61	2,85 3,46
l) séquence 13						
l) <u>séquence 13</u> AG	252	30,8	125	0,304	1,01	1,01
7 G -7 rampe	108	30,8	4 "	0,014	1,51 0,33	2,52 2,85
8 7-P rampe	18	25,6	14,4	0,010	0,18 0,12	2,70 2,82
9 8-9 rampe	18	22,2	<u>+</u>	0,008	0,14 0,61	2,84 3,41
10 9-10 rampe	18 -	10,2	14,11	0,003	0,05 0,61	2,89 3,50
E) Séquence 14					ļ	- 1
AG 11 G-10 10-11 rampe	252· 162 18	3 ¹ 4 3 4 3 4	125 4;°° 3°°°	0,005 0,017 0,973	1,26 2,75 1,35 0,61	1,26 4,01 5,36 5,97
12 11-12 rampe	18	23,7	3,1	0,033	0,59 0,67	5,95 6,62
13 12-13 rampe	18 -	17	3 ' 1	0,018	0,32	6,27 6,94
14 13-14 rampe	18	10,3	311	0,007	0,13 0,33	6,40 6,73
15 14-15 rampe	18	5,1	3"	0,002	0,04 0,33	6,44 6,77

f) Cohérence du secteur

	Séquences								
1	10	11	12	13	14				
Débit m3/h HMT	34 27, 3	34 27,4	34 28,5	30,8 28,5	3 4 3 2				

Les différences de pertes de charges entre les rampes, pour chaque séquence, sont inférieures à 10 % de la pression aux asperseurs.

Seule la séquence 14 **présente** une H M T **supérieure aux** autres séquences, qui peut être acceptée, **mais** qu'il conviendrait de réduire par remplacement de la conduite galvanisée **par** une **tuyauterie** de 0 4".

Organigramme des arrosages du réseau M.P.

	Lundi	Mardi	Mer- credi	Jeudi	Vendredi	Samedi	Dimanche	
Matin soir Nuit	1 - 1' 12 7	2-2'	3 - 3'1 5 - 5' 10	5 - 5' 1 - 1' 9	12 2 - 2° 6 - 6°	13 3 + 3' 11	4-4' 4 - 4' 14	

Fonctionnement des forages

Débit nomimal des forages

- F3 = 13 m3/h - F4 = 25 m3/h Total = 28 m3/h

P é riodes	Séquences n ^o s	Débit/ séquence en m3/h	Durée des arrosages	Quantités distribuée en m3	Durée de fonc- tionnement des forages/séquenc
1/7 au 31/3	1 à 5 6 7 = 9 8 10-11-14 12	41,04 41,04 44 84,2 34,2	2 h 40 5 h 20 5 h 30	1 0 9 2 1 1 2 4 2 2 1 1 9 1	3 h 55 7 h 50 8 h 40 8 h 10 6 h 30 3 h 15
	13	32,5	2 h 40	8 6	3 h 05
1/4 au 30/6	7-9	41,04 41,04 44	3 h 20 6 h 40 6 h 50	137 273 301	4 h 55 9 h 45 10 h 45
	10-L14	41,8 34,2	f f bh 5040	228 286	10 h 15 8 h 10
	12 13	34,2 32,5	3 h 20 3 h 20	114 108	4 h 05 3 h 50

. . ./. . .

RECAPITULATION GENERALE

Organigramme des arrosages pour les deux réseaux

Jours	Réseaux	Séquences d'arrosages				
Oours	Neseaux	Matin	soir	Nuit		
Lundi	Couverture totale Mobile permanent	14' l-l'	5 12	6 7		
Mardi	Couverture totale mobile permanent	1 2-2'	12 13	7 8		
Mercredi	couverture totale mobile permanent	2 3 - 3 '	13 5 - 5'	8 10		
Jeudi	couverture totale mobile permanent	3 5-5 '	14 1-1°	4 9		
Vendredi	couverture totale mobile permanent	5 12	1 2 2 ⁹	9 6-6 †		
Samedi	COUVERTURE totale mobile permanent	1 2 1 3	2 - 3 - 3	10 11		
Dimanche	Couverture totale mobile permanent	13 4-4	1- 4,	11 14		

Horaires de fonctionnement des réseaux

	Période d	u 1.4 au 3	30.6.		Période du 1.7 au 31.3				
	Réseau Couverture	totale	Rése permar		Réseau Couverture	e totale	Réseau mobile permanent		
	Heures d'arrosage	Durée arrosages compteur horaire	Durée Heures arrosages d'arrosage compteur horaire		Houres d'arrosag	Durée arrosages compteur horaire	Heures d'arrosage	Durée armosage compteur horaire	
Matin *	7h 40 à 10 h 00	2,35	7h35 à 5	3,35	7 h 40 à	අවකර	70 ^h h ⁴² 0 ^à	2,65	
Soir	16 h 40 à 19 h 00	2,35	15 h 40 à 19 h 00	3,35	17 h 10à 19 h 00	1,85	16h 20 à 19 h 00	2,65	
Nuit	19 h 00 à 23 h 40	4,65	19 h 00 à 01 h 50	6,85	19 h 00 à 22 h 40	3,65	19 h 00 à 0 h 30	5,50	

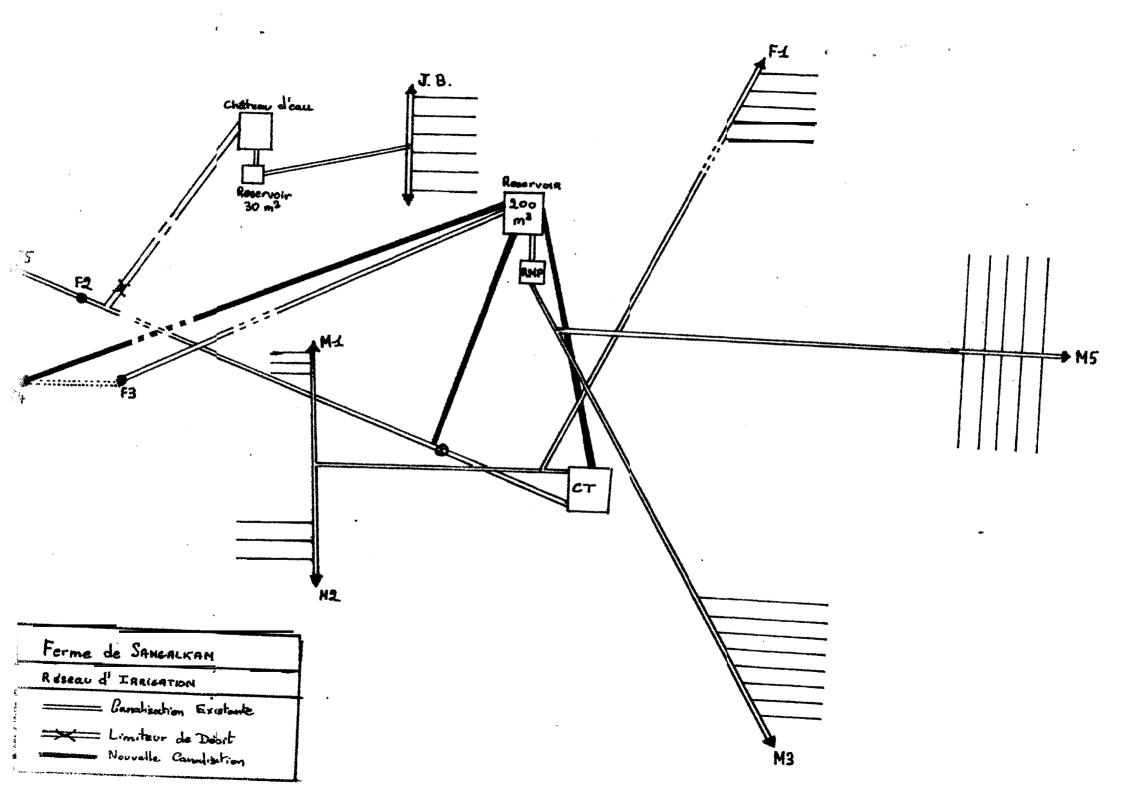
Il s'est avéré à l'usage, que le fonctionnement des installations ne correspondait pas **tojours** aux conditions définies en fonction des caractéristiques des équipements. Ainsi les pannes survenant sur l'un ou l'autre forage, les baisses de **rendement** des électropompes des forages conduisent à des perturbations, non seulement au niveau du **fonctionnement** des autre forages, mais surtout à celui des arrosages.

Chacun des **réseaux** ayant été installé progressivement, d'une part, et **indépendemment** les uns des autres, d'autre **part**, aucune intégration n'a été **prévue** au départ et nulle coxpensation ne peut se **faire** lors d'une insuffisance d'alimentation.

Afin de remédier à cette situation et d'atténuer les effets d'une diminution de l'approvisionnement en eau des réseaux, il a été décidé de faire déboucher toute les conduites de collecte des forages 2 - 3 - 4 et 5 dans le réservoir au sol de 200 m3 qui alimente déjà le réseau MP et de relier la station CT à ce réservoir. 11 résulte de ces dispositions qu'il est possible d'assurer un fonctionnement normal des réseaux d'irrigations dans l'hypothèse d'une baisse sensible de débit des forages, moyennant un allongement des temps de fonctionnement de ceux-ci et un aménagement des horaires d'irrigation.

Plusieurs hypothèses ont été faites qui permettent de juger de la fiabilité du dispositif :

- 1) fonctionnement normal de tous les forages au débit nominal et délivrant ensemble 93 m3/heure,
- 2) panne du forage 5, avec fonctionnement normal des trois autres forages débitant ensemble 63 m3/heure,


.../...

- 3) baisse de rendement de 30 % de l'ensemble des forages qui débitent alors 65 m3/heure, ce qui ramène à la situation précédente,
- 4) panne du forage 5, avec baisse de rendement des trois **autre** forages de 30%, délivrant ensemble 44 m3/heure.

Il apparaît que dans tous les cas, même dans l'hypothèse la plus pessimiste, il est possible de couvrir les besoins de l'irrigation tout en respectant les conditions dans lesquelles elle a été définie.

Cette modification du système d'alimentation des réseaux constitue donc une amélioration du fonctionnement continu des pompes et une augmentation de la sécurité du système.

R. CADOT

											_		326	S CANSON FIRE	383, 3 - 2 4
					ALK O M										
	Hoas				MMENT		s Reser	WX EX	- DN ST 10	a w D	EST	ES FORRES			
			52 m ³			1 2 2 3 3		1.2.0		3	ung un ³				RM
e Hypotha	se									Li	5 193				RC
685 E S = \$?	.PA	RP							i e				AP.		
		RP		No RP											RM
Mypoth	sa			_						21					RC
onces: 63											8P		*0=3		
086535 63	77	RP.		433.	A RP			40	127						
les Hypoth	-														RM RC
															CS W 3
pdet5 = 45	~3/R	140	3 m 3		.7 70m³			14 P					50 00		
				40	44 4		4. 46	4 4	+ 4	do :	4 4	* * 1			29, Q
RP: Rese	معاجز ما (ا														
															37